CSEP 590

Assignment 3

Due Thursday, October 25, 2007

1. Consider the probability distribution $a: 1 / 4, b: 1 / 2, c: 1 / 4$.
(a) Use arithmetic coding with scaling to code the string bbbbba. Show the steps in the process and the value of C which keeps track of the number of complementary bits to be output after a 0 or 1 is output. I chose this example because the scaled interval are very easy to calculate.
(b) Use arithmetic decoding with scaling to decode 00000000001 (10 zeros followed by a 1) assuming the string decoded is of length 6 .
2. Let us try LZW on a special class of inputs too. Again assume the two symbol alphabet $\{a, b\}$. Consider the following strategy for encoding the dictionary symbols from LZW. Start with a dictionary of size 2 and use just one bit to transmit a symbol. When the dictionary fills up we double its size to 4 and use two bits to transmit a word in the dictionary. This doubling happens when ever the dictionary fills.
(a) Encode a^{6} and a^{28} with this version of LZW.
(b) Compute the length, as a function of n, of the encoding of a^{n} with this version of LZW. (You may restrict yourself to easy n 's to work with if that helps.)
(c) Encode a^{6} and a^{28} using the γ-code to represent the dictionary symbols from LZW on the strings a^{6} and a^{28}.
(d) Compute the length, as a function of n, of the encoding of a^{n} using the γ-code to represent the dictionary symbols of LZW. (You may restrict yourself to easy n 's to work with if that helps.)
