CSEP 590 Data Compression Autumn 2007

Course Policies
Introduction to Data Compression
Entropy
Variable Length Codes

Instructors

- Instructor
 - Richard Ladner
 - ladner@cs.washington.edu
 - 206 543-9347
- TA
 - Rahul Vanam
 - rahulv@u.washington.edu

Helpful Knowledge

- Algorithm Design and Analysis
- Probability

Resources

- Text Book
 - Khalid Sayood, Introduction to Data Compression, Third Edition, Morgan Kaufmann Publishers, 2006.
- Course Web Page
 - http://www.cs.washington.edu/csep590a
- Papers and Sections from Books
- Discussion Board
 - For discussion

Engagement by Students

- Weekly Assignments
 - Understand compression methodology
 - Due in class on Fridays (except midterm Friday)
 - No late assignments accepted except with prior approval
- Programming Projects
 - Bi-level arithmetic coder and decoder.
 - Build code and experiment

Final Exam and Grading

- 6:30-8:20 p.m. Thursday, Dec. 13, 2007
- Percentages
 - Weekly assignments (50%)
 - Project (20%)
 - Final exam (30%)

Logistics

- I will be gone the week of October 15th. We'll need to have a make up class.
- There is no class Thanksgiving week, November 19th.
- We have some guest speakers toward the end of the quarter.

Basic Data Compression Concepts

- Lossless compression $x = \hat{x}$
 - Also called entropy coding, reversible coding.
- Lossy compression $x \neq \hat{x}$
 - Also called irreversible coding.
- Compression ratio = |x|/|y|- |x| is number of bits in x.

Why Compress

- Conserve storage space
- Reduce time for transmission
 - Faster to encode, send, then decode than to send the original
- Progressive transmission
 - Some compression techniques allow us to send the most important bits first so we can get a low resolution version of some data before getting the high fidelity version
- Reduce computation
 - Use less data to achieve an approximate answer

Braille

 System to read text by feeling raised dots on paper (or on electronic displays). Invented in 1820s by Louis Braille, a French blind man.

Braille Example

Clear text:

Call me Ishmael. Some years ago -- never mind how long precisely -- having \\ little or no money in my purse, and nothing particular to interest me on shore, \\ l thought I would sail about a little and see the watery part of the world. (238 characters)

Grade 2 Braille in ASCII.

,call me ,i\%mael4 ,``s ye\$>\$s ago -- n``e m9d h[l;g precisely -- hav+ \\ ll or no m``oy 9 my purse1 \& no?+ ``picul\$>\$ 6 9t]e/ me on \%ore1 \\ ,i \$?\$``\$|\$,i wd sail ab a ll \& see ! wat]y ``p (! _w4 (203 characters)

Compression ratio = 238/203 = 1.17

Lossless Compression

- Data is not lost the original is really needed.
 - text compression
 - compression of computer binary files
- Compression ratio typically no better than 4:1 for lossless compression on many kinds of files.
- Statistical Techniques
 - Huffman coding
 - Arithmetic coding
 - Golomb coding
- Dictionary techniques
 - LZW, LZ77
 - Sequitur
 - Burrows-Wheeler Method
- Standards Morse code, Braille, Unix compress, gzip, zip, bzip, GIF, JBIG, Lossless JPEG

Lossy Compression

- Data is lost, but not too much.
 - audio
 - video
 - still images, medical images, photographs
- Compression ratios of 10:1 often yield quite high fidelity results.
- Major techniques include
 - Vector Quantization
 - Wavelets
 - Block transforms
 - Standards JPEG, JPEG2000, MPEG 2, H.264

Why is Data Compression Possible

- Most data from nature has redundancy
 - There is more data than the actual information contained in the data.
 - Squeezing out the excess data amounts to compression.
 - However, unsqueezing is necessary to be able to figure out what the data means.
- Information theory is needed to understand the limits of compression and give clues on how to compress well.

What is Information

Analog data

- Also called continuous data
- Represented by real numbers (or complex numbers)

Digital data

- Finite set of symbols {a₁, a₂, ..., a_m}
- All data represented as sequences (strings) in the symbol set.
- Example: {a,b,c,d,r} abracadabra
- Digital data can be an approximation to analog data

Symbols

- Roman alphabet plus punctuation
- ASCII 256 symbols
- Binary {0,1}
 - 0 and 1 are called bits
 - All digital information can be represented efficiently in binary
 - {a,b,c,d} fixed length representation

symbol	а	b	С	d
binary	00	01	10	11

2 bits per symbol

Exercise - How Many Bits Per Symbol?

- Suppose we have n symbols. How many bits (as a function of n) are needed in to represent a symbol in binary?
 - First try n a power of 2.

Discussion: Non-Powers of Two

 Can we do better than a fixed length representation for non-powers of two?

Information Theory

- Developed by Shannon in the 1940's and 50's
- Attempts to explain the limits of communication using probability theory.
- Example: Suppose English text is being sent
 - It is much more likely to receive an "e" than a "z".
 - In some sense "z" has more information than "e".

First-order Information

- Suppose we are given symbols {a₁, a₂, ..., a_m}.
- $P(a_i)$ = probability of symbol a_i occurring in the absence of any other information.

$$P(a_1) + P(a_2) + ... + P(a_m) = 1$$

inf(a_i) = log₂(1/P(a_i)) bits is the information of a_i in bits.

Example

- {a, b, c} with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8
 - $-\inf(a) = \log_2(8) = 3$
 - $-\inf(b) = \log_2(4) = 2$
 - $-\inf(c) = \log_2(8/5) = .678$
- Receiving an "a" has more information than receiving a "b" or "c".

First Order Entropy

• The first order entropy is defined for a probability distribution over symbols $\{a_1, a_2, \dots, a_m\}$.

$$H = \sum_{i=1}^{m} P(a_i) \log_2(\frac{1}{P(a_i)})$$

- *H* is the average number of bits required to code up a symbol, given all we know is the probability distribution of the symbols.
- *H* is the Shannon lower bound on the average number of bits to code a symbol in this "source model".
- Stronger models of entropy include context.

Entropy Examples

• {a, b, c} with a 1/8, b 1/4, c 5/8.

$$-H = 1/8 *3 + 1/4 *2 + 5/8* .678 = 1.3 bits/symbol$$

- {a, b, c} with a 1/3, b 1/3, c 1/3. (worst case)
 - $-H = 3* (1/3)*log_2(3) = 1.6 bits/symbol$
- Note that a standard code takes 2 bits per symbol

symbol	а	b	С
binary code	00	01	10

An Extreme Case

{a, b, c} with a 1, b 0, c 0- H = ?

Entropy Curve

 Suppose we have two symbols with probabilities x and 1-x, respectively.

A Simple Prefix Code

- {a, b, c} with a 1/8, b 1/4, c 5/8.
- A prefix code is defined by a binary tree
- Prefix code property
 - no output is a prefix of another

binary tree

0 1
c

input output					
а	00				
b	01	code			
С	1				

ccabccbccc 1 1 00 01 1 1 01 1 1 1

Binary Tree Terminology

- 1. Each node, except the root, has a unique parent.
- 2. Each internal node has exactly two children.


```
repeat
start at root of tree
repeat
if read bit = 1 then go right
else go left
until node is a leaf
report leaf
until end of the code
```

11000111100

11000111100

11000111100

C

1<u>1</u>000111100

C

11000111100

CC

11000111100

CC

11000111100

CC

11000111100

cca

1100<u>0</u>111100

cca

Decoding a Prefix Code

11000<u>1</u>11100

cca

Decoding a Prefix Code

11000<u>1</u>11100

ccab

Decoding a Prefix Code

11000111100

ccabccca

Exercise Encode/Decode

- Player 1: Encode a symbol string
- Player 2: Decode the string
- Check for equality

How Good is the Code

bit rate = (1/8)2 + (1/4)2 + (5/8)1 = 11/8 = 1.375 bps Entropy = 1.3 bps Standard code = 2 bps

(bps = bits per symbol)

Design a Prefix Code 1

- abracadabra
- Design a prefix code for the 5 symbols {a,b,r,c,d} which compresses this string the most.

Design a Prefix Code 2

- Suppose we have n symbols each with probability 1/n. Design a prefix code with minimum average bit rate.
- Consider n = 2,3,4,5,6 first.

Huffman Coding

- Huffman (1951)
- Uses frequencies of symbols in a string to build a variable rate prefix code.
 - Each symbol is mapped to a binary string.
 - More frequent symbols have shorter codes.
 - No code is a prefix of another.
- Example:

Variable Rate Code Example

- Example: a 0, b 100, c 101, d 11
- Coding:
 - aabddcaa = 16 bits
 - 0 0 100 11 11 101 0 0= 14 bits
- Prefix code ensures unique decodability.

Cost of a Huffman Tree

- Let p₁, p₂, ..., p_m be the probabilities for the symbols a_1, a_2, \dots, a_m , respectively.
- Define the cost of the Huffman tree T to be

$$C(T) = \sum_{i=1}^{m} p_i r_i$$

 $C(T) = \sum_{i=1}^{11} p_i r_i$ where r_i is the length of the path from the root to a_i.

 C(T) is the expected length of the code of a symbol coded by the tree T. C(T) is the bit rate of the code.

Example of Cost

• Example: a 1/2, b 1/8, c 1/8, d 1/4

$$C(T) = 1 \times 1/2 + 3 \times 1/8 + 3 \times 1/8 + 2 \times 1/4 = 1.75$$

a b c d

Huffman Tree

- Input: Probabilities p₁, p₂, ..., p_m for symbols a₁, a₂, ..., a_m, respectively.
- Output: A tree that minimizes the average number of bits (bit rate) to code a symbol. That is, minimizes

$$HC(T) = \sum_{i=1}^{m} p_i r_i$$
 bit rate

where r_i is the length of the path from the root to a_i . This is the Huffman tree or Huffman code

Optimality Principle 1

- In a Huffman tree a lowest probability symbol has maximum distance from the root.
 - If not exchanging a lowest probability symbol with one at maximum distance will lower the cost.

$$C(T') = C(T) + hp - hq + kq - kp = C(T) - (h-k)(q-p) < C(T)$$

Optimality Principle 2

- The second lowest probability is a sibling of the smallest in some Huffman tree.
 - If not, we can move it there not raising the cost.

$$C(T') = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) \le C(T)$$

Optimality Principle 3

- Assuming we have a Huffman tree T whose two lowest probability symbols are siblings at maximum depth, they can be replaced by a new symbol whose probability is the sum of their probabilities.
 - The resulting tree is optimal for the new symbol set.

Optimality Principle 3 (cont')

 If T' were not optimal then we could find a lower cost tree T". This will lead to a lower cost tree T" for the original alphabet.

C(T''') = C(T'') + p + q < C(T') + p + q = C(T) which is a contradiction

Recursive Huffman Tree Algorithm

- If there is just one symbol, a tree with one node is optimal. Otherwise
- 2. Find the two lowest probability symbols with probabilities p and q respectively.
- 3. Replace these with a new symbol with probability p + q.
- 4. Solve the problem recursively for new symbols.
- Replace the leaf with the new symbol with an internal node with two children with the old symbols.

Iterative Huffman Tree Algorithm

```
form a node for each symbol a<sub>i</sub> with weight p<sub>i</sub>;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do
    min1 := delete-min;
    min2 := delete-min;
    create a new node n;
    n.weight := min1.weight + min2.weight;
    n.left := min1;
    n.right := min2;
    insert(n)
return the last node in the priority queue.
```

Example of Huffman Tree Algorithm (1)

• P(a) = .4, P(b) = .1, P(c) = .3, P(d) = .1, P(e) = .1

Example of Huffman Tree Algorithm (2)

Example of Huffman Tree Algorithm (3)

Example of Huffman Tree Algorithm (4)

Huffman Code

Optimal Huffman Code vs. Entropy

P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1
 Entropy

$$H = -(.4 \times \log_2(.4) + .1 \times \log_2(.1) + .3 \times \log_2(.3) + .1 \times \log_2(.1) + .1 \times \log_2(.1))$$

= 2.05 bits per symbol

Huffman Code

$$HC = .4 \times 1 + .1 \times 4 + .3 \times 2 + .1 \times 3 + .1 \times 4$$

= 2.1 bits per symbol
pretty good!

In Class Exercise

- P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/16, P(e) = 1/16
- Compute the Optimal Huffman tree and its average bit rate.
- Compute the Entropy
- Compare
- Hint: For the tree change probabilities to be integers: a:8, b:4, c:2, d:1, e:1. Normalize at the end.

Quality of the Huffman Code

 The Huffman code is within one bit of the entropy lower bound.

$$H \leq HC \leq H+1$$

- Huffman code does not work well with a two symbol alphabet.
 - Example: P(0) = 1/100, P(1) = 99/100
 - HC = 1 bits/symbol

$$- H = -((1/100)*log2(1/100) + (99/100)log2(99/100))$$

= .08 bits/symbol

Powers of Two

If all the probabilities are powers of two then

$$HC = H$$

Proof by induction on the number of symbols.

Let $p_1 \le p_2 \le ... \le p_n$ be the probabilities that add up to 1

If n = 1 then HC = H (both are zero).

If n > 1 then $p_1 = p_2 = 2^{-k}$ for some k, otherwise the sum cannot add up to 1.

Combine the first two symbols into a new symbol of probability $2^{-k} + 2^{-k} = 2^{-k+1}$.

Powers of Two (Cont.)

By the induction hypothesis

$$\begin{split} &HC(p_1+p_2,p_3,...,p_n) = H(p_1+p_2,p_3,...,p_n) \\ &= -(p_1+p_2)log_2(p_1+p_2) - \sum_{i=3}^n p_i log_2(p_i) \\ &= -2^{-k+1}log_2(2^{-k+1}) - \sum_{i=3}^n p_i log_2(p_i) \\ &= -2^{-k+1}(log_2(2^{-k}) + 1) - \sum_{i=3}^n p_i log_2(p_i) \\ &= -2^{-k}log_2(2^{-k}) - 2^{-k}log_2(2^{-k}) - \sum_{i=3}^n p_i log_2(p_i) - 2^{-k} - 2^{-k} \\ &= -\sum_{i=1}^n p_i log_2(p_i) - (p_1+p_2) \\ &= H(p_1,p_2,...,p_n) - (p_1+p_2) \end{split}$$

Powers of Two (Cont.)

By the previous page,

$$HC(p_1+p_2,p_3,...,p_n) = H(p_1,p_2,...,p_n) - (p_1+p_2)$$

By the properties of Huffman trees (principle 3),

$$HC(p_1,p_2,...,p_n) = HC(p_1+p_2,p_3,...,p_n) + (p_1+p_2)$$

Hence,

$$HC(p_1,p_2,...,p_n) = H(p_1,p_2,...,p_n)$$

Extending the Alphabet

- Assuming independence P(ab) = P(a)P(b), so we can lump symbols together.
- Example: P(0) = 1/100, P(1) = 99/100

$$-P(00) = 1/10000, P(01) = P(10) = 99/10000,$$

 $P(11) = 9801/10000.$

HC = 1.03 bits/symbol (2 bit symbol) = .515 bits/bit

Still not that close to H = .08 bits/bit

Quality of Extended Alphabet

 Suppose we extend the alphabet to symbols of length k then

$$H \leq HC \leq H + 1/k$$

- Pros and Cons of Extending the alphabet
 - + Better compression
 - 2^k symbols
 - padding needed to make the length of the input divisible by k

Huffman Codes with Context

- Suppose we add a one symbol context. That is in compressing a string $x_1x_2...x_n$ we want to take into account x_{k-1} when encoding x_k .
 - New model, so entropy based on just independent probabilities of the symbols doesn't hold. The new entropy model (2nd order entropy) has for each symbol a probability for each other symbol following it.
 - Example: {a,b,c}

next			
	а	b	С
а	.4	.2	.4
b	.1	.9	0
С	.1	.1	.8
		a .4 b .1	a b a .4 .2 b .1 .9

Multiple Codes

next

	а	b	С
a	.4	.2	.4
b	.1	.9	0
С	.1	.1	.8
		a .4 b .1	a .4 .2 b .1 .9

C	ode for first symbol
a	00
b	01
С	10

prev

Average Bit Rate for Code

- P(a) = .4 P(a) + .1 P(b) + .1 P(c) P(b) = .2 P(a) + .9 P(b) + .1 P(c)1 = P(a) + P(b) + P(c)
- 0 = -.6 P(a) + .1 P(b) + .1 P(c) 0 = .2 P(a) - .1 P(b) + .1 P(c)1 = P(a) + P(b) + P(c)
- P(a) = 1/7, P(b) = 4/7, P(c) = 2/7

Average Bit Rate for Code

ABR =
$$1/7$$
 (.6 x 2 + .4) + $4/7$ (1) + $2/7$ (.2 x 2 +.8) = $8/7$ = 1.14 bps

Complexity of Huffman Code Design

- Time to design Huffman Code is O(n log n) where n is the number of symbols.
 - Each step consists of a constant number of priority queue operations (2 deletemin's and 1 insert)

Approaches to Huffman Codes

- 1. Frequencies computed for each input
 - Must transmit the Huffman code or frequencies as well as the compressed input
 - Requires two passes
- 2. Fixed Huffman tree designed from training data
 - Do not have to transmit the Huffman tree because it is known to the decoder.
 - H.263 video coder
- 3. Adaptive Huffman code
 - One pass
 - Huffman tree changes as frequencies change

Run-Length Coding

- Lots of 0's and not too many 1's.
 - Fax of letters
 - Graphics
- Simple run-length code
 - Input 00000100000000100000000010001.....
 - Symbols6 9 10 3 2 ...
 - Code the bits as a sequence of integers
 - Problem: How long should the integers be?

Golomb Code of Order m Variable Length Code for Integers

- Let n = qm + r where $0 \le r < m$.
 - Divide m into n to get the quotient q and remainder r.
- Code for n has two parts:
 - 1. q is coded in unary
 - 2. r is coded as a fixed prefix code

Example: m = 5

code for r

n = qm + r is represented by:

$$11\cdots 10\hat{r}$$

- where \hat{r} is the fixed prefix code for r
- Example (m = 5):

```
2 6 9 10 27
010 1001 10111 11000 11111010
```

Alternative Explanation Golomb Code of order 5

input	output
00000	1
00001	0111
0001	0110
001	010
01	001
1	000

Variable length to variable length code.

Run Length Example: m = 5

In this example we coded 17 bits in only 9 bits.

Choosing m

- Suppose that 0 has the probability p and 1 has probability 1-p.
- The probability of 0ⁿ1 is pⁿ(1-p). The Golomb code of order ¬¬

is optimal. $m = \begin{vmatrix} -1/\log_2 p \end{vmatrix}$

• Example: p = 127/128.

$$m = \left[\frac{-1}{\log_2 (127/128)} \right] = 89$$

Average Bit Rate for Golomb Code

Average Bit Rate =
$$\frac{\text{Average output code length}}{\text{Average input code length}}$$

• m = 4 as an example. With p as the probability of 0.

$$ABR = \frac{p^4 + 3p^3(1-p) + 3p^2(1-p) + 3p(1-p) + 3(1-p)}{4p^4 + 4p^3(1-p) + 3p^2(1-p) + 2p(1-p) + (1-p)}$$

ouput
input
weight

1	011	010	001	000
0000	0001	001	01	1
p ⁴	p ³ (1-p)	p ² (1-p)	p(1-p)	1-p

Comparison of GC with Entropy

Notes on Golomb codes

- Useful for binary compression when one symbol is much more likely than another.
 - binary images
 - fax documents
 - bit planes for wavelet image compression
- Need a parameter (the order)
 - training
 - adaptively learn the right parameter
- Variable-to-variable length code
- Last symbol needs to be a 1
 - coder always adds a 1
 - decoder always removes a 1

Tunstall Codes

- Variable-to-fixed length code
- Example

а	000
b	001
ca	010
cb	011
cca	100
ccb	101
ccc	110

```
a b cca cb ccc ... 000 001 110 011 110 ...
```

Tunstall code Properties

- 1. No input code is a prefix of another to assure unique encodability.
- 2. Minimize the number of bits per symbol.

Prefix Code Property

а	000
b	001
ca	010
cb	011
cca	100
ccb	101
ccc	110

Unused output code is 111.

Use for unused code

- Consider the string "cc", if it occurs at the end of the data. It does not have a code.
- Send the unused code and some fixed code for the cc.
- Generally, if there are k internal nodes in the prefix tree then there is a need for k-1 fixed codes.

Designing a Tunstall Code

- Suppose there are m initial symbols.
- Choose a target output length n where 2ⁿ > m.
 - 1. Form a tree with a root and m children with edges labeled with the symbols.
 - 2. If the number of leaves is $> 2^n m$ then halt.*
 - 3. Find the leaf with highest probability and expand it to have m children.** Go to 2.

^{*} In the next step we will add m-1 more leaves.

^{**} The probability is the product of the probabilities of the symbols on the root to leaf path.

- P(a) = .7, P(b) = .2, P(c) = .1
- n = 3

- P(a) = .7, P(b) = .2, P(c) = .1
- n = 3

- P(a) = .7, P(b) = .2, P(c) = .1
- n = 3

aaa	000
aab	001
aac	010
ab	011
ac	100
b	101
С	110

Bit Rate of Tunstall

- The length of the output code divided by the average length of the input code.
- Let p_i be the probability of, and r_i the length of input code i (1 ≤ i ≤ s) and let n be the length of the output code.

Average bit rate =
$$\frac{n}{\sum_{i=1}^{s} p_i r_i}$$

aaa	.343	000
aab	.098	001
aac	.049	010
ab	.14	011
ac	.07	100
b	.2	101
С	.1	110

ABR =
$$3/[3 (.343 + .098 + .049) + 2 (.14 + .07) + .2 + .1]$$

= 1.37 bits per symbol
Entropy = 1.16 bits per symbol

Notes on Tunstall Codes

- Variable-to-fixed length code
- Error resilient
 - A flipped bit will introduce just one error in the output
 - Huffman is not error resilient. A single bit flip can destroy the code.