

1

Perspectives on the Security of
Open Source Software

Man Xiong, Lin Huang, Ahmed Tolba, Winfred Wong, Eric Vandenberg, Mohammed El-Gammal

December 9, 2004

Abstract

The paper examines the security of open source software from
three different perspectives. First, we investigate how development
processes affect security. Several open source software
development models are described, and the meaning of openness
and importance of testing are analyzed. Next, we move on to
explore the economic impact and interests of security. Monetary
value of security and the incentives behind various open source
communities are discussed. Finally, we take a look at the effects of
government policy on open source security. We describe the
policies in the United States, Germany and China, and examine
how different roles of the government impact security of open
source software.

2

Table of Contents

1 Aspects of the Development Process and Impact on Security.................................... 3
1.1 Introduction... 3
1.2 Open source development process.. 3
1.2.1 Linux Process.. 3
1.2.2 BSD’s Process... 4
1.2.3 Apache Process ... 5
1.2.4 Characteristics of OSS development Process ... 6
1.3 Development Characteristics and Security ... 7
1.3.1 Openness ... 7
1.3.2 Testing... 10
1.4 Security Statistics.. 13
1.4.1 Security of open-source software vs. IP-based – Sources 13
1.4.2 Defacement attacks - Comparison .. 13
1.4.3 Security Bulletins - Comparison... 15
1.5 Conclusion .. 18
2 Economics of Open Source Security .. 19
2.1 Introduction... 19
2.2 Quantifying the problem – Monetary value of security.................................... 19
2.3 Searching for secure software - Incentives for different parties 20
2.3.1 Incentives for Consumers ... 20
2.3.2 Incentives for Developers ... 20
2.3.3 Incentives for Organized Groups .. 21
3 Open Source and Government .. 24
3.1 Government Policy on Open Source... 24
3.1.1 Introduction... 24
3.1.2 United States ... 24
3.1.3 Germany.. 26
3.1.4 China ... 28
3.2 Impact of Roles Government play on Open Source ... 30
3.2.1 Introduction... 30
3.2.2 Role as Policy Maker .. 30
3.2.3 Role as User .. 34
3.2.4 Role as Contributor ... 36
3.3 Conclusion .. 37
4 Conclusion .. 38
Contributions... 39

3

1 Aspects of the Development Process and Impact on
Security

1.1 Introduction

The strongest arguments about the security or vulnerability of open source versus
proprietary software revolve around the very making of it. Aspects of the development
process have a great impact on how solid software is. The section goes through the open
source development process citing three of the most prominent open source projects. It
then moves to detailing some of the published data on the security of open source.
Finally it takes a deeper look at two of the most influential features of the development
process related to the security of open source, which are openness and lack of formalized
testing.

1.2 Open source development process

Open Source Software (OSS) is different from traditional software produced by
companies like Microsoft, Apple, Sun, etc. In commercial environments, companies have
the monetary resources to hire programmers, managers, system architects, and the ability
to set and direct large project schedules. With open source most contributors are
volunteers. They tend to join a project or two, before finding some other new activity
that captures their interest. They like to work on what they find fascinating and as a result
it is difficult to direct and co-ordinate their collective efforts. Given family, job, and
social commitments it is very difficult to reliably create project schedules. In order for
open source projects to be successful, they need a framework for development that can
handle a high turnover of contributors. In the following sub-section we take a look at
examples of successful open source projects and how they are organized.

1.2.1 Linux Process123

Linux is an open source Operating System (OS). Its development work is broken
into two branches, the experimental branch and the production branch. All new features
are added to the experimental branch for initial testing. The experimental code may be
unreliable resulting in data loss, machine failures, etc. The production branch contains
only well defined and tested features, it is much more reliable and has fewer releases.
Companies bundle production versions of the Linux core OS with other packages to
provide a generally usable Linux distribution.

1 Andrew Morton, Keeping the Kernel - Insight and wisdom from the maintainer of the

Linux 2.6 kernel, Linux Magazine, Aug 2004
2 The Linux kernel mailing list FAQ – kernel.org
3 Open source development labs - osdl.org

4

The Linux core subsystem has over one hundred individual maintainers. A
subsystem maintainer takes primary responsibility for that component. This includes
monitoring bug reports, arranging for fixes, coordinating, approving and reviewing all
code changes. In addition they answer inquires and work with other core maintainers to
ensure the quality of the production branch. Maintainers are selected by Linus Torvalds,
the founder of the Linux project. They are typically active and passionate developers in
the area they are assigned.

 The features that go into Linux release are decided through an iterative process of
discussions, reviews and negotiations between key core OS developers and companies
releasing Linux distributions. Once a feature set has been defined, agreed and published;
the work begins in the experimental branch. As a Linux release date approaches, Linus
announces a feature freeze, which means no new features will be accepted until the next
stable release. Only critical fixes are allowed. This is a short phase usually preceeding
the creation of a new stable Linux branch.

 The process of getting features or patches into Linux core OS is straightforward.
To get a change into the build, a developer sends an email to the component or subsystem
maintainer. The patch must be a self contained logical unit with no dependencies on other
patches. The maintainer’s job is to review the changes and ensure other developers
working in that component review it. The patch is well tested before prior to inclusion in
the production branch.

1.2.2 BSD’s Process4

The development model of the three BSD variants, FreeBSD, NetBSD and
OpenBSD, was originally created by the Berkeley's Computer Systems Research Group.
For the purpose of this section we will focus on FreeBSD. The entire FreeBSD project,
including all source code, documentation, bug reports, mailing-list archives, and even
administrative data is maintained in a publicly readable source-code-control system.
Anyone may review the source code and existing bug reports, track progress on fixing
bugs, and post bug reports. Anyone may join or participate in numerous FreeBSD
mailing lists. There are three groups of people that directly work on FreeBSD, they are
developers, committers, and the core team.

There are three to four thousand developers, each working on some part of the
system like the FreeBSD core, system utilities, documentation and updating other OSS
projects in the FreeBSD port collection. Similar to the Linux development process,
developers have read access to the source code repository but can’t change it directly.
They work with a committer to get the changes into the source code repository.

4 Marshal Kirk McKusick and George V. Neville-Neil, The design and implementation of

FreeBSD operating system, Addison-Wesley, 2005

5

 There are three to four hundred committers. Most committers specialize in some
part of the system and are not allowed to change other areas. All nontrivial changes
should be reviewed by one or more committers before being checked into the source tree.
In addition to reviewing and committing the work of others, they are often developers
themselves.

 Committers nominate other developers for advancement into becoming a
committer. Often this happens when they have worked together well. The core team
runs decides on approval based on previous work evaluation and initial scope of new
work.

At the center of the project is the core team. The core team is composed of nine
people, elected every two years. The committers elect the core team from their members.
The core team acts as the final gate keeper of the source code. It monitors what is being
committed and resolves conflicts if two or more committers can not agree on how to
solve an issue. The core team approves developers’ promotion to the status of committer.
They also can temporarily or permanently demote someone back. Like Linux, FreeBSD
has stable and current unstable releases.

1.2.3 Apache Process5

Apache is the most popular web server on the internet. It was started by a group
of developers to fix known problems with The National Center for Supercomputing
Applications (NCSA) web server. Since then it has evolved into a full fledged open
source project with an informal organization responsible for guiding its development
effort, the Apache Group (AG),

The AG in its entirety consists of volunteers working part-time on the project.
None of the developers can devote large blocks of time to the project in a consistent or
planned way, which is typical of open source. The decision making process is based on a
decentralized model with asynchronous communication.

 AG members are people who have contributed for an extended period of time, at
least six months, and are nominated and voted for membership by existing members. AG
started with eight founding members, and went up to twelve for most of the period
covered by the cited study. Now there are twenty-five members of the core development
team.

 Each AG member is expected to use their own judgment about committing code.
There is no rule prohibiting any AG member from committing code to any part of the
server. Votes are generally reserved for major changes that would interfere with the work
of other developers. Although there is no single development process, each developer

5 A. Mockus et al, ACM Transactions on Software Engineering and Methodology, Vol.

11, No. 3, July 2002

6

iterates through a common set of actions while working on the project. This applies
whether a new problem is discovered or new functionality is identified, determining
whether a volunteer will work on the issue, identifying a solution. It also including
developing and testing, presenting changes to the AG for review and committing the code
and documentation. Depending on the scope of the change, many iterations may be
required; it is generally preferred that all the changes by taken together though.

1.2.4 Characteristics of OSS development Process

Although there are differences between the development processes of open source
projects, generally they have a lot in common. For instance,

• Volunteer developers - The vast majority of open source developers are volunteers.
A study done on open source projects found that 73% of open source projects have
only one stable developer, and less than 5% has 20 or more stable developers6.
Because open source developers are transient volunteers, they tend to work in areas
they find interesting.

• Open source code - Source code is available to anyone to read and critique. In
addition, anyone can submit changes for inclusion in the source code. Typically there
are a few designated developers who approve code submissions.

• Core developers - As mentioned above only 5% of open source projects have a
stable set of developers of 20 or more. As the number of developers the need for a
more formal structure increases, which leads to formation of “core teams” of
developers. Core developers mostly come from the set of stable developers and play
the key role in setting the future direction of a project; they are the most influential
stakeholder.

• Developers are users - Open source developers are also users of the software.
Active developers in an open source project install the latest releases of the software
which they use in their day to day work. This means that open source developers are
a subset of the open source user community.

• Short Release Cycle - In the active or experimental branch there are frequent
releases and developers are expected to self-host the most recent release and report
problems as they find them. This is surprising given the part-time nature of OSS
developers.

• Lack of formalized tests – OSS developers generally write feature/unit tests, and
conduct peer reviews in an areas. Other than that, open source contributors tend to be

6 Capiluppi and et al., Characteristics of Open Source Projects, Proceedings of the

Seventh European Conference On Software Maintenance And Reengineering
(CSMR’03), IEEE computer society, 2003

7

more interested in coding than documentation or testing. Most open source projects
don’t have formal integration and system-wide tests that are run before interim
releases. They mostly realy on the community at large to do the testing indirectly
through using the software.7.

• Source Availability (Openness) – Open source projects have their source code
available for public viewing and modification generally under one of two licenses
which are the GNU Public License and the BSD style license.

The next section discusses last two points as the basis for an argument about the
impact of development process characteristics on the security of open source. These
points are at the center of the discussion of the inherent security of open source and
proprietary software. First we should look at the data to give the reader more insight into
some of the relevant security statistics that were published recently.

1.3 Development Characteristics and Security

1.3.1 Openness

The Alleged ‘Power of Openness’

At the very heart of the open source movement lies the predicate of software
‘freedom’. This freedom advocates for source code to be freely available for viewing and
modification. Bollier describes the process producing this freely available source code
by means of passionate developers working for the betterment of society through ‘gift
economics’. According to him those developers complete the cycle bringing software
back to its proper place where it started, which is the public pool of society where its
benefits can be shared8.

Among the most stated reasons for the claimed security of OSS over its
proprietary counterpart is the availability of source code. Eric Raymond’s claim that
“given enough eyeballs all bugs are shallow” represents one of the most fundamental
pillars of the belief among open source advocates. In the cathedral and bazaar12, the
argument goes like:

 “In the cathedral builder view of programming, bugs and development
problems are tricky, insidious, deep phenomena. It takes months of
scrutiny by a dedicated few to develop confidence that you’ve winkled

7 Cristina Gack and Budi Arief, “The Many Meanings of Open Source”, IEEE software,

Jan 2004
8 Bollier, David. The Power of Openness, April 1999.

8

them all out. Thus the long release intervals, and the inevitable
disappointment when long-awaited releases are not perfect.

 In the bazaar view, on the other hand, you assume that bugs are
generally shallow phenomena—or, at least, that they turn shallow pretty
quickly when exposed to a thousand eager co-developers pounding on
every single new release.

Accordingly you release often in order to get more corrections, and as a
beneficial side effect you have less to lose if an occasional botch gets out
the door.”

Whether openness of source code could in itself be a reason for security is the
focus of this section.

All Eyeballs are ‘NOT’ Created Equal

Like other classes of flaws in software, security vulnerabilities could be viewed as
mistakes made inadvertently by software developers either caused by lack of attention or
lack of knowledge. Secure Socket Layer (SSL: A utility library that provides secure
connections over the internet) is a good example. SSL is a frequently the source of
issures as developers due to the lack the awareness of its proper use.18. Also, it’s worth
noting that people are sometimes too arrogant or are completely ignorant of their
limitations. This could explain the observation of security expert John Viega. He said
many developers are lousy security coders and reviewers even though they might not
know it. Given this, the above argument implies a lot of reviewers may be looking at a
product’s source code but very few count. About the only bugs found are the easy ones,
like the infamous ‘buffer overrun’.

Another problem is the limited capacity of the human mind and its inability to
comprehend all the interactions among complex pieces of software. In our opinion,
complexity is not only the main source of bugs but also another impediment to the
security review process. This problem may be compounded by the reviewer being
unfamiliar with the software. Facts like this would render the casual review, and even the
more serious one without the right expertise, all but effective. Reviewers with the right
security expertise in the problem domain are not easy to come by. Scarcity implies an
increased price for the same demand and this higher price makes it less likely that they
would be reviewing open source Software18.

Finally, it’s only fair to point the reader to the fact that exceptions to the rule do
exist. Corporate backers like IBM could conceivably hire experts to derive security in
open source products of interest to them. Also products like Apache are reputed for
having a good security record and their onboard security expert. The ability of open
source to get paid time from a qualified security expert is not the point being debated.
The point is that even if OSS could score some points in this arena, this puts commercial
software at least at the same position when it comes to getting expert security attention.

9

Now, Who is ‘Reaaally’ Looking?

It is plausible hackers (real hackers and not open source developers) could
specialize in certain types of vulnerabilities before getting really good at finding them.
They too have unrestrained access to the source code which makes their task much easier.
It is not too hard to assume that even for the most skillful of them providing easy source
code access reduces their operational overhead. They no longer need to use the crafty
tools to disassemble and analyze software in binary form which would have been the case
previously. They can become intimately familiar with the area they want to exploit. The
argument made earlier in the section about the bar for security reviewers being high
seems contradictory to the statement about hackers finding holes in source code. This
can be clarified by pointing out the goal of the security review is to get rid of exploitable
vulnerabilities while all a hacker needs to do is find one exploitable hole.

From another perspective, we can consider the Forrester’s study claim that “Real
vulnerability to attack begins with disclosure”9. One of the principal methodologies
hackers employ is to look at an issued fix and compare it to the original module in an
attempt to discern the vulnerability lurking in it. Next they use the window of time (and
opportunity) before people apply the fix to exploit their machines. Considering the fact
that reverse engineering and comparing modules is an order of magnitude harder when
you don’t have source code, having sources allows for a speedier understanding of the
vulnerability. Speed is of the essence since the window of time is closing in before
potential victims apply the patch. Finally, there is another factor outside the context of
this discussion that is mentioned for its relevance. For Linux distributions a patch that is
independently issued for a bundled component could be held till the next distribution
release cycle. This could give the hacker plenty of time to react. This is particularly true
in Linux distributions that do not provide and out of band auto-update mechanisms.
Distributions that provide an out of band update include prominent ones like RedHat and
Debian.

You need to leave your door unlocked!

Ignoring social and religious arguments (which we haven’t got into due to the
lack of relevance to this study), in our minds, ‘the subsection title’ is exactly what
openness in software amounts to when it comes to security. Given that it is easy for a
skilled felon to pick a lock or an experienced bank robber to demolish the vault door or
really persuade the clerk under gunpoint to open it, then one could argue that those
practices are not worth their while. If such argument was adopted then what this would
translate to is slightly lowering the bar for less skilled bandits and making it easy for the
professional ones. For software, we are talking about an area where how fast an exploit
is produced makes a difference, so even deterring the hackers for a few days trying to
works their way in the dungeons of the binary could be of help. ‘Security through
obscurity’ is bad either and is not what the argument is designed to support. In this

9 Koetzle, Laura, Is Linux More Secure Than Windows, 19 March 2004

10

regard, this would be like having a lock that doesn’t lock or a vault door that opens with
random unauthentic secret keys. What we fully support is well designed, ‘expert’
reviewed systems that are even more protected by allowing only relevant stake holders to
view their source code, for extra assurance and independent reviewing.

The Utility of Tools and Utilities

Given the previously discussed argument of the complexity of large software and
the inability of the human mind to fully comprehend all dynamics tools seem like a more
promising avenue. Unlike the human mind, machines can handle systematic complex
analyses flawlessly. Currently all major successful tools are at the early stages of
research and development. Commercial companies have the advantage over open source
given the abundance of resources and the centralized organization available for
investment in complex code analysis tools. There is nothing stopping the open source
community from developing such tools by leveraging the wider community of volunteers
and academic researchers. An obvious example is Engler’s work in Stanford17. Note that
all tools developed in the open source are also available to enhance the quality and
indirectly security of proprietary software.

1.3.2 Testing

Software testing is one of the most fundamental assurances for the high quality of
a developed product. Quality of software represents consumer satisfaction across the
breadth of a products´ features, including assurances about safety, privacy and security.
The commercial software industry typically employs Quality Assurance (QA) technicians
through a dedicated QA department. The area of formal testing is identified as a major
difference between the commercial and open source projects. This section examines the
difference in testing methodologies in open source and commercial software, its effect on
the development process and finally the impact on software security.

System Wide and Product Integration Testing

 With the exception of non-representative projects like Mozilla, open source could
generally be characterized by a lack of formal system-level and integration tests. Mozilla
could probably trace its half dozen test teams to inherited processes from the commercial
days of Netscape. It is widely believed that responsible development practices like unit
and feature tests to verify the correctness could be in use on both sides of the free and
commercial software divide. Nevertheless, unit and feature tests are not deemed
sufficient on their own in the mainstream software industry. System-level tests are
equally important if not more crucial to verify new functionality doesn’t break existing
code. Modifying complex software is in a sense like manipulating the human body.
Even though it might not be obvious at first that operating on one organ can have its
effect on a totally different one, it’s certainly likely given the complex processes that
within the human body.

11

Impact of Lacking System Integration Tests

The below numbers are taken from a case study on Apache, a prominent open
source web server by Audris Mockus et al. in 2000. It provides comparative defect
numbers for Apache and similar undisclosed commercial products from the
telecommunications industry. The analysis depends on a strict definition of defect. A
defect, as far as the study is concerned, is a result of a Problem Report (PR) by customers
or internal test. Defects are measured per 1000 of lines of code added (KLOCA) and
1000 deltas (KDelta). The stated reasons for such normalization (scaling defects by
means of KLOCA and KDelta) are not to give an advantage to larger code projects. This
would be bad from a software engineering point of view, as it would dilute the defect
density by not taking into account the incremental nature of products10.

The first observation is that post-feature test and post-release defects of Apache
are the same due to the lack of system-wide integration testing. Regarding the post-
release numbers, Apache ranks worst in terms of consumer defects. This clearly asserts
the importance of system integration tests and the impact of them in the commercial
world.

An Interesting Side Effect

Another observation we like to make note of is that post-feature numbers seem to
be better for Apache than its commercial counterparts. This can shed some light on the
software development process and diligence of developers in open source knowing that
they have to ship high quality the first time and knowing that there is no QA team to back
them up. Apache is known to be a high a quality product especially when it comes to
security. In order to make sure that this observation is not unique to Apache, post-feature
test numbers from the same study for Mozilla are also compared. Looking at the table
below the low defect numbers seem to hold for Mozilla too, making this an interesting
aspect of the quality of open source Software and hence its security11.

11 Mockus, Audris et al, Two Case Studies of Open Source Software Development:

Apache and Mozilla, July 2002.

12

It’s a well know fact that QA is not a substitute for a lousy development process.
It is typically there as a quality gate ensuring the product is sound before wide spread
deployment, catching few, if any, non-fatal bugs. If the lack of system testing would
derive the development process to be sound in the first place then this is an interesting
side effect that might balance the picture. If this is true it could mean that the bulk of
open source defects are non-core issues. Given the speed of response to defects that is
exhibited by some open source software, it could in some areas be a viable alternative to
commercial software. Apache web server is a clear example of this.

Post-Feature Test Bug Rates in OS vs. IP

There could be another side effect happening across board, which could provide
supplemental explanation for the high rate of post-feature test bugs in the commercial
world. Working for a company where system test is part of the process (especially when
this company is a large corporation) developers tend to be over reliant on the fact of
system test backing them up. In some cases the QA organization is reduced to be a guinea
pig of the developer. In such an environment, unit tests tend to slim down and sometimes
even totally disappear. Whole features are committed to the source tree with no
significant developer verification since it’s someone else’s job to make sure it ‘works’.

System Test is Good

The section is by no means arguing against system wide tests but is pointing out the
interesting side effects that could result from abusing the system on the commercial side
and the extra diligence for the lack of it on the free side. We believe that if QA abuse is
true on the commercial side then abiding by good development practices like unit tests
and developer diligence while reaping the benefit and the extra assurance of system
testing could boost the quality and stress the competitive edge that it has in this area.
Consumers can reap the benefits of all of this by having a super reliable system upon
delivery that could be deployed with more confidence.

13

Open Source Security Data

There have been several claims by the open source movement that, because of the
characteristics of open source projects – open source, volunteer developers and many
eyeballs looking at the source12, then open source software is inherently more secure than
IP based software. In this section we will look at arguments for open source inherent
security and data collected by several sources that track security advisories issued by both
open source and IP based software.

1.4 Security Statistics

As mentioned above there have been several claims by the open source movement
that, because of the characteristics of open source projects, that open source software is
inherently more secure than IP based software. In this section we will look at data and
correlate it to the analysis from the previous section.

1.4.1 Security of open-source software vs. IP-based – Sources

Along with IP-based software vendors like Microsoft and Sun; and open source
software distribution companies like RedHat and Novell; there are several services that
track and publish advisories for vulnerabilities in software products. Some of these
services are non-profit, university or governmental services. Table 1 lists some of these
services. We will be relying on data from different services and software vendors’
security advisories.

Source Organization type
Cert Carnegie-Mellon
Microsoft Vendor
Red Hat Vendor
Secunia Service
SecurityFocus Service
US-Cert. Government
Zone-H Service

Table 1. Source for vulnerability statistics

1.4.2 Defacement attacks - Comparison

First we look at the number of defacement attacks on two open source operating
systems families, Linux and BSD and one IP-based one, Windows. A defacement attack
on a website is one in which the content of a website is replaced with new pages. In most
of the defacement attacks the new pages contain religious or political messages, but in
reality it can be anything. In the 2004 FBI Computer Crime and Security Survey, among

12 Eric Raymond, the cathedral and the bazaar, O'Reilly, 2001

14

the organizations covered by the survey, 7% experienced a website defacement attack13.
Although defacement attack are not the most common form of attacks, it is a form of
attack that is very visible outside the organization being attacked, which make them hard
not to report.

Figure 1 (below) lists the number successful defacement attacks on website
running these operating systems in the period between Jan-03 and Jan-04.

Figure 1 - The number of the attacks in the three big families of operating systems: Windows, Linux
and BSD (source: Zone-H.org14)

Figure 1 shows that the number of successful defacement attacks on the Linux
family was higher than the Windows family in the periods from Feb-03 to Aug-03, and
Nov-03 to Jan-04. It is also interesting to note the wide variations in the success rate of
defacement attacks on the two open source systems in the comparison, i.e. Linux and
BSD families. The Linux family suffered 3-7 times successful attacks when compared to
BSD – this might well be a result of BSDs limited market share in comparison to Linux
and Windows.

13 FBI, the 2004 FBI Computer Crime and Security Survey,

http://www.usdoj.gov/criminal/cybercrime/CSI_FBI.htm
14 Zone-H, http://www.zone-h.org/en/winvslinux2

15

1.4.3 Security Bulletins - Comparison

Another source of interesting information in comparing the security of IP-based
software and open source is to look at the number of security bulletins issued by each
camp. Before we do so, it is important to mention that as a security metric the ‘number of
security bulletins’ is a highly contested metric by the open source community since it
doesn’t take into consideration the severity of the report. In our view this is a valid
argument if one is evaluating the security of a product to make a procurement decision.
Since the goal is to provide a quantitative measure of the number of flaws produced by
both development processes just looking at the numbers is sufficient.

16

17

Figure 2 Number of bulletins issued for Windows XP, RedHat Linux workstation 2.1 & 3.0, and
NetBSD 1.0 & FreeBSD 5.0 in the period of Jan 2003 through Nov 2004. (source: Secunia.com15)

 As mentioned above the number of security advisories issued is not an ultimate
measure of how secure software is. Nonetheless, the fact that the two open source
operating system show a wide variation in the number of security bulletin issued - 93 for
RedHat Linux WS 2.1 and 35 for FreeBSD with Windows XP in the middle at 54. This
data fits the pattern shown in the previous section about defacement attacks.

15 Secunia, http://secunia.com/product/

18

1.5 Conclusion

Despite the claims by the open source proponents that open source is more secure,
a more close examination of the OSS and IP development processes shows advantages
and disadvantages on both sides. The claim of open source intrinsic advantage over
“closed source” could not be verified from the examined perspectives.

In our view “openness”, being the most controversial aspect discussed, may not not
have a big advantage in security. This is evident from the fact that expert “eyeballs”
make the difference to the casual developer review. The openness of open source doesn’t
automatically make it more secure, but it creates an opportunity for motivated individuals
to pool together security expertise to do code reviews, security auditing and create tools
to help improve security. Two great examples of this are the Sardonix project 16and static
source code analysis project in Stanford University. 17 On the other hand, disclosing
source code can be a slight advantage to the expert hacker in reducing the overhead of
analyzing issued patches to produce an exploit for un-patched systems. In addition,
“openness” could lull developers and users into a false sense of security18. Tools might
be the answer but it would depend on open source leveraging its potential power to
produce them to try to balance the disadvantage they have resulting from commercial
having access to open source code analysis tools and more internal ones. Lack of formal
testing may constitute a disadvantage to open source but produces an implicit advantage
by making developers work in a more responsible manner.

 The numbers come in support of findings that both sides exhibit a mixed set of
pros and cons. The record of problems found in OSS and IP don´t suggest the superiority
of one over the the other when it comes to security. Both open source and IP software
have suffered from an abysmal rate of security failures in the last few years. In both
worlds the number and sophistication of attacks are on the rise. If software is to meet
future needs of business, government and home users, there has to be an order of
magnitude improvement in the resilience of software products to attack.

Finally we believe that there is a slew of inherent potential on both sides that could
be leveraged. There is also room for hybrid models reaping the advantages of both
camps. This might be evident from the hybrid development model used with Mozilla11.
Companies like Apple and Sun have taken the initiative to freely publish the source code
of projects, indicating potentially closer steps toward a hybrid model.

16 The Sardonix Project, https://sardonix.org/

17 Dawson Engler, Using Programmer-Written Compiler Extensions to Catch Security

Holes, IEEE security and privacy, Sep 2002

18 John Viega, The Myth of Open Source Security,

http://www.developer.com/tech/article.php/626641

19

2 Economics of Open Source Security

2.1 Introduction

This section investigates the economic impact of security issues and the driving
forces within the open source community to combat them. The impact of malicious
viruses and worms can cause billions of dollars in damage. To make open source
software reliable and usable for consumers, individuals and organized groups have come
forward with an interest in improving the security.

2.2 Quantifying the problem – Monetary value of security

A major security exploit often found with desktop software or databases can lead
to disclosure of sensitive information. For example, personal details, credit card numbers,
social security numbers, etc. With this information, malicious individuals can commit
identity theft, one of most widely and increasingly occurring crimes in the United States.
Almost ten million Americans had their identity stolen last year alone. According to the
Federal Trade Commission19, the cost to businesses totaled $48 billion in 2002 and out-
of-pocket costs to individuals totaled $5 billion.

In addition, over the last decade viruses and worms have infiltrated computers
throughout the world via the internet. For instance, the Slammer worm rocketed around
the globe disrupting hundreds of thousands of systems, bringing world wide internet
traffic to a crawl. Major financial institutions, airlines and other corporations suffered
wide spread service interruptions. Accounting for lost working, cost of overtime for IT
staff and damage to data systems, Computer Economics estimated the financial impact of
the Slammer worm exceeded the $1.25 billion worldwide. In August 2003, Blaster worm
and its variants exploited a known Microsoft security flaw, allowing an attacker to
control an infected system. The financial loss due to the Blaster worm was estimated to
be as high as $2 billion. The most costly attack so far was the LoveBug worm in 2000,
exceeding $8 billion world wide.20

19 "Identity Theft Strikes 1 in 8 Adults, FTC Says", Technology – Reuters, Andy Sullivan,

September 3, 2003

20 August 2003 – Worst Virus Season Ever?
(http://www.computereconomics.com/article.cfm?id=867)

20

2.3 Searching for secure software - Incentives for different
parties

2.3.1 Incentives for Consumers

Primary goal for consumers to use a software program is to accomplish a task, e.g.
send an email, purchase a gift online, etc. Consumers expect the software to just work,
meaning the software program should have security built-in when needed. Although most
consumers treat software as yet another commodities, the liability issue is quite different.
For example, when problems occur on regular products, manufacturer is responsible for
recalling the product and is often liable to any damages caused by the defects. However,
there is no such thing in software. Consumers are often forced to follow the contractual
disclaimers of liability, which are found on most shrink-wrapped software. Otherwise,
operating system vendor such as Microsoft would probably lose billions of dollars each
year on liability related lawsuits.

Consumers’ awareness of liability towards insecure system has greatly increased
over the past few years as number of internet scale virus/worms has risen. As predicted
by Nancy R. Mead, software liability will follow the example on automobile, where
automobile manufacturers are liable for injuries results from design/manufactured faults
in vehicles they produced. 21

2.3.2 Incentives for Developers

Typically, programmers contribute to open source mainly because of the
following incentives:

1) Specific solution that required fixing a bug or customizing an open source
program.

In this case, the programmer is in fact driven by the fact that he needs security in
the open source program that he is currently using. The open source program can be his
mail client, or a server product his company is using. In both scenarios, the programmer
is considered a user of the OS program. Because he has knowledge over “non-
programmer” users, he has the choice to apply the fix to the program on his own.
Obviously, this group of programmers works on a needed basis. They are not going to
actively seek out or review the source code for security issues. As number of
programmers grows in an open source project, number of free riders also increases. This
further lowers the incentives for programmers to fix security problems.

2) Enjoyment and fun of an open source project.

21 Nancy R. Mead, Software Engineering Institute, Who is liable for Insecure System?

21

Although adding new features is fun, reviewing and fixing security bugs is not.
And without proper training, it is difficult for leisure programmers to really track down
deep security problems. As said by David A Wheeler, “Clearly, it doesn't matter if there
are ‘many eyeballs’ if none of the eyeballs know what to look for.” 22

Providing proper security training is also not as trivial as one may think. For
example, during Microsoft’s initial Windows security push, all development work has
paused for couple months analyzed design, code, test and documentations. 23

3) Career concern – potential job offers and shares in commercial open
source-based companies.

Security is a hot area today and many consulting firms are found to deal with
security issues only. Being recognized as a security expert on OS software could lead to
potential employment in such consulting firms.

4) Ego gratification and peer recognition.

For many programmers, especially hackers, it is actually more rewarding (in
terms of ego gratification) to break a software than fixing it. However, there have been
movements by open source groups to recognize people in identifying and fixing security
problem in open source software. Although no monetary reward is being given at this
point, certain degree of peer recognition is clearly established.

2.3.3 Incentives for Organized Groups

In addition to individual developers, many organized groups have cropped up to
provide more credible and accountable security for consumers of open source software.
Some groups consist of determined do-gooders, a formation of motivated volunteers with
security expertise. Other groups have a business model, paid employees, playing a
supportive but profit driven role within the open source community. The driving
motivation behind these groups can be vastly different. Consider some groups that have
surfaced:

1) Sardonix Project

Consider the largely altruistic approach taken by the Sardonix project. The
project is a security portal, seeded through DARPA money. It is a centralized location
for open source community members to archive security audits of prominent open source
software. Anyone can register and contribute security audits. Contributors are not
financially rewarded; instead, they are given points weighted on the coverage of their

22 David A Wheeler, Secure programming for Linux and Unix How To

23 M. Howard And S. Lipner, Inside the Windows Security Push, IEEE Security &

Privacy, 2003

22

security audit. If a member audits software that is later found to contain security issues;
he or she is docked points. In this way the point system is a display of status; more points
means greater peer recognition, a common driver for many contributors.

2) Linux Security Audit Project

Most often the contributors of security review groups are united around a
particular open source project. For instance, the Linux Security Audit Project is aimed
specifically at identifying issues in the Linux operating system. Membership is open to
all and individuals contribute through an online distribution list which is monitored by
Linux component owners. People are encouraged to discuss security issues and
recommend specific areas for others to review. The incentive for the project is to provide
a community center to house the collective efforts of its members. Prominent figures
within the community are responsible for assessing the risk of security flaws, rolling out
fixes, and posting security advisories.

3) The Apache Group

The Apache Group, responsible for the Apache web server, works in a similar
way; however they favor a private reporting process. In order to prevent hackers from
exploiting vulnerabilities before fixes are available, participants send email to a private
distribution list. Once received, a core group of volunteers with security expertise
analyze the issue and produce a fix. The reasoning is that keeping information in a
private forum means less opportunity for exploitation.

4) OpenBSD Project

Most open source efforts are reactive in their attitude toward security. However,
security experts agree that a proactive attitude is the best approach for dealing with
security. Some open source projects, such as OpenBSD have successfully adopted this
attitude into its philosophy. The project’s proactive emphasis on security has rewarded it
with a reputation for being one of the most secure operating systems available.
OpenBSD has a team of about a dozen volunteers with significant security backgrounds,
reviewing each lines of code in the operating system components. They review for bugs
instead of specific security flaws because security vulnerabilities are often enabled
through otherwise insignificant bugs. Security holes found in competing BSD variants
were found and resolved in OpenBSD, often months earlier, through its code reviewing
process. OpenBSD, created with the intent of being the most secure operating system
available, has largely succeeded through its proactive security attitude.

5) Consulting Companies

In addition to altruistically motivated groups, monetary incentives have created a
market of consulting companies that play a supportive role in the open source community.
Many consumers of open source software are willing to pay for a secure solution. Some
consultants offer a complete set of services ranging from hardware and software
installation and ongoing support, to security testing and policy configuration. The
capabilities and skills offered by such commercial companies must be assessed on a case

23

by case basis. There is no standard to rate and compare how well these companies
provide a secure solution so the quality of service is hard to gage. Security is a popular
buzz word for consultants; however, some of these companies are so small it seems
questionable they would have resources and expertise to offer credible solutions. In
contrast to the altruistic groups above, these firms are primarily driven by profit.

There is clearly value gained by collectively organizing developers with an
interest in improving security. Different incentives such as point reward systems, public
and private recognition, and reputation amongst peers have been used by groups to
improve the security of open source software. Profit motivated companies have also
surfaced to provide tools, and complete hands on support for consumers of open source
software.

24

3 Open Source and Government

3.1 Government Policy on Open Source

3.1.1 Introduction

It is clear that security issues are the major concern in every country where
software is controlling critical data and processes.

Governments have started to see the benefits of the new open source movement. It
leverages contributors around the world to work on projects, greatly reducing the
development cost. There are two other major benefits. The first is more eyeballs on code,
meaning anyone can view the source code and contribute to identifying and fixing bugs.
The second is that because it is open source, it is much less likely ¨backdoor¨code will
exist since all code is freely seen. With proprietary code, only the hard to understand
binary executable is available for inspection.

Governments of different countries are actively making policies about the new
OSS movement. Except for the United States (US), countries are economically and
politically motivated to promote OSS. The US is taking a neutral stand, while still taking
necessary and effective actions toward establishing a security standard for all the
software, where open source or not.

In this section we will discuss different government policies relating to open
source, and specifically the implications relating to security.

3.1.2 United States

The US government does not promote open source or proprietary software. It
does not believe one is more secure than the other. Their current policies take into
consideration of its role as policy maker, user and contributor of software security.

Government Regulation?

Although there was an unsuccessful initiative by some congressmen to reject OSS
on the basis that lack of profit incentive would kill innovation for software security, it
was unsuccessful. The US government is not interested in regulating the software
security industry; it would rather see the power of free market at work. It has taken a
leadership role by being an example of security internet usage.

Certification Program-NIAP

The US government initiated the National Information Assurance Partnership
(NIAP) effort to meet the security testing needs of both information technology (IT)
consumers and producers. The long-term goal of NIAP is to help increase the level of

25

trust consumers have in their information systems and networks through the use of cost-
effective security testing, evaluation, and validation programs. Both Open Source
Software and proprietary software must pass the tests to be certified, at they own expense.
The large cost of going through the certification process is not a problem for proprietary
software vendors but a challenge for open source projects.

IT Security Planning

The US government enforces and encourages IT security among its agencies by
mandating IT spending level on security. All its agencies are encouraged to have their
own plan for IT security, this does not necessarily mean using open software or
proprietary software, only demonstration of a focus security and cost effectiveness. All
the software in government must be NIAP-certified.

Contribution to OSS security

The US government not only sets an example but also contributes useful tools and
source code to the general public. NIAP provides testing programs for any non-
government deployment. National Security Agency (NSA), the US governments´
department responsible for IT security, developed a Linux-based application, which
enhances its security by role-based access restriction and type enforcement. This guards
against buffer overruns. This application is based on Linux for three reasons:

• Although taking a neutral stand between OSS and proprietary software,
the Bush administration has decided US government should not miss the benefits
of OSS movement.

• Linux is a mainstream platform now.

• Open source is viewed as a better way of attracting more talented
reviewers to contribute and review potential security holes.

The end product is released to the general public under GPL license and the Linux
community is encouraged to contribute.

Conclusion

The US government has decided to push a focus on security and innovation in
both the open source and proprietary software worlds. It is actively involved as user and
contributor of OSS.24

24Q&A: Does the U.S. government have an open-source security plan? Linux World,

December 11, 2002 http://www.linuxworld.com/story/32813.htm

26

3.1.3 Germany

Besides the US government, there are many other governments around the world
that have actively embraced the open source movement. Some proposals include
government subsidies for research and development (R&D), standardization on, and
procurement preferences of open source software. The European Parliament, for instance,
adopted a resolution in September 2001 that calls on the commission and member states
“to promote software projects whose source text is made public”. The German Bundestag
is considering legislation that would require government agencies to use open source.
Former French Prime Minister Jospin created an agency whose mission will be to
“encourage administrations to use open source software and open standards”.

Specifically noticeable are countries in Europe like Germany, France, Italy, Spain
and also countries in other continent like Brazil, Venezuela etc.

Germany, for instance, is the most active national government in this field. It has
undertaken concrete initiatives to promote open source. On March 14, 2002 for instance,
the Council of Elders, a joint deliberative body whose task is to manage the internal
affairs of the Bundestag, arrived at a decision on the new Bundestag information
technology (“IT”) environment. It decided to follow the LuK (an eleven member
committee comprised from major political parties) recommendation to install Linux on
approximately 150 servers. A national open source competency center will also be set up
to serve as a nodal point. It will provide necessary technical infrastructure, discussion
forums and a marketplace for the open source community and its users.

Open Source make software more secure?25

Marking the software open source alone does not mean that it is secure. The rule
is, users, as well as programmers, will not able to ascertain whether a specific program is
secure. Only a small group of specialized experts will possibly able to do so, and that
only after a detailed study. In spite of the questions which remain open, the fundamental
precondition for evaluating the security of software is certainly for its source code to be
made open.

This philosophy has been echoed by comments of Siegmar Mosdorf -- the
German Secretary of State in the Federal Ministry for Economy and Technology - .

Open Source Policies, Center for Strategic and International Studies, September 2004

http://www.csis.org/tech/OpenSource/0408_ospolicies.pdf

25 profiling of open source developers; huge number is from Europe

http://www.techweb.com/wire/story/TWB20001101S0016
Mosdorf http://www.internetnews.com/bus-news/article.php/6_408271
eEurope http://www.egovos.org/Resources

27

"Security through Obscurity" is the motto of yesterday. The slogan must today be
"Security through Transparency". The German federal government expects an increase in
security in data processing and data communication because of the open source
movement. This is because if the source code of a program is clear and visible and can be
checked by experts, then security is considerably increased.

According to Mosdorf, the German federal government expects an increase in
security in data processing and data communication because of the open source
movement. This is because if the source code of a program is clear and visible and can be
checked by experts, then security is considerably increased. "Security through Obscurity"
is the motto of yesterday. The slogan must today be "Security through Transparency".
For this reason the Federal Ministry for Economy and Technology is supporting the
development of an encryption product on an open source basis. This initiative is not
about putting certain businesses under pressure. The competition in security matters will
benefit the IT sector, says Mosdorf.

There are many counter points as well. Open Source; because source is available,
it is easier, for attackers to apply theoretical research to trying hacking the system.
Community contribution, require a higher discipline and higher standard on coding and
security education…

So, so far, whether open source make software more secure is debatable, but, it is
clear in Government’s mind, it definitely help moving into a right direction with the
source availability and community involvement, and this is especially strong in Europe
and populated into other continents as well.

Economic Motivation?

Over the last twenty years, most governments have chosen to increase their
reliance on market forces to govern the production and distribution of goods and services.
Some previously communist countries, such as Poland, have sharply reduced centralized
planning, privatized major national industries, and introduced market competition. Some
capitalist countries, such as the United Kingdom, have reduced their reliance on
government regulation and attempted to increase the scope of market competition.
Policymakers are generally more skeptical than they were twenty years ago about the
wisdom of having governments control markets. So, it is bit surprising to see so many
countries entertaining policies to promote a particular, namely open-source, method for
producing and distributing technology. This is surprising because governments have
recently been making fewer efforts to endorse particular methods.

However, to some degree, this is not surprising in other countries except US,
because Open Source software presents the most realistic, and sometimes the only real
technical and economical alternative to Microsoft products.

“I am convinced that open source development can form the European base model
in the information age”. With these words, the German Secretary of State in the Federal

28

Ministry for Economy and Technology, Siegmar Mosdorf, definitively voiced the
backing of the German Government at the Linux Day 2000 of the open source movement.

The German government’s national interest has yet another argument in favor of
open source. As Professor Lutterbeck stated in his report commissioned by the federal
Ministry of Economics and Technology, “new and not yet discussed in Germany are the
figures of the worldwide occurrence of open-source developers. They show that German
developers firm the second largest group. On the whole, European developers are the
predominant”. He concluded that the open-source area not yet dominated by the United
Stats is of great economic importance for Germany. In its resolution on “Germany’s
Economy in the Information Society” on November 9, 2001, the German Bundestag also
stated that open-source software should be considered a special opportunity for the
European software industry and should not be missed. Helping domestic programmers
was also explicitly stated as “one of the big reasons” for the GPL mandate in Venezuela.

The end results of the dominance of Open Source development in Europe has
clearly shown in the studies of Paul, Jones, director of ibiblio.org.

Paul Jones, director of ibiblio.org. Jones, a University of North Carolina
journalism and library science professors and director of the UNC MetaLab and ibiblio,
studied the demographics of the Linux developer community, counting the people who
were contributing to open source. It turns out that more than 50 percent were people
adding just one or two pieces to the growing project. 250,000 developers worldwide are
involved in open-source work, contributing code, writing documentation, or tracking
bugs. Jones’ research showed German contributions to open-source software were greater
than people with .edu e-mail addresses and also greater than the number of people
with.org and .gov e-mail addresses. Combined the entire EU, it is greater than all the dot-
coms. “The demographics of contributors reveals a strikingly strong European influence
within the Linux community”, the researchers wrote.

Conclusion

Clearly the national interest is on top of the force behind the Open Source
adoption and development push in Europe and other counties. It is a clear a golden
opportunity for those countries to try to overturn the US software dominance. And this is
clearly to us, a major motivation than pure security concern with existing proprietary
software.

3.1.4 China

National Security

Different governments have different reasons to believe Open Source or
proprietary software is more secure. Governments outside of US, China as an example,
are concerned on the dominance of Microsoft and even US in the proprietary software
industry and their dependency on US-made software for their critical operations for
national security.

29

They are concerned about backdoors hidden by American manufacturers. An
article on China Economic Times expressed the concern of China government
particularly because the users don’t know what the proprietary software is actually doing
or whether the data is being inappropriately shared. Microsoft addressed their concerns
by going through required tests, revealing part of the source codes and allowing China
government to build the binary codes in their environment from the source codes
reviewed. Despite all the efforts by proprietary software vendors, the balance is still hard
to achieve between national security China government and IP concerns of the vendors,
which gives OSS an upper hand. November 2003, China government proposed to
contract a US company for deployment of OSS on 1 million computers.

Another concern is potential software export restriction from US and its allies in
the form of Coordinating Committee of Multilateral Security (COCOM). Despite of the
disbandment of COCOM in 1994, US still has laws restricting high-technology export to
certain countries, including China, which encourages the rapid growth of Open Source
software development in those countries.

Economic and Political Motivation

Belated legislation and lack of enforcement on IP protection makes foreign-made
proprietary software virtually free, which results in the dominance of foreign-made
proprietary software, almost non-existence of domestic software industry and deterrence
of the progress of Open Source movement. This is changing with the tightened copy right
legislation and law enforcement required by the World Trade Organization agreement,
which motivates China towards developing its own platform. China developed its version
of Linux called Red Flag Linux in 2003 and plans to continue development with Korea
and Japan.26 Ministry of Information Industry R & D Approved MII established the Open
Source Software Promotion Alliance to encourage the development of China’s OSS
industry.

China’s government doesn’t regulate whether the government or the general
public should use OSS or proprietary software. It does set policy on software purchase by
government agencies. There is a strong nationalism sentiment among Chinese general
public right now for their pride as a rising economic power in the world and
dissatisfaction of being far behind in the high-technology game. China’s government is
walking a fine line between being a fair player in the global market and protecting its
domestic IT industry. Currently, China government doesn’t specifically require OSS but
promotes purchase of domestic products, which are more likely OSS. China State
Council Preferences Approved August 2003 mandate that all ministries buy only locally-
produced software at the next upgrade cycle. 27 Microsoft’s efforts to get around the

26 Korea, Japan and China Plan to Develop Secure Platform Together

http://tech.sina.com.cn/it/e/2003-08-31/1557227518.shtml
27 Cooperation of Government and Industry

http://www.ccw.com.cn/news2/soft/htm2004/20041101_0978Q.asp

30

barrier by establishing China division were countered by China’s think tank’s proposal of
requiring more than 50% value addition in China.28 Municipal governments followed
suit.29 In 2001 Beijing Municipal government awarded six contracts to Chinese vendors,
including a deal of 2000 desktop OS license to Red Flag Linux.

Conclusion

As an effort to balance its national security, economical and political needs and
open-market reform efforts, China government promotes OSS by direct funding of OSS
development and preference of OSS software for government purchase decisions.

3.2 Impact of Roles Government play on Open Source

3.2.1 Introduction

There are many hats Government carry: they are, at first, the policy maker; they
are also both the software consumer and producers. Because of these roles, their policy
can make huge impact on the Open Source movement, and as well the overall security of
the software industry.

3.2.2 Role as Policy Maker30

One of the roles Government plays is the policy maker. It provides the regulations
and policies for the welfare of the people and the nation. It has been the trend of last 20
years that most governments have chosen to increase their reliance on market forces to
govern the production and distribution of goods and services.

There is a consensus among economics about the principles that one should
follow in determining whether an intervention is desirable. First, need to identification of
significant market failure – a significant flow or breakdown in market process, which
prevents competition from giving consumers the greatest possible benefits given scarce

Software Purchase Policy

http://www.grp.com.cn/zyzx/view.asp?id=1636&cc=1&counter=1
Protection of Local-made Software http://tech.sina.com.cn/it/2004-08-

26/1441412926.shtml
28 Microsoft China Not Recognized as Local Software Vendor

http://news.xinhuanet.com/it/2004-09/01/content_1941212.htm
29 Promotion of Linux by Municipal Government

http://shenzhen.ccw.com.cn/news/200409/0920_01.asp

30 Secure Linux by NSA http://www.nsa.gov/selinux/
NIAP Program http://niap.nist.gov/

31

resources. Second, government intervention will actually improve things (i.e. make
consumers better off).

Economists studied the software market, and concluded that there is no market
failure.

They measure using two major methods: conventional measure of industry
concentration – by total share of sales accounted for by the four largest forms. In 2000,
the four largest firms in proprietary software industry accounted fro 26.7 percent of total
revenue, while over 47 percent of all manufacturing have a four firm concentration ratio
greater than that of software industries. The second method is using Herfindahl-
Hirschman Index (HHI) for measure of industry concentration. HHIs can range from 0 to
10,000 (a monopoly with 100percent of the market share). In 2000, the HHI for the
software industry was 244, a relative low HHI when compared with other familiar
industries such as automobiles (2,506) or breakfast cereals (2,446).

Software is a very competitive market, results a great deal of turnover. Study
shows that five of the top ten companies in 1990 did not make the list in 2000.

Based on these facts, it shows clearly to the Government that they don’t need to
intervene the market since there is no market failure.

However, there are several concerns Governments have as the policy makers.

1)The digital era presents significant opportunities and real risks for developing
countries. One risk is being sidelined from software trends that drive the increasingly
digital global economy. As developed economies increasingly crease networked
purchasing and production system that depend on advanced ICT infrastructure, countries
that are not connected on favorable terms, and business within those countries, may be
deeply disadvantaged. The decisions Government make about procurement, standard
setting and ICT adoption, technology investments, and training are critical. Open Source,
not only can reduce the burden of limited IT cost, but, it can also allow more domestic
talent participating in the development of local software. Clearly there is the motivation
to upgrade the country’s human resource capacity and technological skill base.

This not only related to the developing countries, it also related to those
developed countries in Europeans etc. Since U.S are the dominant in software business.
Worldwide commercial software is a $171 billion business based on revenue, and U.S-
based produce of $90 billion in 2000. Top 10 Software companies ranked by revenue and
market capitalization are all U.S companies as shown in table 2:

Ranking Company Annual revenue
(millions of $)

Market capitalization
(millions of $)

1 Microsoft 31,375 260,000
2 Oracle 9,487 63,400
3 SAP 7,700 32,300
4 Computer Associates 3,083 12,400
5 VERITAS 1,531 10,100
6 Electronic Arts 2,489 9,300

32

7 Intuit 1,373 9,000
8 Adobe Systems 1,194 8,000
9 Symantec 1,328 6,600
10 PeopleSoft 1,949 4,700
11 Competition 38,445 28,582
Total All 69,954 444,400

Table 2. Top 10 software companies, ranked by revenue and market capitalization31

So, there is a real motivation for Government policy marker to figure out a way
for boosting their own domestic software industry and break the current trend as
technologically dependent on a few major software suppliers located in other countries.

2) Open Source can also have an anti-monopolistic effect on the IT market and
industry.

3) Security of public data is a leading concern of Governments, particularly in the
wake of recent world-wide computer virus attacks and growing fear of cyber terrorism
and cyber crime, as well as spy ware. At a minimum, introducing diversity into the base
of functioning software code reduces the possibility of catastrophic failures caused b
viruses that attack a software monoculture. Finally, because Governments can’t choose
their customers or citizens, it follows that they should not oblige them to use costly
proprietary software and closed data formats. The need for pen public data formats is
directly relevant to calls for increased accountability and transparency in public sector
governance. The use of standard and open formats guarantees free access. If one is to
guarantee the permanence of public data, the usability and maintenance of software
should not depend on the goodwill of suppliers or on conditions imposed by them in a
monopoly market. At a fundamental level, nations must, in order to guarantee nations
security, be able to rely on systems without elements controlled at a distance.

Other developing countries have also expressed dissatisfaction with the
proprietary software development and marketing model, in particular pointing to the
negligible influence them, as “smaller” customers, have on how software develops. FOSS
is expected to provide more flexibility and allow more autonomous input into software
development. This can be conceived of as an ownership issue: developing nations desire
an opportunity to articulate their software needs and participate in the innovation process
as end users of software products.

4) With increased emphasis on and pursuit of Intellectual Property Rights
enforcement at the international level, the choices available to software users are
becoming more distinct. All efforts by international proprietary software producers to
decrease piracy in fact improve the fundamental conditions for increased adoption of
open-source software.

31 UNCTAD estimates based on data from Yahoo Finance http://finance.yahoo.com
 and Financial Times Market Data and Tools http://www.ft.com

33

All above triggered Government Policy towards Open Source Software. The
results are amazing. In the last few years GNU/Linux has increasingly penetrated both the
high and low ends of the enterprise market for operating systems. Nearly 40 percent of
large American companies and 65 percent of Japanese corporations use GNU/Linux in
some form, and it may now run as much as 15 percent of the large server market overall.
A study from October 2002 found that 59 percent of software developers surveyed
internationally expected to write applications for GNU/Linux at some point during the
next year. The EU-sponsored FLOSS survey found 43.7 percent of German companies
and 31.5 percent of British companies using FOSS. It is notable that, according to several
suits, Internet service providers (ISPs), large companies, small companies, and CIO’s in
financial services, retail and the public sector all believe that GNU/Linux use is set to
increase rapidly both in their own organizations and in the market as a whole over the
next several years.32

In summary, even though the study clearly shows there is no market failure in
software industry. Countries outside the US are making all the policy to support Open
Source movement. They use this as chance to encourage the domestic development, and
also treat the Open Source as the way to compete, and gaining on market share which
currently dominant by US software industries. This in author’s view will have a huge
impact to the market and industry and make Open Source is even a more formidable
force. Although whether this will increase the security in software or worse, since we
don’t have enough time or data for the analysis, clearly, it will flourish with Government
as the adopter and strong supporter.

So far, the U.S. government has the right policy; it doesn’t promote Open Source
nor promote Proprietary Software. It lets the market to choose the winner. At the same
time, as a policy maker, it continue the role of providing framework, process, resources,
tools, and regulation to urge the industry move into more secure computing environment.
U.S. should not ignore the Open Source movement, and it should provide the enough
support to flourish the effort, so that it guarantees the long lasting the dominance of U.S.
software industry and push the industry towards more secure computation by facilitating
more reaches, process and matrix.

32 E-commerce and Development Report, UN Conference on Trade and Development,

2003 http://www.unctad.org/en/docs/ecdr2003ch4_en.pdf

34

3.2.3 Role as User33

Governments are major software consumers. Their decision are not only based on
the features and quality of the products (such as security) and cost effectiveness, but also
on national security and the economic impact to domestic IT industry.

Security

As discussed in the examples, governments have their own reason to believe
whether OSS or proprietary software is more secure. Representative arguments for OSS
security are no hidden backdoor in OSS threatening national security and more eyeballs
checking for security holes, discussed in section 1. Polymorphism of Open Source
software also makes specialized software simpler than the model of one-fit-all code base
plus configuration. Some governments such as Denmark believes lower complexity
reduce security risk, which is true. However, forking also means fewer eyeballs checking
the specialized codes. Rapid identification of security holes doesn’t translate to adequate
handling at individual user level, lacking the commercial channels of proprietary software
vendors. Adequate consulting and maintenance service are required.

Some governments such as UK government and Peru government intentionally
introduce platform diversity to isolate or reduce the possibility of catastrophic failures
caused by virus/worm attacking a software monoculture. This is a security practice at
deployment level.

All these present challenges to proprietary software vendors:

• they are hard to be modified or extended for specific needs of
governments

• they may not be compatible with OSS applications while public service is
required to provide access from any platform for fairness and diversity is
preferred

33 E-commerce and Development Report, UN Conference on Trade and Development,

2003 http://www.unctad.org/en/docs/ecdr2003ch4_en.pdf
Open Source Policies, Center for Strategic and International Studies, September 2004

http://www.csis.org/tech/OpenSource/0408_ospolicies.pdf
Open Source in e-government, Danish Borad of Technology, October 2002

http://www.tekno.dk/pdf/projekter/p03_opensource_paper_english.pdf
Open Source Software Use in UK Government

http://www.govtalk.gov.uk/documents/OSS%20Policy%20draft%20for%20public
%20consultation.html

35

It has to be pointed out proprietary software vendors are opening their source
codes to certain users, including foreign governments. Microsoft is promoting a “share
source” program to address all the above concerns. It opens up some of the source codes
for security review and code extension for special needs and compatibility with OSS
applications. IP right concerns limit the scope of opened source codes and put them in a
disadvantaged position.

Cost Effectiveness and National Economy

It is still debatable which type of software has lower total cost of ownership.
Microsoft conducted a study showing proprietary software actually costs less than their
Open Source counterpart with lower cost of configuration, extension, management and
maintenance. However, the initial cost of proprietary software is based on US standard
and much higher measured to the income and labor costs in developing countries. The
lower labor costs in developing countries and the strong Open Source community and
talent pool in European countries make the follow-up development, customerization and
maintenance cost lower than in the US.

Another consideration is that for countries with nascent IT industry, it could be
more beneficial to spend the software purchase money on developing its own software,
most likely based on OSS, to train and grow their own talent pool with spillover effects
on their IT industry.

Impact

Government adoption of Open Source or proprietary software has huge impact.
First of all, governments are big customers or even the single biggest customer in many
countries. Secondly, the compatibility issue between OSS and proprietary software make
the governments’ decision carry strong network effect. The eEurope 2005 Action Plan by
EU promotes and recommends OSS to states within government body and public
administration. The compatibility issue may not be that significant right now, given most
of the migrations are on the server side because of the maturity and dominance of
Microsoft on the desktop software. But government intervention may break the balance,
though. European Union, especially France and Germany governments, have a plan to
migrate 5%-10% desktop to OSS platform. The EU funded a research project (the IDA
Open Source Migration project) to provide guidelines to migrate to OSS-based office
applications such as document processing, email, calendaring and other standard
application. Compatibility issues will pressure private companies, non-profit
organizations and individuals who interact with government and/or public administration
to OSS. With their eyes on security, governments provide big incentives for OSS security.

36

3.2.4 Role as Contributor34

Governments have special security needs for government operation and public
service, and the responsibility to enhance overall network security for the general public.
So they often also play as a contributor. What’s more, one of the most significant
characteristics of OSS movement is that contributors are mostly users since OSS
movement partially originated as “scratch-the-itch” efforts. Inevitably governments
become OSS contributors from users.

Developing a Secure Platform

Some US government agencies such as Department of Defense have their own
development of security software. However, they are mostly classified so the general
public can not benefit. National Security Agency developed a Linux-based application,
which can be integrated into any Linux platform to enhance security, and released the
products to general public under the GPL license, an effort to contribute to network
security for the general public and to attract wide contribution and code reviews from
OSS community.

As discussed in section 3.1.4, a lot of countries are behind in the software industry.
Existing successful OSS products and community provide an easy entry for them to catch
up. First of all, the open source codes are free to use so it reduces the cost of initial
development. Secondly, the codes are open for highly specific customerization. Thirdly,
the Open Source communities provide worldwide technical support.

The direct involvement of government also provides incentive, education and
training for their talent pool, which may incubate their IT industry and enhance network
security for general public.

Funding Security Research

Government funding for academic internet security research is growing in all the
countries, providing incentive to both proprietary and Open Source forms. Due to strong
influence and presence of Open Source movement in the academy and/or the strong
preference of OSS by the governments, the efforts are leaning towards Open Source. For
example, the European Union passed a directorate in 2003 to urge funding for Open
Source encryption software.

34 E-commerce and Development Report, UN Conference on Trade and Development,

2003 http://www.unctad.org/en/docs/ecdr2003ch4_en.pdf
Open Source Policies, Center for Strategic and International Studies, September 2004

http://www.csis.org/tech/OpenSource/0408_ospolicies.pdf

37

Certification Programs and Testing tools

Some governments, such as US government (NIAP program) and China
government, develop security measurement programs and make the tools available to
general public, providing measurement and incentives for overall software security.

3.3 Conclusion

Government policy and involvement have created and will continue changing the
overall picture in software industry and related the security implication.

• It is changing the development process of OSS. As discussed in section 1, OSS
development process is more of a grass-root effort on voluntary ground, although
some corporations may form a core management for the process. Governments’
direct involvement changed the picture. Governments fund OSS projects, recruit
talents from academy, private sectors for development and OSS community for
testing and bug reporting, manage development and bug fixing process and
provide testing programs. This hybrid model injects the benefits of proprietary
software development process to OSS process.

• As discussed in the examples of Germany and China governments, governments’
preference provides economic and political incentives for OSS and the related
security.

• It will change the landscape of how proprietary handling security, and availability
of source and interaction between OSS software.

• Although only domestic policies were discussed, they all have ramification effects
in the global markets. If released under Open Source licensing, any contribution
by government will be available to the world. More significantly, government
policy of an individual country can R&D, distribution and sales of IT companies,
who increasingly rely on the global market for talent pool, labor and sales.

38

4 Conclusion

The security of open source is an important aspect of OSS that is not fully
explored yet. From the perspective of the development process, there are pros and cons in
both open source and proprietary software. The “openness” of open source, which is
deemed by some as an absolute security advantage, was closely examined and argued not
to be so in all cases. The data comes in support of this argument showing no clear
advantage to one camp over the other. When it comes to the development process we
believe the advantage would be for the side that leverages its strengths.

Software security problems have caused the world billions of dollars. Different
parties in the open source community have also shown clear interests to improve security
in OSS. The costs and incentives together provide huge economic support for security in
open source.

Governments around the world are strongly behind the OSS movement, which
will have a huge global impact in the near future. OSS is here to stay as a fierce
competitor to proprietary software. Therefore, OSS movement will bring the overall
security to a higher level in software industry.

39

Contributions

Section
Number

Title Contributor

1 Aspects of the Development Process and Impact on Security Mohammed & Ahmed
1.1 Introduction Mohammed & Ahmed
1.2 Open source Development Process Mohammed
1.3 Development Characteristics and Security Ahmed
1.4 Security Statistics Mohammed
1.5 Conclusion Mohammed & Ahmed
2 Economics of Open Source Security Winfred & Eric
2.1 Introduction Winfred
2.2 Quantifying the problem – Monetary value of security Winfred
2.3.1 Incentives for Consumers Winfred
2.3.2 Incentives for Developers Winfred
2.3.3 Incentives for Organized Groups Eric
3 Open Source and Government Lin & Man
3.1.1 Introduction Lin & Man
3.1.2 The United States Man
3.1.3 Germany Lin
3.1.4 China Man
3.2.1 Impact of Roles Governments Play on Open Source Lin & Man
3.2.2 Role as Policy Maker Lin
3.2.3 Role as User Man
3.2.4 Role as Contributor Man
3.3 Conclusion Lin & Man
4 Conclusion All

