
1

CSEP 590
Data Compression

Autumn 2007

Course Policies

Introduction to Data Compression

Entropy

Variable Length Codes

CSEP 590 - Lecture 1 - Autumn 2007 2

Instructors

• Instructor

– Richard Ladner

– ladner@cs.washington.edu

– 206 543-9347

• TA

– Rahul Vanam

– rahulv@u.washington.edu

CSEP 590 - Lecture 1 - Autumn 2007 3

Helpful Knowledge

• Algorithm Design and Analysis

• Probability

CSEP 590 - Lecture 1 - Autumn 2007 4

Resources

• Text Book

– Khalid Sayood, Introduction to Data Compression,
Third Edition, Morgan Kaufmann Publishers, 2006.

• Course Web Page
– http://www.cs.washington.edu/csep590a

• Papers and Sections from Books

• Discussion Board

– For discussion

CSEP 590 - Lecture 1 - Autumn 2007 5

Engagement by Students

• Weekly Assignments

– Understand compression methodology

– Due in class on Fridays (except midterm Friday)

– No late assignments accepted except with prior
approval

• Programming Projects

– Bi-level arithmetic coder and decoder.

– Build code and experiment

CSEP 590 - Lecture 1 - Autumn 2007 6

Final Exam and Grading

• 6:30-8:20 p.m. Thursday, Dec. 13, 2007

• Percentages

– Weekly assignments (50%)

– Project (20%)

– Final exam (30%)

2

CSEP 590 - Lecture 1 - Autumn 2007 7

Logistics

• I will be gone the week of October 15th. We’ll
need to have a make up class.

• There is no class Thanksgiving week,
November 19th.

• We have some guest speakers toward the
end of the quarter.

CSEP 590 - Lecture 1 - Autumn 2007 8

Basic Data Compression Concepts

Encoder Decoder

compressedoriginal

x y x̂

• Lossless compression
– Also called entropy coding, reversible coding.

• Lossy compression
– Also called irreversible coding.

• Compression ratio =
– is number of bits in x.

xx ˆ=

xx ˆ≠

yx
x

decompressed

CSEP 590 - Lecture 1 - Autumn 2007 9

Why Compress

• Conserve storage space

• Reduce time for transmission
– Faster to encode, send, then decode than to send

the original

• Progressive transmission
– Some compression techniques allow us to send

the most important bits first so we can get a low
resolution version of some data before getting the
high fidelity version

• Reduce computation
– Use less data to achieve an approximate answer

CSEP 590 - Lecture 1 - Autumn 2007 10

Braille

• System to read text by feeling raised dots on
paper (or on electronic displays). Invented in
1820s by Louis Braille, a French blind man.

a b c z

and the with mother

th ghch

CSEP 590 - Lecture 1 - Autumn 2007 11

Braille Example
Clear text:
Call me Ishmael. Some years ago -- never mind how
long precisely -- having \\ little or no money in my purse,
and nothing particular to interest me on shore, \\ I thought
I would sail about a little and see the watery part of the
world. (238 characters)

Grade 2 Braille in ASCII.
,call me ,i\%mael4 ,``s ye$>$s ago -- n``e m9d h[l;g
precisely -- hav+ \\ ll or no m``oy 9 my purse1 \& no?+
``picul$>$ 6 9t]e/ me on \%ore1 \\ ,i $?$``$|$,i wd sail
ab a ll \& see ! wat]y ``p (! _w4 (203 characters)

Compression ratio = 238/203 = 1.17

CSEP 590 - Lecture 1 - Autumn 2007 12

Lossless Compression
• Data is not lost - the original is really needed.

– text compression

– compression of computer binary files

• Compression ratio typically no better than 4:1 for
lossless compression on many kinds of files.

• Statistical Techniques
– Huffman coding

– Arithmetic coding

– Golomb coding

• Dictionary techniques
– LZW, LZ77

– Sequitur

– Burrows-Wheeler Method

• Standards - Morse code, Braille, Unix compress, gzip,
zip, bzip, GIF, JBIG, Lossless JPEG

3

CSEP 590 - Lecture 1 - Autumn 2007 13

Lossy Compression

• Data is lost, but not too much.
– audio

– video

– still images, medical images, photographs

• Compression ratios of 10:1 often yield quite
high fidelity results.

• Major techniques include
– Vector Quantization

– Wavelets

– Block transforms

– Standards - JPEG, JPEG2000, MPEG 2, H.264

CSEP 590 - Lecture 1 - Autumn 2007 14

Why is Data Compression Possible

• Most data from nature has redundancy

– There is more data than the actual information
contained in the data.

– Squeezing out the excess data amounts to
compression.

– However, unsqueezing is necessary to be able to
figure out what the data means.

• Information theory is needed to understand
the limits of compression and give clues on
how to compress well.

CSEP 590 - Lecture 1 - Autumn 2007 15

What is Information

• Analog data
– Also called continuous data

– Represented by real numbers (or complex
numbers)

• Digital data
– Finite set of symbols {a1, a2, ... , am}

– All data represented as sequences (strings) in the
symbol set.

– Example: {a,b,c,d,r} abracadabra

– Digital data can be an approximation to analog
data

CSEP 590 - Lecture 1 - Autumn 2007 16

Symbols

• Roman alphabet plus punctuation

• ASCII - 256 symbols

• Binary - {0,1}

– 0 and 1 are called bits

– All digital information can be represented
efficiently in binary

– {a,b,c,d} fixed length representation

– 2 bits per symbol

11100100binary

dcbasymbol

CSEP 590 - Lecture 1 - Autumn 2007 17

Exercise - How Many Bits Per
Symbol?

• Suppose we have n symbols. How many bits
(as a function of n) are needed in to
represent a symbol in binary?

– First try n a power of 2.

CSEP 590 - Lecture 1 - Autumn 2007 18

Discussion: Non-Powers of Two

• Can we do better than a fixed length
representation for non-powers of two?

4

CSEP 590 - Lecture 1 - Autumn 2007 19

Information Theory

• Developed by Shannon in the 1940’s and 50’s

• Attempts to explain the limits of communication
using probability theory.

• Example: Suppose English text is being sent

– It is much more likely to receive an “e” than a “z”.

– In some sense “z” has more information than “e”.

CSEP 590 - Lecture 1 - Autumn 2007 20

0

1

2

3

4

5

6

7

0
.0

1

0
.0

8

0
.1

5

0
.2

2

0
.2

9

0
.3

6

0
.4

3

0
.5

0
.5

7

0
.6

4

0
.7

1

0
.7

8

0
.8

5

0
.9

2

0
.9

9

x

y

-log(x)

First-order Information

• Suppose we are given symbols {a1, a2, ... , am}.

• P(ai) = probability of symbol ai occurring in the
absence of any other information.

P(a1) + P(a2) + ... + P(am) = 1

• inf(ai) = log2(1/P(ai)) bits is the information of ai
in bits.

CSEP 590 - Lecture 1 - Autumn 2007 21

Example

• {a, b, c} with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8

– inf(a) = log2(8) = 3

– inf(b) = log2(4) = 2

– inf(c) = log2(8/5) = .678

• Receiving an “a” has more information than
receiving a “b” or “c”.

CSEP 590 - Lecture 1 - Autumn 2007 22

First Order Entropy

• The first order entropy is defined for a probability
distribution over symbols {a1, a2, ... , am}.

• H is the average number of bits required to code up a
symbol, given all we know is the probability distribution
of the symbols.

• H is the Shannon lower bound on the average number of
bits to code a symbol in this “source model”.

• Stronger models of entropy include context.

)
)(

1
(log)(2

1 i

m

i

i
aP

aPH ∑
=

=

CSEP 590 - Lecture 1 - Autumn 2007 23

Entropy Examples

• {a, b, c} with a 1/8, b 1/4, c 5/8.

– H = 1/8 *3 + 1/4 *2 + 5/8* .678 = 1.3 bits/symbol

• {a, b, c} with a 1/3, b 1/3, c 1/3. (worst case)

– H = 3* (1/3)*log2(3) = 1.6 bits/symbol

• Note that a standard code takes 2 bits per
symbol

100100binary code

cbasymbol

CSEP 590 - Lecture 1 - Autumn 2007 24

An Extreme Case

• {a, b, c} with a 1, b 0, c 0

– H = ?

5

CSEP 590 - Lecture 1 - Autumn 2007 25

Entropy Curve

• Suppose we have two symbols with probabilities
x and 1-x, respectively.

0

0.2

0.4

0.6

0.8

1

1.2

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

probability of first symbol

e
n

tr
o

p
y

-(x log x + (1-x)log(1-x))

maximum entropy at .5

CSEP 590 - Lecture 1 - Autumn 2007 26

A Simple Prefix Code

• {a, b, c} with a 1/8, b 1/4, c 5/8.

• A prefix code is defined by a binary tree

• Prefix code property
– no output is a prefix of another

b

c

a

0

0

1

1
1c

01b

00a

ccabccbccc
1 1 00 01 1 1 01 1 1 1

input output

code

binary tree

CSEP 590 - Lecture 1 - Autumn 2007 27

Binary Tree Terminology

root

leaf

node

1. Each node, except the root, has a unique parent.
2. Each internal node has exactly two children.

CSEP 590 - Lecture 1 - Autumn 2007 28

Decoding a Prefix Code

b

c

a

0

0

1

1

repeat
start at root of tree

repeat
if read bit = 1 then go right
else go left

until node is a leaf
report leaf

until end of the code

11000111100

CSEP 590 - Lecture 1 - Autumn 2007 29

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

CSEP 590 - Lecture 1 - Autumn 2007 30

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

c

6

CSEP 590 - Lecture 1 - Autumn 2007 31

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

c

CSEP 590 - Lecture 1 - Autumn 2007 32

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cc

CSEP 590 - Lecture 1 - Autumn 2007 33

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cc

CSEP 590 - Lecture 1 - Autumn 2007 34

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cc

CSEP 590 - Lecture 1 - Autumn 2007 35

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cca

CSEP 590 - Lecture 1 - Autumn 2007 36

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cca

7

CSEP 590 - Lecture 1 - Autumn 2007 37

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cca

CSEP 590 - Lecture 1 - Autumn 2007 38

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

ccab

CSEP 590 - Lecture 1 - Autumn 2007 39

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

ccabccca

CSEP 590 - Lecture 1 - Autumn 2007 40

Exercise Encode/Decode

• Player 1: Encode a symbol string

• Player 2: Decode the string

• Check for equality

b c

a

d

0

0

0

1

1

1

CSEP 590 - Lecture 1 - Autumn 2007 41

How Good is the Code

b

c

a

0

0

1

1

1/8 1/4

5/8

bit rate = (1/8)2 + (1/4)2 + (5/8)1 = 11/8 = 1.375 bps
Entropy = 1.3 bps
Standard code = 2 bps

(bps = bits per symbol)

CSEP 590 - Lecture 1 - Autumn 2007 42

Design a Prefix Code 1

• abracadabra

• Design a prefix code for the 5 symbols
{a,b,r,c,d} which compresses this string the
most.

8

CSEP 590 - Lecture 1 - Autumn 2007 43

Design a Prefix Code 2

• Suppose we have n symbols each with
probability 1/n. Design a prefix code with
minimum average bit rate.

• Consider n = 2,3,4,5,6 first.

CSEP 590 - Lecture 1 - Autumn 2007 44

Huffman Coding

• Huffman (1951)

• Uses frequencies of symbols in a string to build a
variable rate prefix code.

– Each symbol is mapped to a binary string.

– More frequent symbols have shorter codes.

– No code is a prefix of another.

• Example:
a 0
b 100
c 101
d 11

b c

a

d

0

0

0

1

1

1

CSEP 590 - Lecture 1 - Autumn 2007 45

Variable Rate Code Example

• Example: a 0, b 100, c 101, d 11

• Coding:

– aabddcaa = 16 bits

– 0 0 100 11 11 101 0 0= 14 bits

• Prefix code ensures unique decodability.

– 00100111110100

– a a b d d c a a

CSEP 590 - Lecture 1 - Autumn 2007 46

Cost of a Huffman Tree

• Let p1, p2, ... , pm be the probabilities for the
symbols a1, a2, ... ,am, respectively.

• Define the cost of the Huffman tree T to be

where ri is the length of the path from the root
to ai.

• C(T) is the expected length of the code of a
symbol coded by the tree T. C(T) is the bit
rate of the code.

i

m

1i
irpC(T) ∑

=

=

CSEP 590 - Lecture 1 - Autumn 2007 47

Example of Cost

• Example: a 1/2, b 1/8, c 1/8, d 1/4

b c

a

d

0

0

0

1

1

1

T

C(T) = 1 x 1/2 + 3 x 1/8 + 3 x 1/8 + 2 x 1/4 = 1.75
a b c d

CSEP 590 - Lecture 1 - Autumn 2007 48

Huffman Tree

• Input: Probabilities p1, p2, ... , pm for symbols
a1, a2, ... ,am, respectively.

• Output: A tree that minimizes the average
number of bits (bit rate) to code a symbol.
That is, minimizes

where ri is the length of the path from the root
to ai. This is the Huffman tree or Huffman
code

i

m

1i
irpHC(T) ∑

=

= bit rate

9

CSEP 590 - Lecture 1 - Autumn 2007 49

Optimality Principle 1
• In a Huffman tree a lowest probability symbol

has maximum distance from the root.

– If not exchanging a lowest probability symbol with
one at maximum distance will lower the cost.

q

p

T

q

T’

p

C(T’) = C(T) + hp - hq + kq - kp = C(T) - (h-k)(q-p) < C(T)

p smallest
p < q
k < h

h

k

CSEP 590 - Lecture 1 - Autumn 2007 50

Optimality Principle 2

• The second lowest probability is a sibling of
the smallest in some Huffman tree.

– If not, we can move it there not raising the cost.

p

q

T p smallest
q 2nd smallest

q < r
k < h

r p

r

T’

q

C(T’) = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) < C(T)

h

k

CSEP 590 - Lecture 1 - Autumn 2007 51

Optimality Principle 3

• Assuming we have a Huffman tree T whose two
lowest probability symbols are siblings at
maximum depth, they can be replaced by a new
symbol whose probability is the sum of their
probabilities.

– The resulting tree is optimal for the new symbol set.

p

T

q

T’

q+p

p smallest
q 2nd smallest

C(T’) = C(T) + (h-1)(p+q) - hp -hq = C(T) - (p+q)

h

CSEP 590 - Lecture 1 - Autumn 2007 52

Optimality Principle 3 (cont’)

• If T’ were not optimal then we could find a
lower cost tree T’’. This will lead to a lower
cost tree T’’’ for the original alphabet.

T’

q+p

T’’

q+p

T’’’

q p

C(T’’’) = C(T’’) + p + q < C(T’) + p + q = C(T) which is a contradiction

CSEP 590 - Lecture 1 - Autumn 2007 53

Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one
node is optimal. Otherwise

2. Find the two lowest probability symbols with
probabilities p and q respectively.

3. Replace these with a new symbol with
probability p + q.

4. Solve the problem recursively for new symbols.
5. Replace the leaf with the new symbol with an

internal node with two children with the old symbols.

CSEP 590 - Lecture 1 - Autumn 2007 54

Iterative Huffman Tree Algorithm

form a node for each symbol ai with weight pi;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do

min1 := delete-min;
min2 := delete-min;
create a new node n;
n.weight := min1.weight + min2.weight;
n.left := min1;
n.right := min2;
insert(n)

return the last node in the priority queue.

10

CSEP 590 - Lecture 1 - Autumn 2007 55

Example of Huffman Tree Algorithm (1)

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

a b c d e

.4 .1 .3 .1 .1

a

b

c d

e

.4 .3 .1.2

CSEP 590 - Lecture 1 - Autumn 2007 56

Example of Huffman Tree Algorithm (2)

a

b

c d

e

.4 .3 .1.2

a

b

c

d

e

.4 .3.3

CSEP 590 - Lecture 1 - Autumn 2007 57

Example of Huffman Tree Algorithm (3)

a

b

c

d

e

.4 .3.3

a

b

c

d

e

.4 .6

CSEP 590 - Lecture 1 - Autumn 2007 58

Example of Huffman Tree Algorithm (4)

a

b

c

d

e

.4 .6

a

b

c

d

e

1

CSEP 590 - Lecture 1 - Autumn 2007 59

Huffman Code

a

b

c

d

e

a 0
b 1110
c 10
d 110
e 1111

0 1

1

1

1

0

0

0

average number of bits per symbol is
.4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4 = 2.1

CSEP 590 - Lecture 1 - Autumn 2007 60

Optimal Huffman Code vs. Entropy

Entropy

H = -(.4 x log2(.4) + .1 x log2(.1) + .3 x log2(.3)
+ .1 x log2(.1) + .1 x log2(.1))

= 2.05 bits per symbol

Huffman Code

HC = .4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4
= 2.1 bits per symbol

pretty good!

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

11

CSEP 590 - Lecture 1 - Autumn 2007 61

In Class Exercise

• P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/16,
P(e) = 1/16

• Compute the Optimal Huffman tree and its
average bit rate.

• Compute the Entropy

• Compare

• Hint: For the tree change probabilities to be
integers: a:8, b:4, c:2, d:1, e:1. Normalize at
the end.

CSEP 590 - Lecture 1 - Autumn 2007 62

Quality of the Huffman Code

• The Huffman code is within one bit of the entropy
lower bound.

• Huffman code does not work well with a two symbol
alphabet.

– Example: P(0) = 1/100, P(1) = 99/100

– HC = 1 bits/symbol

– H = -((1/100)*log2(1/100) + (99/100)log2(99/100))
= .08 bits/symbol

1HHCH +≤≤

1 0

10

CSEP 590 - Lecture 1 - Autumn 2007 63

Powers of Two

• If all the probabilities are powers of two then

• Proof by induction on the number of symbols.

Let p1 < p2 < ... < pn be the probabilities that add up
to 1

If n = 1 then HC = H (both are zero).

If n > 1 then p1 = p2 = 2-k for some k, otherwise the
sum cannot add up to 1.

Combine the first two symbols into a new symbol of
probability 2-k + 2-k = 2-k+1.

HHC =

CSEP 590 - Lecture 1 - Autumn 2007 64

Powers of Two (Cont.)

By the induction hypothesis

)p(p)p,...,p,H(p

)p(p)(plogp

22)(plogp)(2log2)(2log2

)(plogp1))(2(log2

)(plogp)(2log2

)(plogp)p(p)logp(p-

)p,...,p,pH(p)p,...,p,pHC(p

21n21

21

n

1i
i2i

kk
n

3i
i2i

k
2

kk
2

k

n

3i
i2i

k
2

1k

n

3i
i2i

1k
2

1k

n

3i
i2i21221

n321n321

+−=

+−−=

−−−−−=

−+−=

−−=

−++=

+=+

∑

∑

∑

∑

∑

=

−−

=

−−−−

=

−+−

=

+−+−

=

CSEP 590 - Lecture 1 - Autumn 2007 65

Powers of Two (Cont.)

By the previous page,

By the properties of Huffman trees (principle 3),

Hence,

)p(p)p,...,p,H(p)p,...,p,pHC(p 21n21n321 +−=+

)p(p)p,...,p,pHC(p)p,...,p,HC(p 21n321n21 +++=

)p,...,p,H(p)p,...,p,HC(p n21n21 =

CSEP 590 - Lecture 1 - Autumn 2007 66

Extending the Alphabet

• Assuming independence P(ab) = P(a)P(b), so
we can lump symbols together.

• Example: P(0) = 1/100, P(1) = 99/100

– P(00) = 1/10000, P(01) = P(10) = 99/10000,
P(11) = 9801/10000.

01

11

10

00

1

1

1

0

0

0

HC = 1.03 bits/symbol (2 bit symbol)
= .515 bits/bit

Still not that close to H = .08 bits/bit

12

CSEP 590 - Lecture 1 - Autumn 2007 67

Quality of Extended Alphabet

• Suppose we extend the alphabet to symbols
of length k then

• Pros and Cons of Extending the alphabet

+ Better compression

- 2k symbols

- padding needed to make the length of the input
divisible by k

1/kHHCH +≤≤

CSEP 590 - Lecture 1 - Autumn 2007 68

Huffman Codes with Context
• Suppose we add a one symbol context. That is in

compressing a string x1x2...xn we want to take into
account xk-1 when encoding xk.

– New model, so entropy based on just independent
probabilities of the symbols doesn’t hold. The new entropy
model (2nd order entropy) has for each symbol a probability
for each other symbol following it.

– Example: {a,b,c}

a b c
a .4 .2 .4
b .1 .9 0
c .1 .1 .8

prev

next

CSEP 590 - Lecture 1 - Autumn 2007 69

Multiple Codes

a b c
a .4 .2 .4
b .1 .9 0
c .1 .1 .8

prev

next

a

b

1

1

0

0

c

b

10

c

a

1

1

0

0

b

a

a b c

a b b a c c

Code for first symbol
a 00
b 01
c 10

00 00 0 1 01 0
.2

.4

.4

.9 .1

.1.1

.8

CSEP 590 - Lecture 1 - Autumn 2007 70

Average Bit Rate for Code

• P(a) = .4 P(a) + .1 P(b) + .1 P(c)
P(b) = .2 P(a) + .9 P(b) + .1 P(c)
1 = P(a) + P(b) + P(c)

• 0 = -.6 P(a) + .1 P(b) + .1 P(c)
0 = .2 P(a) - .1 P(b) + .1 P(c)
1 = P(a) + P(b) + P(c)

• P(a) = 1/7, P(b) = 4/7, P(c) = 2/7

CSEP 590 - Lecture 1 - Autumn 2007 71

Average Bit Rate for Code

a

b

1

1

0

0

c

b

10

c

a

1

1

0

0

b

a

.2

.4

.4

.9 .1

.1.1

.8

1/7 4/7 2/7

ABR = 1/7 (.6 x 2 + .4) + 4/7 (1) + 2/7 (.2 x 2 +.8)
= 8/7 = 1.14 bps

CSEP 590 - Lecture 1 - Autumn 2007 72

Complexity of Huffman Code Design

• Time to design Huffman Code is O(n log n)
where n is the number of symbols.

– Each step consists of a constant number of priority
queue operations (2 deletemin’s and 1 insert)

13

CSEP 590 - Lecture 1 - Autumn 2007 73

Approaches to Huffman Codes

1. Frequencies computed for each input

– Must transmit the Huffman code or
frequencies as well as the compressed input

– Requires two passes

2. Fixed Huffman tree designed from training data

– Do not have to transmit the Huffman tree
because it is known to the decoder.

– H.263 video coder

3. Adaptive Huffman code

– One pass

– Huffman tree changes as frequencies change

CSEP 590 - Lecture 1 - Autumn 2007 74

Run-Length Coding

• Lots of 0’s and not too many 1’s.

– Fax of letters

– Graphics

• Simple run-length code

– Input
00000010000000001000000000010001001.....

– Symbols
6 9 10 3 2 ...

– Code the bits as a sequence of integers

– Problem: How long should the integers be?

CSEP 590 - Lecture 1 - Autumn 2007 75

Golomb Code of Order m
Variable Length Code for Integers

• Let n = qm + r where 0 < r < m.

– Divide m into n to get the quotient q and
remainder r.

• Code for n has two parts:

1. q is coded in unary

2. r is coded as a fixed prefix code

Example: m = 5

0 1 2

3 4

00

0

0

1

1 1

1

code for r

CSEP 590 - Lecture 1 - Autumn 2007 76

Example

• n = qm + r is represented by:

– where is the fixed prefix code for r

• Example (m = 5):

2 6 9 10 27

010 1001 10111 11000 11111010

r0111

q

ˆ
876
L

r̂

CSEP 590 - Lecture 1 - Autumn 2007 77

Alternative Explanation
Golomb Code of order 5

1 01 001

00

0

0

1

1 1

1

0001 00001

0

00000

1

0001

00101

010001

01100001

011100001

100000

input output

Variable length to variable length code.

CSEP 590 - Lecture 1 - Autumn 2007 78

Run Length Example: m = 5

00000010000000001000000000010001001.....
1
00000010000000001000000000010001001.....
001
00000010000000001000000000010001001.....
1
00000010000000001000000000010001001.....
0111

In this example we coded 17 bits in only 9 bits.

14

CSEP 590 - Lecture 1 - Autumn 2007 79

Choosing m

• Suppose that 0 has the probability p and 1
has probability 1-p.

• The probability of 0n1 is pn(1-p). The Golomb
code of order

is optimal.

• Example: p = 127/128.

=

p log
1-m

2

89
(127/128) log

1-m
2

=

=

CSEP 590 - Lecture 1 - Autumn 2007 80

Average Bit Rate for Golomb Code

• m = 4 as an example. With p as the probability of 0.

length code input Average

length code output Average
 Rate Bit Average =

p)(1p)2p(1p)(1-3pp)(1-4p4p

p)3(1p)3p(1p)(13pp)(13pp
 ABR

234

234

−+−+++
−+−+−+−+=

ouput
input

weight 1-pp(1-p)p2(1-p)p3(1-p)p4

10100100010000

0000010100111

CSEP 590 - Lecture 1 - Autumn 2007 81

Comparison of GC with Entropy

GC – entropy
entropy

p

order

CSEP 590 - Lecture 1 - Autumn 2007 82

Notes on Golomb codes

• Useful for binary compression when one symbol is
much more likely than another.

– binary images

– fax documents

– bit planes for wavelet image compression

• Need a parameter (the order)

– training

– adaptively learn the right parameter

• Variable-to-variable length code

• Last symbol needs to be a 1

– coder always adds a 1

– decoder always removes a 1

CSEP 590 - Lecture 1 - Autumn 2007 83

Tunstall Codes

• Variable-to-fixed length code

• Example

110ccc

101ccb

100cca

011cb

010ca

001b

000a

a b cca cb ccc ...
000 001 110 011 110 ...

input output

CSEP 590 - Lecture 1 - Autumn 2007 84

Tunstall code Properties

1. No input code is a prefix of another to
assure unique encodability.

2. Minimize the number of bits per symbol.

15

CSEP 590 - Lecture 1 - Autumn 2007 85

Prefix Code Property

110ccc

101ccb

100cca

011cb

010ca

001b

000a a

a
b

a
b

b

c

c

c000 001

010 011

100 101 110

Unused output code is 111.

CSEP 590 - Lecture 1 - Autumn 2007 86

Use for unused code

• Consider the string “cc”, if it occurs at the end
of the data. It does not have a code.

• Send the unused code and some fixed code
for the cc.

• Generally, if there are k internal nodes in the
prefix tree then there is a need for k-1 fixed
codes.

CSEP 590 - Lecture 1 - Autumn 2007 87

Designing a Tunstall Code

• Suppose there are m initial symbols.

• Choose a target output length n where 2n > m.

1. Form a tree with a root and m children with
edges labeled with the symbols.

2. If the number of leaves is > 2n – m then halt.*
3. Find the leaf with highest probability and

expand it to have m children.** Go to 2.

* In the next step we will add m-1 more leaves.
** The probability is the product of the probabilities
of the symbols on the root to leaf path.

CSEP 590 - Lecture 1 - Autumn 2007 88

Example

• P(a) = .7, P(b) = .2, P(c) = .1

• n = 3

a
b

c

.7 .2 .1

CSEP 590 - Lecture 1 - Autumn 2007 89

Example

• P(a) = .7, P(b) = .2, P(c) = .1

• n = 3

a
b

c

.49

.2 .1
a

b
c

.14 .07

CSEP 590 - Lecture 1 - Autumn 2007 90

Example

• P(a) = .7, P(b) = .2, P(c) = .1

• n = 3

a
b

c

.343

.2 .1
a

b
c

.14 .07b
c

.098 .049

a

110c

101b

100ac

011ab

010aac

001aab

000aaa

16

CSEP 590 - Lecture 1 - Autumn 2007 91

Bit Rate of Tunstall

• The length of the output code divided by the
average length of the input code.

• Let pi be the probability of, and ri the length of
input code i (1 < i < s) and let n be the length
of the output code.

∑
=

=
s

1i
iirp

n
 rate bit Average

CSEP 590 - Lecture 1 - Autumn 2007 92

Example

a
b

c

.343

.2 .1
a

b
c

.14 .07b
c

.098 .049

a

ABR = 3/[3 (.343 + .098 + .049) + 2 (.14 + .07) + .2 + .1]
= 1.37 bits per symbol

Entropy = 1.16 bits per symbol

.1

.2

.07

.14

.049

.098

.343

110c

101b

100ac

011ab

010aac

001aab

000aaa

CSEP 590 - Lecture 1 - Autumn 2007 93

Notes on Tunstall Codes

• Variable-to-fixed length code

• Error resilient

– A flipped bit will introduce just one error in the
output

– Huffman is not error resilient. A single bit flip can
destroy the code.

