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CSEP 590 
Data Compression

Autumn 2007

Course Policies

Introduction to Data Compression

Entropy

Variable Length Codes
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Instructors

• Instructor

– Richard Ladner

– ladner@cs.washington.edu

– 206 543-9347

• TA

– Rahul Vanam

– rahulv@u.washington.edu
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Helpful Knowledge

• Algorithm Design and Analysis

• Probability
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Resources

• Text Book

– Khalid Sayood, Introduction to Data Compression, 
Third Edition, Morgan Kaufmann Publishers, 2006. 

• Course Web Page
– http://www.cs.washington.edu/csep590a

• Papers and Sections from Books

• Discussion Board

– For discussion
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Engagement by Students

• Weekly Assignments

– Understand compression methodology

– Due in class on Fridays (except midterm Friday)

– No late assignments accepted except with prior 
approval

• Programming Projects

– Bi-level arithmetic coder and decoder.

– Build code and experiment
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Final Exam and Grading

• 6:30-8:20 p.m. Thursday, Dec. 13, 2007 

• Percentages

– Weekly assignments (50%) 

– Project (20%) 

– Final exam (30%) 
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Logistics

• I will be gone the week of October 15th. We’ll 
need to have a make up class.

• There is no class Thanksgiving week, 
November 19th.

• We have some guest speakers toward the 
end of the quarter.
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Basic Data Compression Concepts

Encoder Decoder

compressedoriginal

x y x̂

• Lossless compression
– Also called entropy coding, reversible coding.

• Lossy compression
– Also called irreversible coding. 

• Compression ratio =             
– is number of bits in x.

xx ˆ=

xx ˆ≠

yx
x

decompressed
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Why Compress

• Conserve storage space

• Reduce time for transmission
– Faster to encode, send, then decode than to send 

the original

• Progressive transmission
– Some compression techniques allow us to send 

the most important bits first so we can get a low 
resolution version of some data before getting the 
high fidelity version

• Reduce computation
– Use less data to achieve an approximate answer
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Braille

• System to read text by feeling raised dots on 
paper (or on electronic displays).  Invented in 
1820s by Louis Braille, a French blind man.

a b c z

and the with mother 

th ghch
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Braille Example
Clear text:
Call me Ishmael.  Some years ago -- never mind how 
long precisely -- having \\ little or no money in my purse, 
and nothing particular to interest me on shore, \\ I thought 
I would sail about a little and see the watery part of the 
world.   (238 characters)

Grade 2 Braille in ASCII.
,call me ,i\%mael4 ,``s ye$>$s ago -- n``e m9d h[ l;g 
precisely -- hav+ \\ ll or no m``oy 9 my purse1 \& no?+ 
``picul$>$ 6 9t]e/ me on \%ore1 \\ ,i $?$``$|$ ,i wd sail 
ab a ll \& see ! wat]y ``p ( ! \_w4  (203 characters)

Compression ratio = 238/203 = 1.17 
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Lossless Compression
• Data is not lost - the original is really needed.

– text compression

– compression of computer binary files

• Compression ratio typically no better than 4:1 for 
lossless compression on many kinds of files.

• Statistical Techniques
– Huffman coding

– Arithmetic coding

– Golomb coding

• Dictionary techniques
– LZW, LZ77 

– Sequitur 

– Burrows-Wheeler Method

• Standards - Morse code, Braille, Unix compress, gzip, 
zip, bzip, GIF, JBIG, Lossless JPEG
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Lossy Compression 

• Data is lost, but not too much.
– audio

– video

– still images, medical images, photographs

• Compression ratios of 10:1 often yield quite 
high fidelity results.

• Major techniques include
– Vector Quantization

– Wavelets

– Block transforms

– Standards - JPEG, JPEG2000, MPEG 2, H.264 
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Why is Data Compression Possible

• Most data from nature has redundancy

– There is more data than the actual information 
contained in the data.

– Squeezing out the excess data amounts to 
compression.

– However, unsqueezing is necessary to be able to 
figure out what the data means.

• Information theory is needed to understand 
the limits of compression and give clues on 
how to compress well.
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What is Information

• Analog data
– Also called continuous data

– Represented by real numbers (or complex 
numbers)

• Digital data
– Finite set of symbols {a1, a2, ... , am}

– All data represented as sequences (strings) in the 
symbol set.

– Example: {a,b,c,d,r}   abracadabra

– Digital data can be an approximation to analog 
data
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Symbols

• Roman alphabet plus punctuation

• ASCII - 256 symbols

• Binary - {0,1}

– 0 and 1 are called bits

– All digital information can be represented 
efficiently in binary

– {a,b,c,d} fixed length representation

– 2 bits per symbol

11100100binary

dcbasymbol
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Exercise - How Many Bits Per 
Symbol?

• Suppose we have n symbols.  How many bits 
(as a function of n ) are needed in to 
represent a symbol in binary?

– First try n a power of 2.
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Discussion: Non-Powers of Two

• Can we do better than a fixed length 
representation for non-powers of two?
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Information Theory

• Developed by Shannon in the 1940’s and 50’s

• Attempts to explain the limits of communication 
using probability theory.

• Example: Suppose English text is being sent

– It is much more likely to receive an “e” than a “z”.

– In some sense “z” has more information than “e”.
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First-order Information

• Suppose we are given symbols {a1, a2, ... , am}.

• P(ai) = probability of symbol ai occurring in the 
absence of any other information.

P(a1) + P(a2) + ... + P(am) = 1

• inf(ai) = log2(1/P(ai)) bits is the information of ai
in bits.
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Example

• {a, b, c} with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8

– inf(a) = log2(8) = 3

– inf(b) = log2(4) = 2

– inf(c) = log2(8/5) = .678

• Receiving an “a” has more information than 
receiving a “b” or “c”.
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First Order Entropy

• The first order entropy is defined for a probability 
distribution over symbols {a1, a2, ... , am}.

• H is the average number of bits required to code up a 
symbol, given all we know is the probability distribution 
of the symbols.

• H is the Shannon lower bound on the average number of 
bits to code a symbol in this “source model”.

• Stronger models of entropy include context. 

)
)(

1
(log)( 2

1 i

m

i

i
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=
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Entropy Examples

• {a, b, c} with a 1/8, b 1/4, c 5/8.

– H = 1/8 *3 + 1/4 *2 + 5/8* .678 = 1.3 bits/symbol

• {a, b, c} with a 1/3, b 1/3, c 1/3. (worst case)

– H = 3* (1/3)*log2(3) = 1.6 bits/symbol

• Note that a standard code takes 2 bits per 
symbol

100100binary code

cbasymbol
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An Extreme Case

• {a, b, c} with a 1, b 0, c 0

– H = ?
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Entropy Curve

• Suppose we have two symbols with probabilities 
x and 1-x, respectively.
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A Simple Prefix Code

• {a, b, c} with a 1/8, b 1/4, c 5/8.

• A prefix code is defined by a binary tree

• Prefix code property
– no output is a prefix of another

b

c

a

0

0

1

1
1c

01b

00a

ccabccbccc
1 1 00 01 1 1 01 1 1 1

input output

code

binary tree
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Binary Tree Terminology

root

leaf

node

1. Each node, except the root, has a unique parent.
2. Each internal node has exactly two children.
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Decoding a Prefix Code

b

c

a

0

0

1

1

repeat
start at root of tree

repeat
if read bit = 1 then go right
else go left

until node is a leaf
report leaf

until end of the code

11000111100
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Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100
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Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

c
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Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

c
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Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cc
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Decoding a Prefix Code

b

c

a

0

0
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1

11000111100

cc
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Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cc
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Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cca
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Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cca
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Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cca
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Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

ccab
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Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

ccabccca
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Exercise Encode/Decode

• Player 1: Encode a symbol string

• Player 2: Decode the string

• Check for equality

b c

a

d

0

0

0

1

1

1
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How Good is the Code

b

c

a

0

0

1

1

1/8 1/4

5/8

bit rate = (1/8)2 + (1/4)2 + (5/8)1 = 11/8 = 1.375 bps
Entropy = 1.3 bps
Standard code = 2  bps

(bps = bits per symbol)
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Design a Prefix Code 1

• abracadabra 

• Design a prefix code for the 5 symbols 
{a,b,r,c,d} which compresses this string the 
most.   
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Design a Prefix Code 2

• Suppose we have n symbols each with 
probability 1/n.  Design a prefix code with 
minimum average bit rate.

• Consider n = 2,3,4,5,6 first.

CSEP 590 - Lecture 1 - Autumn 2007 44

Huffman Coding

• Huffman (1951)

• Uses frequencies of symbols in a string to build a 
variable rate prefix code.

– Each symbol is mapped to a binary string.

– More frequent symbols have shorter codes.

– No code is a prefix of another.

• Example:   
a  0
b  100
c  101
d  11

b c

a

d

0

0

0

1

1

1
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Variable Rate Code Example

• Example:   a  0, b  100, c  101, d  11

• Coding: 

– aabddcaa = 16 bits

– 0 0 100 11 11 101 0 0= 14 bits

• Prefix code ensures unique decodability.

– 00100111110100

– a a b d d c a a 
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Cost of a Huffman Tree

• Let p1, p2, ... , pm be the probabilities for the 
symbols a1, a2, ... ,am, respectively.

• Define the cost of the Huffman tree T to be

where ri is the length of the path from the root 
to ai.

• C(T) is the expected length of the code of a 
symbol coded by the tree T.   C(T) is the bit 
rate of the code.

i

m

1i
irpC(T) ∑

=

=
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Example of Cost

• Example:   a  1/2, b  1/8, c  1/8, d  1/4

b c

a

d

0

0

0

1

1

1

T

C(T) = 1 x 1/2 + 3 x 1/8 + 3 x 1/8 + 2 x 1/4 = 1.75
a            b             c             d
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Huffman Tree

• Input: Probabilities p1, p2, ... , pm for symbols 
a1, a2, ... ,am, respectively.

• Output: A tree that minimizes the average 
number of bits (bit rate) to code a symbol. 
That is, minimizes

where ri is the length of the path from the root 
to ai.  This is the Huffman tree or Huffman 
code

i

m

1i
irpHC(T) ∑

=

= bit rate
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Optimality Principle 1
• In a Huffman tree a lowest probability symbol 

has maximum distance from the root.

– If not exchanging a lowest probability symbol with 
one at maximum distance will lower the cost.

q

p

T

q

T’

p

C(T’) = C(T) + hp - hq + kq - kp = C(T) - (h-k)(q-p) < C(T)

p smallest
p < q
k < h

h

k
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Optimality Principle 2

• The second lowest probability is a sibling of 
the smallest in some Huffman tree. 

– If not, we can move it there not raising the cost.

p

q

T p smallest
q 2nd smallest

q < r
k < h

r p

r

T’

q

C(T’) = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) < C(T)

h

k
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Optimality Principle 3

• Assuming we have a Huffman tree T whose two 
lowest probability symbols are siblings at 
maximum depth, they can be replaced by a new 
symbol whose probability is the sum of their 
probabilities.  

– The resulting tree is optimal for the new symbol set.

p

T

q

T’

q+p

p smallest
q 2nd smallest

C(T’) = C(T) + (h-1)(p+q) - hp -hq = C(T) - (p+q)

h
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Optimality Principle 3 (cont’)

• If T’ were not optimal then we could find a 
lower cost tree T’’.  This will lead to a lower 
cost tree T’’’ for the original alphabet.

T’

q+p

T’’

q+p

T’’’

q p

C(T’’’) = C(T’’) + p + q < C(T’) + p + q = C(T) which is a contradiction
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Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one
node is optimal.  Otherwise

2. Find the two lowest probability symbols with 
probabilities p and q respectively.

3. Replace these with a new symbol with 
probability p + q.

4. Solve the problem recursively for new symbols.
5. Replace the leaf with the new symbol with an 

internal node with two children with the old symbols.
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Iterative Huffman Tree Algorithm

form a node for each symbol ai with weight pi;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do

min1 := delete-min;
min2 := delete-min;
create a new node n;
n.weight := min1.weight + min2.weight;
n.left := min1;
n.right := min2;
insert(n)

return the last node in the priority queue.
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Example of Huffman Tree Algorithm (1)

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

a b c d e

.4 .1 .3 .1 .1

a

b

c d

e

.4 .3 .1.2
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Example of Huffman Tree Algorithm (2)

a

b

c d

e

.4 .3 .1.2

a

b

c

d

e

.4 .3.3
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Example of Huffman Tree Algorithm (3)

a

b

c

d

e

.4 .3.3

a

b

c

d

e

.4 .6
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Example of Huffman Tree Algorithm (4)

a

b

c

d

e

.4 .6

a

b

c

d

e

1
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Huffman Code

a

b

c

d

e

a   0
b   1110
c   10
d   110
e   1111

0 1

1

1

1

0

0

0

average number of bits per symbol is
.4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4 = 2.1
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Optimal Huffman Code vs. Entropy

Entropy

H = -(.4 x log2(.4) + .1 x log2(.1) + .3 x log2(.3) 
+ .1 x log2(.1) + .1 x log2(.1)) 

= 2.05 bits per symbol

Huffman Code

HC = .4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4 
= 2.1 bits per symbol

pretty good!

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1
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In Class Exercise

• P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/16, 
P(e) = 1/16

• Compute the Optimal Huffman tree and its 
average bit rate.

• Compute the Entropy

• Compare

• Hint: For the tree change probabilities to be 
integers: a:8, b:4, c:2, d:1, e:1.  Normalize at 
the end.
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Quality of the Huffman Code

• The Huffman code is within one bit of the entropy 
lower bound. 

• Huffman code does not work well with a two symbol 
alphabet.

– Example: P(0) = 1/100, P(1) = 99/100

– HC = 1 bits/symbol

– H = -((1/100)*log2(1/100) + (99/100)log2(99/100))
= .08 bits/symbol

1HHCH +≤≤

1 0

10
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Powers of Two

• If all the probabilities are powers of two then

• Proof by induction on the number of symbols.

Let p1 < p2 < ... < pn be the probabilities that add up 
to 1

If n = 1 then HC = H (both are zero).

If n > 1 then p1 = p2 = 2-k for some k, otherwise the 
sum cannot add up to 1. 

Combine the first two symbols into a new symbol of 
probability 2-k + 2-k = 2-k+1.

HHC =
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Powers of Two (Cont.)

By the induction hypothesis

)p(p)p,...,p,H(p

)p(p)(plogp

22)(plogp)(2log2)(2log2

)(plogp1))(2(log2
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Powers of Two (Cont.)

By the previous page,

By the properties of Huffman trees (principle 3),

Hence,

)p(p)p,...,p,H(p)p,...,p,pHC(p 21n21n321 +−=+

)p(p)p,...,p,pHC(p)p,...,p,HC(p 21n321n21 +++=

)p,...,p,H(p)p,...,p,HC(p n21n21 =
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Extending the Alphabet 

• Assuming independence P(ab) = P(a)P(b), so 
we can lump symbols together.

• Example: P(0) = 1/100, P(1) = 99/100

– P(00) = 1/10000, P(01) = P(10) = 99/10000, 
P(11) = 9801/10000. 

01

11

10

00

1

1

1

0

0

0

HC = 1.03 bits/symbol (2 bit symbol)
= .515 bits/bit

Still not that close to H = .08 bits/bit
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Quality of Extended Alphabet

• Suppose we extend the alphabet to symbols 
of length k then

• Pros and Cons of Extending the alphabet

+ Better compression

- 2k symbols

- padding needed to make the length of the input 
divisible by k

1/kHHCH +≤≤
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Huffman Codes with Context
• Suppose we add a one symbol context.  That is in 

compressing a string x1x2...xn we want to take into 
account xk-1 when encoding xk.

– New model, so entropy based on just independent 
probabilities of the symbols doesn’t hold.  The new entropy 
model (2nd order entropy) has for each symbol a probability 
for each other symbol following it.  

– Example: {a,b,c}

a    b    c
a  .4   .2   .4
b  .1   .9    0
c  .1   .1   .8

prev

next
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Multiple Codes

a    b    c
a  .4   .2   .4
b  .1   .9    0
c  .1   .1   .8

prev

next

a

b

1

1

0

0

c

b

10

c

a

1

1

0

0

b

a

a b c

a b b a c c

Code for first symbol
a  00
b  01
c  10

00 00 0 1 01 0
.2

.4

.4

.9 .1

.1.1

.8
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Average Bit Rate for Code

• P(a) = .4 P(a) + .1 P(b) + .1 P(c)
P(b) = .2 P(a) + .9 P(b) + .1 P(c)
1 = P(a) + P(b) + P(c)  

• 0 = -.6 P(a) + .1 P(b) + .1 P(c)
0 = .2 P(a) - .1 P(b) + .1 P(c)
1 = P(a) + P(b) + P(c) 

• P(a) = 1/7, P(b) = 4/7, P(c) = 2/7
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Average Bit Rate for Code

a

b

1

1

0

0

c

b

10

c

a

1

1

0

0

b

a

.2

.4

.4

.9 .1

.1.1

.8

1/7 4/7 2/7

ABR = 1/7 (.6 x 2 + .4) + 4/7 (1) + 2/7 ( .2 x 2 +.8)
= 8/7 = 1.14 bps
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Complexity of Huffman Code Design

• Time to design Huffman Code is O(n log n) 
where n is the number of symbols.

– Each step consists of a constant number of priority 
queue operations (2 deletemin’s and 1 insert)
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Approaches to Huffman Codes

1. Frequencies computed for each input

– Must transmit the Huffman code or 
frequencies as well as the compressed input

– Requires two passes

2. Fixed Huffman tree designed from training data

– Do not have to transmit the Huffman tree 
because it is known to the decoder.

– H.263 video coder

3. Adaptive Huffman code

– One pass

– Huffman tree changes as frequencies change
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Run-Length Coding

• Lots of 0’s and not too many 1’s.

– Fax of letters

– Graphics

• Simple run-length code

– Input 
00000010000000001000000000010001001.....

– Symbols
6 9 10 3 2 ...

– Code the bits as a sequence of integers

– Problem: How long should the integers be?
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Golomb Code of Order m
Variable Length Code for Integers

• Let n = qm + r where 0 < r < m.

– Divide m into n to get the quotient q and 
remainder r.

• Code for n has two parts:

1. q is coded in unary

2. r is coded as a fixed prefix code

Example: m = 5

0 1 2

3 4

00

0

0

1

1 1

1

code for r
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Example

• n = qm + r  is represented by:

– where      is the fixed prefix code for r

• Example (m = 5):

2      6         9        10           27

010 1001 10111 11000 11111010

r0111

q

ˆ
876
L

r̂
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Alternative Explanation
Golomb Code of order 5

1 01 001

00

0

0

1

1 1

1

0001 00001

0

00000

1

0001

00101

010001

01100001

011100001

100000

input      output

Variable length to variable length code.
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Run Length Example: m = 5

00000010000000001000000000010001001.....
1
00000010000000001000000000010001001.....
001
00000010000000001000000000010001001.....
1
00000010000000001000000000010001001.....
0111

In this example we coded 17 bits in only 9 bits.
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Choosing m

• Suppose that 0 has the probability p and 1 
has probability 1-p.

• The probability of 0n1 is pn(1-p). The Golomb
code of order

is optimal.

• Example: p = 127/128.  





=

p log
1-m

2

89
(127/128) log

1-m
2

=




=
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Average Bit Rate for Golomb Code

• m = 4 as an example. With p as the probability of 0. 

length code input Average

length code output Average
  Rate Bit Average =

p)(1p)2p(1p)(1-3pp)(1-4p4p

p)3(1p)3p(1p)(13pp)(13pp
  ABR

234

234

−+−+++
−+−+−+−+=

ouput
input

weight 1-pp(1-p)p2(1-p)p3(1-p)p4

10100100010000

0000010100111
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Comparison of GC with Entropy

GC – entropy
entropy

p

order
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Notes on Golomb codes

• Useful for binary compression when one symbol is 
much more likely than another.

– binary images

– fax documents

– bit planes for wavelet image compression

• Need a parameter (the order)

– training

– adaptively learn the right parameter

• Variable-to-variable length code

• Last symbol needs to be a 1

– coder always adds a 1

– decoder always removes a 1
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Tunstall Codes

• Variable-to-fixed length code

• Example

110ccc

101ccb

100cca

011cb

010ca

001b

000a

a    b    cca cb ccc ...
000 001 110  011 110  ...

input   output
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Tunstall code Properties

1. No input code is a prefix of another to 
assure unique encodability.

2. Minimize the number of bits per symbol.
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Prefix Code Property

110ccc

101ccb

100cca

011cb

010ca

001b

000a a

a
b

a
b

b

c

c

c000 001

010 011

100 101 110

Unused output code is 111.
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Use for unused code

• Consider the string “cc”, if it occurs at the end 
of the data.  It does not have a code.

• Send the unused code and some fixed code 
for the cc.

• Generally, if there are k internal nodes in the 
prefix tree then there is a need for k-1 fixed 
codes.
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Designing a Tunstall Code

• Suppose there are m initial symbols.

• Choose a target output length n where 2n > m.

1. Form a tree with a root and m children with 
edges labeled with the symbols. 

2. If the number of leaves is > 2n – m then halt.*
3. Find the leaf with highest probability and 

expand it to have m children.**  Go to 2.

*  In the next step we will add m-1 more leaves.
** The probability is the product of the probabilities 
of the symbols on the root to leaf path.
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Example

• P(a) = .7, P(b) = .2, P(c) = .1

• n = 3

a
b

c

.7 .2 .1
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Example

• P(a) = .7, P(b) = .2, P(c) = .1

• n = 3

a
b

c

.49

.2 .1
a

b
c

.14 .07
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Example

• P(a) = .7, P(b) = .2, P(c) = .1

• n = 3

a
b

c

.343

.2 .1
a

b
c

.14 .07b
c

.098 .049

a

110c

101b

100ac

011ab

010aac

001aab

000aaa
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Bit Rate of Tunstall

• The length of the output code divided by the 
average length of the input code.

• Let pi be the probability of, and ri the length of 
input code i (1 < i < s) and let n be the length 
of the output code.

∑
=

=
s

1i
iirp

n
  rate bit Average
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Example

a
b

c

.343

.2 .1
a

b
c

.14 .07b
c

.098 .049

a

ABR = 3/[3 (.343 + .098 + .049) + 2 (.14 + .07) + .2 + .1]
=   1.37 bits per symbol

Entropy = 1.16 bits per symbol

.1

.2

.07

.14

.049

.098

.343

110c

101b

100ac

011ab

010aac

001aab

000aaa
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Notes on Tunstall Codes

• Variable-to-fixed length code

• Error resilient

– A flipped bit will introduce just one error in the 
output

– Huffman is not error resilient.  A single bit flip can 
destroy the code.


