
CSE 590TU Assignment #4 – Protocols I
Due at the beginning of class on January 31, 2006

1. Speeding up SSL. When SSL was first designed in the mid-1990s, one of the cited

benefits, when used with RSA, was that the computational burden of the protocol was
placed mostly on the server. This was due to the fact that the computationally-
intensive parts of the protocol are the modular exponentiations for RSA encryption on
the client and decryption on the server, and servers typically used public keys with a
short encryption exponent of e = 216 + 1.

Question 1(a): Compute the relative cost of RSA encryption to RSA decryption in
SSL in terms of modular multiplications mod n. The server’s public key is (n, e),
where n is a 1024-bit composite, n = p*q (p, q 512-bit primes), and e = 216+1. The
server’s private decryption exponent is d where ed ≡ 1 mod (p-1)(q-1). Assume for
this problem that half the bits in d are 1’s.

Over time, as clients have gotten faster relative to servers, this tradeoff has become
less useful for SSL server operators. Variants of RSA have been proposed that alter
the balance to be more favorable to servers. In one “Rebalanced RSA” variant, the
server chooses the decryption exponent d first such that d = r1 mod p-1 and d = r2
mod q-1 where r1 and r2 are relatively small (say 160-bit) values. The server then
computes e such that ed ≡ 1 mod (p-1)(q-1) still holds; e will be a “full-size” value (of
the same size as n) with roughly half its bits 1’s. Encryption happens identically as
before, but the server can decrypt the ciphertext C faster by computing Cr1 mod p and
Cr2 mod q and then using the Chinese Remainder Theorem to compute Cd without
doing any more exponentiations.

Question 1(b): Compute the relative cost of RSA encryption to RSA decryption in
the Rebalanced RSA case for |n| = 1024, |r1| = |r2| = 160, again in terms of modular
multiplications. What’s the speedup for a server compared to the “regular” RSA in
Question 1(a)?

2. Calculating the cost of IPSEC. In this problem we’re going to investigate the
overhead of adding IPSEC encryption to network communications. Assume that we
have a client computer C sending data to a server S over an IPSEC channel. C sends
data to S in packets of varying length; for each session S and C have to perform an
IKE key establishment once to agree on a symmetric encryption key, and then
perform repeated symmetric encryptions until the entire packet is encrypted. Assume
the following performance characteristics for C’s encryption capabilities:

a. C can perform IKE key establishment with S in 25,000 µs to derive a
symmetric encryption key for the session.

b. C can perform a single symmetric encryption operation on a 16-byte plaintext
in 0.25 µs.

Question 2(a): If the average packet of data sent from C to S is 1KB (1024 bytes) in
length, what’s the maximum bandwidth that can be achieved between C and S?

Question 2(b): Now assume the average packet is 100KB; what’s the maximum
achievable bandwidth? What’s the maximum bandwidth in the limiting case (i.e. one
persistent session with an infinite-length packet to be sent)?

3. Defending against KDC eavesdropping in Kerberos. Let KDC, C and S be,
respectively, a Key Distribution Center (including TGS functionality), Client and
Server within a single Kerberos realm. Assume that C carries out the Kerberos
protocol with KDC and S and that at the end of the protocol C and S share session
key KC,S. Because the KDC/TGS generated KC,S for C and S, the KDC could
passively eavesdrop on the encrypted conversation between C and S.

Question 3(a): Assuming the KDC is passive and can only watch the traffic between
C and S, show how C and S can leverage KC,S to securely establish another shared
secret K’ known only to C and S.

Question 3(b): Now assume the KDC is an “active” eavesdropper and can intercept
and modify traffic between C and S. Does the protocol you designed in the previous
question still provide secure communication between C and S? Why or why not?

Extra Credit Question 3(c): Now assume C and S are jointly members of two
independent Kerberos realms at the same time, centered on KDC1 and KDC2,
yielding independent session keys KC,S,1 and KC,S,2 between C and S. Assuming the
KDC1 and KDC2 do not collude with each other, devise a protocol between C and S
leveraging KC,S,1 and KC,S,2 to create an encrypted channel that is secure against active
eavesdropping from both KDC1 and KDC2.

[Hint: you might find a keyed hash function useful in designing your protocols. A
keyed hash function H(x,k) is a hash function that mixes a secret key k in with the
process of hashing some public data x. Only a party in possession of both the secret k
and the public data x can compute H(x,k). For example, HMAC-SHA1 is a very
common keyed hash function in use today that uses the SHA1 hash internally to mix
a secret key k (of any length) with data (of any length) to create a 160-bit keyed hash
value.]

