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Tonight’s plan

« BLAST
« Scoring
« Weekly Bio Interlude: PCR & Sequencing
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Sequence Evolution

Nothing in Biology Makes Sense Except in the Light of
Evolution

— Theodosius Dobzhansky, 1973

« Changes happen at random

* Deleterious/neutral/advantageous changes
unlikely/possibly/likely spread widely in a population

« Changes are less likely to be tolerated in positions involved in
many/close interactions, e.qg.
— enzyme binding pocket
— protein/protein interaction surface



BLAST:

Basic Local Alignment Search Tool
Altschul, Gish, Miller, Myers, Lipman, J Mol Biol 1990

* The most widely used comp bio tool

* Which is better: long mediocre match or a few

nearby, short, strong matches with the same total
score?

— score-wise, exactly equivalent
— biologically, later may be more interesting, & is common
« BLAST is a heuristic emphasizing the later

— speed/sensitivity tradeoff: BLAST may miss former, but
gains greatly in speed



BLAST: What

Input:

a query sequence (say, 300 residues)

a data base to search for other sequences similar to the
query (say, 10° - 10° residues)

a score matrix o(r,s), giving cost of substituting r for s (&
perhaps gap costs)

various score thresholds & tuning parameters

Output:

“all” matches in data base above threshold
“E-value” of each



BLAST: How

Idea: only parts of data base worth examining are those
near a good match to some short subword of the query

 Break query into overlapping words w; of small fixed
length (e.g. 3 aa or 11 nt)

» For each w;, find (empirically, ~50) “neighboring” words
v;; with score o(w;, v;) > thresh,

* Look up each v; in database (via prebuilt index) --
l.e., exact match to short, high-scoring word

« Extend each such “seed match” (bidirectional)

* Report those scoring > thresh,, calculate E-values



BLAST: Example

deadly
de (11)
ea ( 9)
ad (10)
dl (10)
ly (11)
ddgearlyk .

dd

early

10
18

de
ea
ad
dl

ee dd dg dk

sd
di dm dv
my 1y vy fy 1f



BLOSUM 62

o LA NN AN AN I
o ANBRENEEN AAENEE A AN AR AR
—| RS A AN ENUER N ENURARE S RN B
- niinin IR R R A DN
A~ O O OO QO S D A
= NN I NN MR N A A
= INUAILEN LGRS EEMES S (R A
— inini i SN A B ) ininininis
| N O QL DI ) O D
DT N DT DN NN DI
= niCEI RO I R N
TN © DO O e D QN
Qoo o NONTITNDQNC NN
= I NS el i E AN
O — o QNN =M S 1o
O[C @ afed g et ot
QI N O MO N Y D O
Z|NC VMO OO HMNONN O YN
|10 © QDI OO I N Q)
- RN I I Ry NS
AXZA0QUOIHIXSTLAONES>>




Significance of Alignments

Is “42" a good score?
Compared to what?

Usual approach: compared to a specific “null model”,
such as “random sequences”
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A Likelihood Ratio

Defn: two proteins are homologous if they are alike because of
shared ancestry; similarity by descent

suppose among proteins overall, residue x occurs with frequency p,

then in a random alignment of 2 random proteins, you would expect
to find x aligned to y with prob p,p,

suppose among homologs, x &y align with prob p,,

are segs X & Y homologous? Which is
more likely, that the alignment reflects p
chance or homology? Use a likelihood lOg Xili

ratio test.
l p X p Vi
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Non-ad hoc Alignment Scores

Take alignments of homologs and look at frequency
of x-y alignments vs freq of x, y overall

Issues
— biased samples
— evolutionary distance

BLOSUM approach

— large collection of trusted alignments 1 px y
(the BLOCKS DB) —log

— subsetted by similarity, e.g. )\« i PP
BLOSUMG62 => 62% identity Ay
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ad hoc Alignment Scores?

« Make up any scoring matrix you like

« Somewhat surprisingly, under pretty general
assumptions™, it is equivalent to the scores
constructed as above from some set of probabilities
Py, SO You might as well understand what they are

"~ e.g., average scores should be negative, but you probably want
that anyway, otherwise local alignments turn into global ones,
and some score must be > 0, else best match is empty
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Overall Alignment Significance, |
A Theoretical Approach: EVD

 |f X, is a random variable drawn from, say, a normal
distribution with mean 0 and std. dev. 1, what can
you say about distribution of y = max{ X. | 1 =i =N }?

« Answer: it's approximately an Extreme Value
Distribution (EVD)

P(y < 7) =exp(-KNe ™) (*)

* For ungapped local alignment of segs x, y, N ~ [x[|*]y]
A\, K depend on scores, etc., or can be estimated by

curve-fitting random scores to (*). (cf. reading)
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EVD Problems

It's only approximate

parameter estimation

theory may not apply. E.g., itis NOT known to hold
for gapped alignments (although empirically it seems
to work pretty well).
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Overall Alignment Significance, Il
Empirical (via randomization)

generate N random sequences (say N = 103 - 10°)
align x to each & score

if k of them have better score than alignment of x to
y, then the (empirical) probability of a chance
alignment as good as observed x:y alignment is k/N

How to generate “random” sequences?

— Alignment scores often sensitive to sequence composition
— so uniform 1/20 or 1/4 is a bad idea

— even background p; can be dangerous

— Better idea: permute y N times
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Generating Random Permutations

for (i= n-1; i>0; i--){
j = random(0..i);
swap X[i]<-> X[j];

}

Al WOIN—-~|O
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Permutation Problems

Can be inaccurate if your method of generating
random sequences is unrepresentative

— E.qg., probably better to preserve di-, tri-residue statistics
and/or other higher-order characteristics, but increasingly
hard to know exactly what to model & how

Slow

Especially if you want to assess low-probability p-
values
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E-values

Above give “p-values”. probability of a score more
extreme than observed if the target sequence were
random

E.g., suppose p-value for x:;y match is 103, then
you'd expect to see a score that good only one time
In a thousand among non-homologous sequences

Sounds good

What if you found y by picking best match among 104
proteins?
Sounds not so good

E-value: expected number of matches that good in a
data base of the given size
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Issues

« What if the model is wrong?

« E.g., are adjacent positions really independent?
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Summary

 BLAST is a highly successful search/alignment
heuristic. It looks for alignments anchored by short,

strong, ungapped “seed” alignments

« Assessing statistical significance of alignment scores

Is crucial to practical applications

— score matrices derived from “likelihood ratio” test of trusted
alignments vs random “null” model

— for gapless alignments, Extreme Value Distribution (EVD) is
theoretically justified for overall significance of alignment
scores; empirically seems ok for gapped alignments, too

— permutation tests are a simple (but brute force) alternative
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Weekly Bio(tech) Interlude

2 Nobel Prizes:
PCR: Kary Mullis, 1993
DNA Sequencing: Frederick Sanger, 1980
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Hot sbriﬁg, near Gréat Fountain 3
Geyser, Yellowstone National Park

a8
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PCR = =

Ingredients:

many copies of deoxy nucleotide triphosphates

many copies of two primer sequences (~20 nt each)
* readily synthesized

many copies of Taq polymerase (Thermus aquaticus),
 readily available commercialy

as little as 1 strand of template DNA

a programmable “thermal cycler”

Amplification: million to billion fold
Range: up to 2k bp routinely; 50k with other enzymes & care
Very widely used; forensics, archeology, cloning, sequencing, ...
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Gel Electrophoresis

DNA/RNA backbone is negatively charges

Molecules moves slowly in gels under an electric field
— agarose gels for large molecules
— polyacrylamide gels for smaller ones

Smaller molecules move faster

S0, you can separate DNAs & RNAs by size
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10,000 bp —*

3,000 bp —»

lane 1

lane 2

lane 3

lane 4

lane 5




DNA Sequencing

Like one-cycle, one-primer PCR HoN
Suppose 0.1% of A’s: e s E \\;
) N N

— are di-deoxy adenosine’s;  Ho-P-0—-P—0—P—0
[ | [

backbone can’t extend o O O kOj
— carry a green florescent dye o

Separate by capillary gel electrophoresis

If frags of length 42, 49, 50, 55 ... glow green,
those positions are A’s

Ditto C’s (blue), G's (yellow), T's (red)
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DNA Sequencing

—JIMI_ -

10 20 30 40 50 60 70 80 90

CGATIG A TTIAGCGGCCGCG AATICGCCCTTICTC TACG ACG ATG ATTTACACGCATG TGC TG AAAGTTIGGCGGTGCCGG AGTGCGC TCACCGC

Mt

b

)




DNA Sequencing

Highly automated
Typically can “read” about 600 nt in one run

“Whole Genome Shotgun” approach:

— cut genome randomly into ~ G / 600 x 10 fragments
— sequence each

— reassemble by computer

a e

b g
f
€4

Complications: repeated region, missed regions,
sequencing errors, chimeric DNA fragments, ...

But overall accuracy ~10-4, if careful
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Summary

PCR allows simple in vitro amplification of minute
quantities of DNA (having pre-specified boundaries)

Sanger sequencing uses

— a PCR-like setup with modified chemistry to generate
varying length prefixes of a DNA template with the last
nucleotide of each color-coded

— gel electrophoresis to separate DNA by size, giving
sequence

Sequencing random overlapping fragments allows
genome sequencing
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