

Sequence Evolution

Nothing in Biology Makes Sense Except in the Light of

Evolution

- Theodosius Dobzhansky, 1973
- Changes happen at random
- Deleterious/neutral/advantageous changes unlikely/possibly/likely spread widely in a population
- Changes are less likely to be tolerated in positions involved in many/close interactions, e.g.
- enzyme binding pocket
- protein/protein interaction surface
- ..

BLAST: What

- Input:
- a query sequence (say, 300 residues)
- a data base to search for other sequences similar to the query (say, $10^{6}-10^{9}$ residues)
- a score matrix $\sigma(r, s)$, giving cost of substituting r for s (\& perhaps gap costs)
- various score thresholds \& tuning parameters
- Output:
- "all" matches in data base above threshold
- "E-value" of each

BLAST:

Basic Local Alignment Search Tool

Altschul, Gish, Miller, Myers, Lipman, J Mol Biol 1990

- The most widely used comp bio tool
- Which is better: long mediocre match or a few nearby, short, strong matches with the same total score?
- score-wise, exactly equivalent
- biologically, later may be more interesting, \& is common
- BLAST is a heuristic emphasizing the later
- speed/sensitivity tradeoff: BLAST may miss former, but gains greatly in speed

BLAST: How

Idea: only parts of data base worth examining are those near a good match to some short subword of the query

- Break query into overlapping words w_{i} of small fixed length (e.g. 3 aa or 11 nt)
- For each w_{i}, find (empirically, ~ 50) "neighboring" words v_{ij} with score $\sigma\left(\mathrm{w}_{\mathrm{i}}, \mathrm{v}_{\mathrm{ij}}\right)>$ thresh $_{1}$
- Look up each v_{ij} in database (via prebuilt index) -i.e., exact match to short, high-scoring word
- Extend each such "seed match" (bidirectional)
- Report those scoring > thresh ${ }_{2}$, calculate E-values

BLAST: Example

Significance of Alignments

- Is " 42 " a good score?
- Compared to what?
- Usual approach: compared to a specific "null model", such as "random sequences"

BLOSUM 62

| | \mathbf{A} | \mathbf{R} | \mathbf{N} | \mathbf{D} | \mathbf{C} | \mathbf{Q} | \mathbf{E} | \mathbf{G} | \mathbf{H} | \mathbf{I} | \mathbf{L} | \mathbf{K} | \mathbf{M} | \mathbf{F} | \mathbf{P} | \mathbf{S} | \mathbf{T} | \mathbf{W} | \mathbf{Y} | \mathbf{V} |
| :--- | ---: |
| \mathbf{A} | $\mathbf{4}$ | -1 | -2 | -2 | 0 | -1 | -1 | 0 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 0 | -3 | -2 | 0 |
| \mathbf{R} | -1 | $\mathbf{5}$ | 0 | -2 | -3 | 1 | 0 | -2 | 0 | -3 | -2 | 2 | -1 | -3 | -2 | -1 | -1 | -3 | -2 | -3 |
| \mathbf{N} | -2 | 0 | $\mathbf{6}$ | 1 | -3 | 0 | 0 | 0 | 1 | -3 | -3 | 0 | -2 | -3 | -2 | 1 | 0 | -4 | -2 | -3 |
| \mathbf{D} | -2 | -2 | 1 | $\mathbf{6}$ | -3 | 0 | 2 | -1 | -1 | -3 | -4 | -1 | -3 | -3 | -1 | 0 | -1 | -4 | -3 | -3 |
| \mathbf{C} | 0 | -3 | -3 | -3 | $\mathbf{9}$ | -3 | -4 | -3 | -3 | -1 | -1 | -3 | -1 | -2 | -3 | -1 | -1 | -2 | -2 | -1 |
| \mathbf{Q} | -1 | 1 | 0 | 0 | -3 | $\mathbf{5}$ | 2 | -2 | 0 | -3 | -2 | 1 | 0 | -3 | -1 | 0 | -1 | -2 | -1 | -2 |
| \mathbf{E} | -1 | 0 | 0 | 2 | -4 | 2 | $\mathbf{5}$ | -2 | 0 | -3 | -3 | 1 | -2 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| \mathbf{G} | 0 | -2 | 0 | -1 | -3 | -2 | -2 | $\mathbf{6}$ | -2 | -4 | -4 | -2 | -3 | -3 | -2 | 0 | -2 | -2 | -3 | -3 |
| \mathbf{H} | -2 | 0 | 1 | -1 | -3 | 0 | 0 | -2 | $\mathbf{8}$ | -3 | -3 | -1 | -2 | -1 | -2 | -1 | -2 | -2 | 2 | -3 |
| \mathbf{I} | -1 | -3 | -3 | -3 | -1 | -3 | -3 | -4 | -3 | $\mathbf{4}$ | 2 | -3 | 1 | 0 | -3 | -2 | -1 | -3 | -1 | 3 |
| \mathbf{L} | -1 | -2 | -3 | -4 | -1 | -2 | -3 | -4 | -3 | 2 | $\mathbf{4}$ | -2 | 2 | 0 | -3 | -2 | -1 | -2 | -1 | 1 |
| \mathbf{K} | -1 | 2 | 0 | -1 | -3 | 1 | 1 | -2 | -1 | -3 | -2 | $\mathbf{5}$ | -1 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| \mathbf{M} | -1 | -1 | -2 | -3 | -1 | 0 | -2 | -3 | -2 | 1 | 2 | -1 | $\mathbf{5}$ | 0 | -2 | -1 | -1 | -1 | -1 | 1 |
| \mathbf{F} | -2 | -3 | -3 | -3 | -2 | -3 | -3 | -3 | -1 | 0 | 0 | -3 | 0 | $\mathbf{6}$ | -4 | -2 | -2 | 1 | 3 | -1 |
| \mathbf{P} | -1 | -2 | -2 | -1 | -3 | -1 | -1 | -2 | -2 | -3 | -3 | -1 | -2 | -4 | $\mathbf{7}$ | -1 | -1 | -4 | -3 | -2 |
| \mathbf{S} | 1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -2 | -1 | $\mathbf{4}$ | 1 | -3 | -2 | -2 |
| \mathbf{T} | 0 | -1 | 0 | -1 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | $\mathbf{5}$ | -2 | -2 | 0 |
| \mathbf{W} | -3 | -3 | -4 | -4 | -2 | -2 | -3 | -2 | -2 | -3 | -2 | -3 | -1 | 1 | -4 | -3 | -2 | $\mathbf{1 1}$ | $\mathbf{2}$ | -3 |
| \mathbf{Y} | -2 | -2 | -2 | -3 | -2 | -1 | -2 | -3 | 2 | -1 | -1 | -2 | -1 | 3 | -3 | -2 | -2 | 2 | $\mathbf{7}$ | -1 |
| \mathbf{V} | 0 | -3 | -3 | -3 | -1 | -2 | -2 | -3 | -3 | 3 | 1 | -2 | 1 | -1 | -2 | -2 | 0 | -3 | -1 | $\mathbf{4}$ |

A Likelihood Ratio

- Defn: two proteins are homologous if they are alike because of shared ancestry; similarity by descent
- suppose among proteins overall, residue x occurs with frequency p_{x}
- then in a random alignment of 2 random proteins, you would expect to find x aligned to y with prob $p_{x} p_{y}$
- suppose among homologs, x \& y align with prob $p_{x y}$
- are seqs $X \& Y$ homologous? Which is more likely, that the alignment reflects chance or homology? Use a likelihood ratio test.

$$
\sum_{i} \log \frac{p_{x_{i} y_{i}}}{p_{x_{i}} p_{y_{i}}}
$$

Non-ad hoc Alignment Scores

- Take alignments of homologs and look at frequency of $x-y$ alignments vs freq of x, y overall
- Issues
- biased samples
- evolutionary distance
- BLOSUM approach
- large collection of trusted alignments (the BLOCKS DB)
- subsetted by similarity, e.g. BLOSUM62 => 62\% identity

$$
\frac{1}{\lambda} \log _{2} \frac{p_{x y}}{p_{x} p_{y}}
$$

ad hoc Alignment Scores?

- Make up any scoring matrix you like
- Somewhat surprisingly, under pretty general assumptions**, it is equivalent to the scores constructed as above from some set of probabilities $p_{x y}$, so you might as well understand what they are
**e.g., average scores should be negative, but you probably want that anyway, otherwise local alignments turn into global ones, and some score must be >0, else best match is empty

Overall Alignment Significance, I A Theoretical Approach: EVD

- If X_{i} is a random variable drawn from, say, a normal distribution with mean 0 and std. dev. 1, what can you say about distribution of $y=\max \left\{X_{i} \mid 1 \leq i \leq N\right\}$?
- Answer: it's approximately an Extreme Value Distribution (EVD)

$$
\begin{equation*}
P(y \leq z) \cong \exp \left(-K N e^{-\lambda z}\right) \tag{*}
\end{equation*}
$$

- For ungapped local alignment of seqs $x, y, N \sim|x|^{*}|y|$ λ, K depend on scores, etc., or can be estimated by curve-fitting random scores to (*). (cf. reading)

EVD Problems

- It's only approximate
- parameter estimation
- theory may not apply. E.g., it is NOT known to hold for gapped alignments (although empirically it seems to work pretty well).

Overall Alignment Significance, II Empirical (via randomization)

- generate N random sequences (say $\mathrm{N}=10^{3}-10^{6}$)
- align x to each \& score
- if k of them have better score than alignment of x to y, then the (empirical) probability of a chance alignment as good as observed $\mathrm{x}: \mathrm{y}$ alignment is k / N
- How to generate "random" sequences?
- Alignment scores often sensitive to sequence composition
- so uniform $1 / 20$ or $1 / 4$ is a bad idea
- even background p_{i} can be dangerous
- Better idea: permute y N times

Permutation Problems

- Can be inaccurate if your method of generating random sequences is unrepresentative
- E.g., probably better to preserve di-, tri-residue statistics and/or other higher-order characteristics, but increasingly hard to know exactly what to model \& how
- Slow
- Especially if you want to assess low-probability pvalues

E-values

- Above give " p-values": probability of a score more extreme than observed if the target sequence were random
- E.g., suppose p-value for $x: y$ match is 10^{-3}, then you'd expect to see a score that good only one time in a thousand among non-homologous sequences
- Sounds good
- What if you found y by picking best match among 10^{4} proteins?
- Sounds not so good
- E-value: expected number of matches that good in a data base of the given size

Summary

- BLAST is a highly successful search/alignment heuristic. It looks for alignments anchored by short, strong, ungapped "seed" alignments
- Assessing statistical significance of alignment scores is crucial to practical applications
- score matrices derived from "likelihood ratio" test of trusted alignments vs random "null" model
- for gapless alignments, Extreme Value Distribution (EVD) is theoretically justified for overall significance of alignment scores; empirically seems ok for gapped alignments, too
- permutation tests are a simple (but brute force) alternative

Issues

- What if the model is wrong?
- E.g., are adjacent positions really independent?

Weekly Bio(tech) Interlude

2 Nobel Prizes:
PCR: Kary Mullis, 1993
DNA Sequencing: Frederick Sanger, 1980
 Geyser, Yellowstone National Park

Gel Electrophoresis

- DNA/RNA backbone is negatively charges
- Molecules moves slowly in gels under an electric field
- agarose gels for large molecules
- polyacrylamide gels for smaller ones
- Smaller molecules move faster
- So, you can separate DNAs \& RNAs by size
- Amplification: million to billion fold
- Range: up to 2 k bp routinely; 50 k with other enzymes \& care
- Very widely used; forensics, archeology, cloning, sequencing, ...

DNA Sequencing

- Like one-cycle, one-primer PCR
- Suppose 0.1\% of A's:
- are di-deoxy adenosine's; backbone can't extend
- carry a green florescent dye

- Separate by capillary gel electrophoresis
- If frags of length 42, 49, 50, 55 ... glow green, those positions are A's
- Ditto C's (blue), G's (yellow), T's (red)

DNA Sequencing

- Highly automated
- Typically can "read" about 600 nt in one run
- "Whole Genome Shotgun" approach:
- cut genome randomly into ~ G / 600×10 fragments
- sequence each
- reassemble by computer

- Complications: repeated region, missed regions, sequencing errors, chimeric DNA fragments, ...
- But overall accuracy $\sim 10^{-4}$, if careful

Summary

- PCR allows simple in vitro amplification of minute quantities of DNA (having pre-specified boundaries)
- Sanger sequencing uses
- a PCR-like setup with modified chemistry to generate varying length prefixes of a DNA template with the last nucleotide of each color-coded
- gel electrophoresis to separate DNA by size, giving sequence
- Sequencing random overlapping fragments allows genome sequencing

