CSEP 590
 Data Compression

Autumn 2007

Course Policies

Introduction to Data Compression Entropy
Variable Length Codes

Instructors

- Instructor
- Richard Ladner
- ladner@cs.washington.edu
- 206 543-9347
- TA
- Rahul Vanam
- rahulv@u.washington.edu

Helpful Knowledge

- Algorithm Design and Analysis
- Probability

Resources

- Text Book
- Khalid Sayood, Introduction to Data Compression, Third Edition, Morgan Kaufmann Publishers, 2006.
- Course Web Page
- http://www.cs.washington.edu/csep590a
- Papers and Sections from Books
- Discussion Board
- For discussion

Engagement by Students

- Weekly Assignments
- Understand compression methodology
- Due in class on Fridays (except midterm Friday)
- No late assignments accepted except with prior approval
- Programming Projects
- Bi-level arithmetic coder and decoder.
- Build code and experiment

Final Exam and Grading

- 6:30-8:20 p.m. Thursday, Dec. 13, 2007
- Percentages
- Weekly assignments (50\%)
- Project (20\%)
- Final exam (30\%)

Logistics

- I will be gone the week of October $15^{\text {th }}$. We'll need to have a make up class.
- There is no class Thanksgiving week, November 19 ${ }^{\text {th }}$.
- We have some guest speakers toward the end of the quarter.

Basic Data Compression Concepts

original
compressed
decompressed

- Lossless compression $x=\hat{x}$
- Also called entropy coding, reversible coding.
- Lossy compression $x \neq \hat{x}$
- Also called irreversible coding.
- Compression ratio $=|x| /|y|$
$-|x|$ is number of bits in x.

Why Compress

- Conserve storage space
- Reduce time for transmission
- Faster to encode, send, then decode than to send the original
- Progressive transmission
- Some compression techniques allow us to send the most important bits first so we can get a low resolution version of some data before getting the high fidelity version
- Reduce computation
- Use less data to achieve an approximate answer

Braille

- System to read text by feeling raised dots on paper (or on electronic displays). Invented in 1820s by Louis Braille, a French blind man.

$$
\begin{aligned}
& \text { a } \because \circ \quad \mathrm{b} \quad \because \quad \mathrm{C} \quad \because \quad \mathrm{Z} \quad \AA \\
& \text { and } \because \% \text { the } \because: \text { with } \because: \text { mother } \because \because \circ \\
& \text { th } \because \text { ch } \because \text { gh } \because
\end{aligned}
$$

Braille Example

Clear text:
Call me Ishmael. Some years ago -- never mind how long precisely -- having $\backslash \backslash$ little or no money in my purse, and nothing particular to interest me on shore, $\ \backslash I$ thought I would sail about a little and see the watery part of the world. (238 characters)
Grade 2 Braille in ASCII.
,call me ,i
%mael4 , "’s ye\$>\$s ago -- n"e m9d h[l;g precisely -- hav+ $\ \backslash I I$ or no m"oy 9 my purse1
\& no?+ "picul\$>\$ 6 9t]e/ me on
%ore1 \I ,i \$?\$"\$|\$,i wd sail ab a II
\& see! wat]y ` p (! !_w4 (203 characters)

Compression ratio $=238 / 203=1.17$

Lossless Compression

- Data is not lost - the original is really needed.
- text compression
- compression of computer binary files
- Compression ratio typically no better than 4:1 for lossless compression on many kinds of files.
- Statistical Techniques
- Huffman coding
- Arithmetic coding
- Golomb coding
- Dictionary techniques
- LZW, LZ77
- Sequitur
- Burrows-Wheeler Method
- Standards - Morse code, Braille, Unix compress, gzip, zip, bzip, GIF, JBIG, Lossless JPEG

Lossy Compression

- Data is lost, but not too much.
- audio
- video
- still images, medical images, photographs
- Compression ratios of 10:1 often yield quite high fidelity results.
- Major techniques include
- Vector Quantization
- Wavelets
- Block transforms
- Standards - JPEG, JPEG2000, MPEG 2, H. 264

Why is Data Compression Possible

- Most data from nature has redundancy
- There is more data than the actual information contained in the data.
- Squeezing out the excess data amounts to compression.
- However, unsqueezing is necessary to be able to figure out what the data means.
- Information theory is needed to understand the limits of compression and give clues on how to compress well.

What is Information

- Analog data
- Also called continuous data
- Represented by real numbers (or complex numbers)
- Digital data
- Finite set of symbols $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$
- All data represented as sequences (strings) in the symbol set.
- Example: \{a,b,c,d,r\} abracadabra
- Digital data can be an approximation to analog data

Symbols

- Roman alphabet plus punctuation
- ASCII - 256 symbols
- Binary - $\{0,1\}$
- 0 and 1 are called bits
- All digital information can be represented efficiently in binary
- \{a,b,c,d\} fixed length representation

symbol	a	b	c	d
binary	00	01	10	11

-2 bits per symbol

Exercise - How Many Bits Per Symbol?

- Suppose we have n symbols. How many bits (as a function of n) are needed in to represent a symbol in binary?
- First try n a power of 2.

Discussion: Non-Powers of Two

- Can we do better than a fixed length representation for non-powers of two?

Information Theory

- Developed by Shannon in the 1940's and 50's
- Attempts to explain the limits of communication using probability theory.
- Example: Suppose English text is being sent
- It is much more likely to receive an "e" than a "z".
- In some sense "z" has more information than "e".

First-order Information

- Suppose we are given symbols $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.
- $P\left(a_{i}\right)=$ probability of symbol a_{i} occurring in the absence of any other information.

$$
\mathrm{P}\left(\mathrm{a}_{1}\right)+\mathrm{P}\left(\mathrm{a}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{a}_{\mathrm{m}}\right)=1
$$

- $\inf \left(a_{i}\right)=\log _{2}\left(1 / P\left(a_{i}\right)\right)$ bits is the information of a_{i} in bits.

Example

- $\{a, b, c\}$ with $P(a)=1 / 8, P(b)=1 / 4, P(c)=5 / 8$
$-\inf (a)=\log _{2}(8)=3$
$-\inf (b)=\log _{2}(4)=2$
$-\inf (c)=\log _{2}(8 / 5)=.678$
- Receiving an "a" has more information than receiving a "b" or "c".

First Order Entropy

- The first order entropy is defined for a probability distribution over symbols $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.

$$
H=\sum_{i=1}^{m} P\left(a_{i}\right) \log _{2}\left(\frac{1}{P\left(a_{i}\right)}\right)
$$

- H is the average number of bits required to code up a symbol, given all we know is the probability distribution of the symbols.
- H is the Shannon lower bound on the average number of bits to code a symbol in this "source model".
- Stronger models of entropy include context.

Entropy Examples

- $\{a, b, c\}$ with a $1 / 8, b 1 / 4, c 5 / 8$.
$-H=1 / 8 * 3+1 / 4 * 2+5 / 8^{*} .678=1.3$ bits/symbol
- $\{a, b, c\}$ with a $1 / 3, b 1 / 3, c 1 / 3$. (worst case)
$-H=3^{*}(1 / 3)^{*} \log _{2}(3)=1.6$ bits/symbol
- Note that a standard code takes 2 bits per symbol

symbol	a	b	c
binary code	00	01	10

CSEP 590 - Lecture 1 - Autumn 2007

An Extreme Case

- $\{a, b, c\}$ with a 1, b 0, c 0
$-\mathrm{H}=$?

Entropy Curve

- Suppose we have two symbols with probabilities x and $1-x$, respectively.

A Simple Prefix Code

- $\{a, b, c\}$ with a $1 / 8, b 1 / 4, ~ c 5 / 8$.
- A prefix code is defined by a binary tree
- Prefix code property
- no output is a prefix of another
binary tree

input output

ccabccbccc
1100011101111
CSEP 590 - Lecture 1 - Autumn 2007

Binary Tree Terminology

1. Each node, except the root, has a unique parent.
2. Each internal node has exactly two children.

Decoding a Prefix Code

repeat
start at root of tree repeat
if read bit $=1$ then go right else go left
until node is a leaf
report leaf
until end of the code

11000111100

Decoding a Prefix Code

11000111100

Decoding a Prefix Code

11000111100

C

Decoding a Prefix Code

11000111100

C

Decoding a Prefix Code

11000111100

CC

Decoding a Prefix Code

$11 \underline{0} 00111100$

CC

Decoding a Prefix Code

$110 \underline{0} 0111100$

CC

Decoding a Prefix Code

11000111100

cca

Decoding a Prefix Code

$1100 \underline{1} 111100$
cca

Decoding a Prefix Code

11000111100
cca

Decoding a Prefix Code

11000111100

ccab

Decoding a Prefix Code

11000111100

ccabccca

Exercise Encode/Decode

- Player 1: Encode a symbol string
- Player 2: Decode the string
- Check for equality

How Good is the Code

bit rate $=(1 / 8) 2+(1 / 4) 2+(5 / 8) 1=11 / 8=1.375 \mathrm{bps}$ Entropy $=1.3$ bps Standard code $=2 \mathrm{bps}$
(bps = bits per symbol)

Design a Prefix Code 1

- abracadabra
- Design a prefix code for the 5 symbols $\{a, b, r, c, d\}$ which compresses this string the most.

Design a Prefix Code 2

- Suppose we have n symbols each with probability $1 / n$. Design a prefix code with minimum average bit rate.
- Consider $n=2,3,4,5,6$ first.

Huffman Coding

- Huffman (1951)
- Uses frequencies of symbols in a string to build a variable rate prefix code.
- Each symbol is mapped to a binary string.
- More frequent symbols have shorter codes.
- No code is a prefix of another.
- Example:

Variable Rate Code Example

- Example: a 0, b 100, c 101, d 11
- Coding:
- aabddcaa = 16 bits
- $00100111110100=14$ bits
- Prefix code ensures unique decodability.
- 00100111110100

Cost of a Huffman Tree

- Let $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{m}}$ be the probabilities for the symbols $a_{1}, a_{2}, \ldots, a_{m}$, respectively.
- Define the cost of the Huffman tree T to be

$$
\mathrm{C}(\mathrm{~T})=\sum_{\mathrm{i}=1}^{m} \mathrm{p}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}
$$

where r_{i} is the length ${ }^{i=1}$ of the path from the root to a_{i}.

- $C(T)$ is the expected length of the code of a symbol coded by the tree $\mathrm{T} . \mathrm{C}(\mathrm{T})$ is the bit rate of the code.

Example of Cost

- Example: a $1 / 2$, b $1 / 8$, c $1 / 8$, d $1 / 4$

$$
\begin{gathered}
C(T)=1 \times 1 / 2+3 \times 1 / 8+3 \times 1 / 8+2 \times 1 / 4=1.75 \\
a \quad b \quad d \\
\operatorname{CSEP} 590-\text { Lecture } 1 \text { - Autumn } 2007
\end{gathered}
$$

Huffman Tree

- Input: Probabilities $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{m}}$ for symbols $a_{1}, a_{2}, \ldots, a_{m}$, respectively.
- Output: A tree that minimizes the average number of bits (bit rate) to code a symbol. That is, minimizes

$$
\mathrm{HC}(\mathrm{~T})=\sum_{\mathrm{i}=1}^{m} \mathrm{p}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} \quad \text { bit rate }
$$

where r_{i} is the length of the path from the root to a_{i}. This is the Huffman tree or Huffman code

Optimality Principle 1

- In a Huffman tree a lowest probability symbol has maximum distance from the root.
- If not exchanging a lowest probability symbol with one at maximum distance will lower the cost.

$$
C\left(T^{\prime}\right)=C(T)+h p-h q+k q-k p=C(T)-(h-k)(q-p)<C(T)
$$

Optimality Principle 2

- The second lowest probability is a sibling of the smallest in some Huffman tree.
- If not, we can move it there not raising the cost.

$$
C\left(T^{\prime}\right)=C(T)+h q-h r+k r-k q=C(T)-(h-k)(r-q) \leq C(T)
$$

Optimality Principle 3

- Assuming we have a Huffman tree T whose two lowest probability symbols are siblings at maximum depth, they can be replaced by a new symbol whose probability is the sum of their probabilities.
- The resulting tree is optimal for the new symbol set.

CSEP 590 - Lecture 1 - Autumn 2007

Optimality Principle 3 (cont')

- If T' were not optimal then we could find a lower cost tree T". This will lead to a lower cost tree T'" for the original alphabet.

$C\left(T^{\prime \prime \prime}\right)=C\left(T^{\prime \prime}\right)+p+q<C\left(T^{\prime}\right)+p+q=C(T)$ which is a contradiction

Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one node is optimal. Otherwise
2. Find the two lowest probability symbols with probabilities p and q respectively.
3. Replace these with a new symbol with probability $p+q$.
4. Solve the problem recursively for new symbols.
5. Replace the leaf with the new symbol with an internal node with two children with the old symbols.

Iterative Huffman Tree Algorithm

```
form a node for each symbol a with weight pi;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do
    min1 := delete-min;
    min2 := delete-min;
    create a new node n;
    n.weight := min1.weight + min2.weight;
    n.left := min1;
    n.right := min2;
    insert(n)
return the last node in the priority queue.
```


Example of Huffman Tree Algorithm (1)

- $\mathrm{P}(\mathrm{a})=.4, \mathrm{P}(\mathrm{b})=.1, \mathrm{P}(\mathrm{c})=.3, \mathrm{P}(\mathrm{d})=.1, \mathrm{P}(\mathrm{e})=.1$

Example of Huffman Tree Algorithm (2)

CSEP 590 - Lecture 1 - Autumn 2007

Example of Huffman Tree Algorithm (3)

Example of Huffman Tree Algorithm (4)

Huffman Code

Optimal Huffman Code vs. Entropy

- $\mathrm{P}(\mathrm{a})=.4, \mathrm{P}(\mathrm{b})=.1, \mathrm{P}(\mathrm{c})=.3, \mathrm{P}(\mathrm{d})=.1, \mathrm{P}(\mathrm{e})=.1$

Entropy
$\mathrm{H}=-\left(.4 \times \log _{2}(.4)+.1 \times \log _{2}(.1)+.3 \times \log _{2}(.3)\right.$ $\left.+.1 \times \log _{2}(.1)+.1 \times \log _{2}(.1)\right)$
$=2.05$ bits per symbol
Huffman Code
$\mathrm{HC}=.4 \times 1+.1 \times 4+.3 \times 2+.1 \times 3+.1 \times 4$
$=2.1$ bits per symbol pretty good!

In Class Exercise

- $P(a)=1 / 2, P(b)=1 / 4, P(c)=1 / 8, P(d)=1 / 16$, $P(e)=1 / 16$
- Compute the Optimal Huffman tree and its average bit rate.
- Compute the Entropy
- Compare
- Hint: For the tree change probabilities to be integers: $a: 8, b: 4, c: 2, d: 1, e: 1$. Normalize at the end.

Quality of the Huffman Code

- The Huffman code is within one bit of the entropy lower bound.

$\mathrm{H} \leq \mathrm{HC} \leq \mathrm{H}+1$

- Huffman code does not work well with a two symbol alphabet.
- Example: $\mathrm{P}(0)=1 / 100, \mathrm{P}(1)=99 / 100$
- HC = 1 bits/symbol

$-\mathrm{H}=-\left((1 / 100)^{*} \log _{2}(1 / 100)+(99 / 100) \log _{2}(99 / 100)\right)$
$=.08$ bits/symbol

Powers of Two

- If all the probabilities are powers of two then $\mathrm{HC}=\mathrm{H}$
- Proof by induction on the number of symbols.

Let $p_{1} \leq p_{2} \leq \ldots \leq p_{n}$ be the probabilities that add up to 1
If $\mathrm{n}=1$ then $\mathrm{HC}=\mathrm{H}$ (both are zero).
If $n>1$ then $p_{1}=p_{2}=2^{-k}$ for some k, otherwise the sum cannot add up to 1 .
Combine the first two symbols into a new symbol of probability $2^{-k}+2^{-k}=2^{-k+1}$.

Powers of Two (Cont.)

By the induction hypothesis

$$
\begin{aligned}
& H C\left(p_{1}+p_{2}, p_{3}, \ldots, p_{n}\right)=H\left(p_{1}+p_{2}, p_{3}, \ldots, p_{n}\right) \\
& =-\left(p_{1}+p_{2}\right) \log _{2}\left(p_{1}+p_{2}\right)-\sum_{i=3}^{n} p_{i} \log _{2}\left(p_{i}\right) \\
& =-2^{-k+1} \log _{2}\left(2^{-k+1}\right)-\sum_{i=3}^{n} p_{i} \log _{2}\left(p_{i}\right) \\
& =-2^{-k+1}\left(\log _{2}\left(2^{-k}\right)+1\right)-\sum_{i=3}^{n} p_{i} \log _{2}\left(p_{i}\right) \\
& =-2^{-k} \log _{2}\left(2^{-k}\right)-2^{-k} \log _{2}\left(2^{-k}\right)-\sum_{i=3}^{n} p_{i} \log _{2}\left(p_{i}\right)-2^{-k}-2^{-k} \\
& =-\sum_{i=1}^{n} p_{i} \log _{2}\left(p_{i}\right)-\left(p_{1}+p_{2}\right) \\
& =H\left(p_{1}, p_{2}, \ldots, p_{n}\right)-\left(p_{1}+p_{2}\right)
\end{aligned}
$$

Powers of Two (Cont.)

By the previous page,
$H C\left(p_{1}+p_{2}, p_{3}, \ldots, p_{n}\right)=H\left(p_{1}, p_{2}, \ldots, p_{n}\right)-\left(p_{1}+p_{2}\right)$
By the properties of Huffman trees (principle 3),
$H C\left(p_{1}, p_{2}, \ldots, p_{n}\right)=H C\left(p_{1}+p_{2}, p_{3}, \ldots, p_{n}\right)+\left(p_{1}+p_{2}\right)$
Hence,
$H C\left(p_{1}, p_{2}, \ldots, p_{n}\right)=H\left(p_{1}, p_{2}, \ldots, p_{n}\right)$

Extending the Alphabet

- Assuming independence $P(a b)=P(a) P(b)$, so we can lump symbols together.
- Example: $P(0)=1 / 100, P(1)=99 / 100$
$-P(00)=1 / 10000, P(01)=P(10)=99 / 10000$, $P(11)=9801 / 10000$.

$\mathrm{HC}=1.03 \mathrm{bits} /$ symbol (2 bit symbol)
$=.515 \mathrm{bits} / \mathrm{bit}$
Still not that close to $\mathrm{H}=.08$ bits/bit

Quality of Extended Alphabet

- Suppose we extend the alphabet to symbols of length k then

$$
H \leq H C \leq H+1 / k
$$

- Pros and Cons of Extending the alphabet
+ Better compression
- 2^{k} symbols
- padding needed to make the length of the input divisible by k

Huffman Codes with Context

- Suppose we add a one symbol context. That is in compressing a string $x_{1} x_{2} \ldots x_{n}$ we want to take into account x_{k-1} when encoding x_{k}.
- New model, so entropy based on just independent probabilities of the symbols doesn't hold. The new entropy model (2nd order entropy) has for each symbol a probability for each other symbol following it.
- Example: $\{a, b, c\}$

next $\| a$							b	c
a	.4	.2	.4					
b	.1	.9	0					
c	.1	.1	.8					

Multiple Codes

Code for first symbol
a 00
b

Average Bit Rate for Code

- $P(a)=.4 P(a)+.1 P(b)+.1 P(c)$
$P(b)=.2 P(a)+.9 P(b)+.1 P(c)$
$1=P(a)+P(b)+P(c)$
- $0=-.6 P(a)+.1 P(b)+.1 P(c)$
$0=.2 P(a)-.1 P(b)+.1 P(c)$
$1=P(a)+P(b)+P(c)$
- $P(a)=1 / 7, P(b)=4 / 7, P(c)=2 / 7$

Average Bit Rate for Code

$$
\begin{aligned}
\mathrm{ABR} & =1 / 7(.6 \times 2+.4)+4 / 7(1)+2 / 7(.2 \times 2+.8) \\
& =8 / 7=1.14 \mathrm{bps}
\end{aligned}
$$

Complexity of Huffman Code Design

- Time to design Huffman Code is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ where n is the number of symbols.
- Each step consists of a constant number of priority queue operations (2 deletemin's and 1 insert)

Approaches to Huffman Codes

1. Frequencies computed for each input

- Must transmit the Huffman code or frequencies as well as the compressed input
- Requires two passes

2. Fixed Huffman tree designed from training data

- Do not have to transmit the Huffman tree because it is known to the decoder.
- H. 263 video coder

3. Adaptive Huffman code

- One pass
- Huffman tree changes as frequencies change

Run-Length Coding

- Lots of 0's and not too many 1's.
- Fax of letters
- Graphics
- Simple run-length code
- Input 00000010000000001000000000010001001.....
- Symbols 691032 ...
- Code the bits as a sequence of integers
- Problem: How long should the integers be?

Golomb Code of Order m
 Variable Length Code for Integers

- Let $n=q m+r$ where $0 \leq r<m$.
- Divide m into n to get the quotient q and remainder r .
- Code for n has two parts:

1. q is coded in unary
2. r is coded as a fixed prefix code

Example: $m=5$

Example

- $\mathrm{n}=\mathrm{qm}+\mathrm{r}$ is represented by:

$\overbrace{11 \cdots 10}^{q} 0 \hat{r}$

- where \hat{r} is the fixed prefix code for r
- Example ($\mathrm{m}=5$):

$$
\begin{array}{ccccc}
2 & 6 & 9 & 10 & 27 \\
010 & 1001 & 10111 & 11000 & 11111010
\end{array}
$$

Alternative Explanation Golomb Code of order 5

Variable length to variable length code.

Run Length Example: $\mathrm{m}=5$

$00000010000000001000000000010001001 . . .$.
1
$0 0 0 0 0 \longdiv { 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 }$ 001
$00000010000000001000000000010001001 . . .$.
1
$00000010000000001000000000010001001 . . .$. 0111

In this example we coded 17 bits in only 9 bits.

Choosing m

- Suppose that 0 has the probability p and 1 has probability 1-p.
- The probability of $0^{n 1}$ is $p^{n}(1-p)$. The Golomb code of order
is optimal.

$$
m=\left\lceil-1 / \log _{2} p\right\rceil
$$

- Example: $p=127 / 128$.

$$
m=\left\lceil-1 / \log _{2}(127 / 128)\right\rceil=89
$$

Average Bit Rate for Golomb Code

Average Bit Rate $=\frac{\text { Average output code length }}{\text { Average input code length }}$

- $m=4$ as an example. With p as the probability of 0 .

$$
A B R=\frac{p^{4}+3 p^{3}(1-p)+3 p^{2}(1-p)+3 p(1-p)+3(1-p)}{4 p^{4}+4 p^{3}(1-p)+3 p^{2}(1-p)+2 p(1-p)+(1-p)}
$$

ouput input	1	011	010	001	000
weight	0000	0001	001	01	1
	p^{4}	$p^{3}(1-p)$	$p^{2}(1-p)$	$p(1-p)$	$1-p$

Comparison of GC with Entropy

Notes on Golomb codes

- Useful for binary compression when one symbol is much more likely than another.
- binary images
- fax documents
- bit planes for wavelet image compression
- Need a parameter (the order)
- training
- adaptively learn the right parameter
- Variable-to-variable length code
- Last symbol needs to be a 1
- coder always adds a 1
- decoder always removes a 1

Tunstall Codes

- Variable-to-fixed length code
- Example

input	output
a	000
b	001
ca	010
cb	011
cca	100
ccb	101
ccc	110

$$
\begin{array}{cccccc}
a & b & c c a & c b & c c c & \ldots \\
000 & 001 & 110 & 011 & 110 & \ldots
\end{array}
$$

Tunstall code Properties

1. No input code is a prefix of another to assure unique encodability.
2. Minimize the number of bits per symbol.

Prefix Code Property

a	000
b	001
ca	010
$c b$	011
cca	100
ccb	101
ccc	110

Unused output code is 111.

Use for unused code

- Consider the string "cc", if it occurs at the end of the data. It does not have a code.
- Send the unused code and some fixed code for the cc.
- Generally, if there are k internal nodes in the prefix tree then there is a need for k - 1 fixed codes.

Designing a Tunstall Code

- Suppose there are minitial symbols.
- Choose a target output length n where $2^{n}>m$.

1. Form a tree with a root and m children with edges labeled with the symbols.
2. If the number of leaves is $>2^{n}-m$ then halt.*
3. Find the leaf with highest probability and expand it to have m children.** Go to 2.

* In the next step we will add $\mathrm{m}-1$ more leaves.
** The probability is the product of the probabilities of the symbols on the root to leaf path.

Example

- $\mathrm{P}(\mathrm{a})=.7, \mathrm{P}(\mathrm{b})=.2, \mathrm{P}(\mathrm{c})=.1$
- $\mathrm{n}=3$

Example

- $P(a)=.7, P(b)=.2, P(c)=.1$
- $\mathrm{n}=3$

Example

- $\mathrm{P}(\mathrm{a})=.7, \mathrm{P}(\mathrm{b})=.2, \mathrm{P}(\mathrm{c})=.1$
- $\mathrm{n}=3$

aaa	000
aab	001
aac	010
ab	011
ac	100
b	101
c	110

Bit Rate of Tunstall

- The length of the output code divided by the average length of the input code.
- Let p_{i} be the probability of, and r_{i} the length of input code $i(1 \leq i \leq s)$ and let n be the length of the output code.

$$
\text { Average bit rate }=\frac{n}{\sum_{i=1}^{s} p_{i} r_{i}}
$$

Example

aaa	.343	000
aab	.098	001
aac	.049	010
ab	.14	011
ac	.07	100
b	.2	101
c	.1	110

$\mathrm{ABR}=3 /[3(.343+.098+.049)+2(.14+.07)+.2+.1]$
$=1.37$ bits per symbol
Entropy $=1.16$ bits per symbol

Notes on Tunstall Codes

- Variable-to-fixed length code
- Error resilient
- A flipped bit will introduce just one error in the output
- Huffman is not error resilient. A single bit flip can destroy the code.

