CSEP 590
 Data Compression

Autumn 2007

Sequitur

Sequitur

- Nevill-Manning and Witten, 1996.
- Uses a context-free grammar (without recursion) to represent a string.
- The grammar is inferred from the string.
- If there is structure and repetition in the string then the grammar may be very small compared to the original string.
- Clever encoding of the grammar yields impressive compression ratios.
- Compression plus structure!

Context-Free Grammars

- Invented by Chomsky in 1959 to explain the grammar of natural languages.
- Also invented by Backus in 1959 to generate and parse Fortran.
- Example:
- terminals: b, e
- non-terminals: S, A
- Production Rules: $S \rightarrow$ SA, $S \rightarrow A, A \rightarrow b S e, A \rightarrow$ be
$-S$ is the start symbol

Context-Free Grammar Example

- $S \rightarrow S A$ $S \rightarrow A \quad$ derivation of bbebee $A \rightarrow b S e$ $\mathrm{A} \rightarrow$ be

Example: b and e matched as parentheses

hierarchical

parse tree

Arithmetic Expressions

$\begin{aligned} \text { - } & \rightarrow S+T \\ S & \rightarrow T \\ \mathrm{~T} & \rightarrow \mathrm{~T}^{\star} \mathrm{F} \\ \mathrm{T} & \rightarrow \mathrm{F} \\ \mathrm{F} & \rightarrow \mathrm{a} \\ \mathrm{F} & \rightarrow(\mathrm{S})\end{aligned}$
derivation of a * $(a+a)+a \quad$ parse tree

$$
\begin{aligned}
& S \\
& S+T \\
& T+T \\
& T^{*} F+T \\
& F^{*} F+T \\
& a^{*} F+T \\
& a^{*}(S)+F \\
& a^{*}(S+F)+T \\
& a^{*}(T+F)+T \\
& a^{*}(F+F)+T \\
& a^{*}(a+F)+T \\
& a^{*}(a+a)+T \\
& a^{*}(a+a)+F \\
& a^{*}(a+a)+a
\end{aligned}
$$

Overview of Grammar Compression

Sequitur Principles

- Digram Uniqueness:
- no pair of adjacent symbols (digram) appears more than once in the grammar.
- Rule Utility:
- Every production rule is used more than once.
- These two principles are maintained as an invariant while inferring a grammar for the input string.

Sequitur Example (1)

bbebeebebebbebee

$$
S \rightarrow b
$$

Sequitur Example (2)

bbebeebebebbebee
$S \rightarrow b b$

Sequitur Example (3)

bbebeebebebbebee
$S \rightarrow$ bbe

Sequitur Example (4)

bbebeebebebbebee
$S \rightarrow$ bbeb

Sequitur Example (5)

bbebeebebebbebee
$S \rightarrow$ bbebe
Enforce digram uniqueness. be occurs twice.
Create new rule $\mathrm{A} \rightarrow$ be.

Sequitur Example (6)

bbebeebebebbebee
$S \rightarrow$ bAA
$\mathrm{A} \rightarrow$ be

Sequitur Example (7)

bbebeebebebbebee

$$
\begin{aligned}
& S \rightarrow b A A e \\
& A \rightarrow b e
\end{aligned}
$$

Sequitur Example (8)

bbebeebebebbebee

$S \rightarrow$ bAAeb
$A \rightarrow$ be

Sequitur Example (9)

bbebeebebebbebee
$S \rightarrow$ bAAebe \quad Enforce digram uniqueness.
$\mathrm{A} \rightarrow$ be be occurs twice.
Use existing rule $\mathrm{A} \rightarrow$ be.

Sequitur Example (10)

bbebeebebebbebee

$$
\begin{aligned}
& S \rightarrow \text { bAAeA } \\
& \mathrm{A} \rightarrow \mathrm{be}
\end{aligned}
$$

Sequitur Example (11)

bbebeebebebbebee

$S \rightarrow$ bAAeAb
$\mathrm{A} \rightarrow$ be

Sequitur Example (12)

bbebeebebebbebee
$S \rightarrow b A A e A b e \quad$ Enforce digram uniqueness.
$\mathrm{A} \rightarrow \mathrm{be}$ be occurs twice.
Use existing rule $\mathrm{A} \rightarrow$ be.

Sequitur Example (13)

bbebeebebebbebee
$S \rightarrow$ bAAeAA \quad Enforce digram uniqueness
$\mathrm{A} \rightarrow \mathrm{be}$
AA occurs twice.
Create new rule $B \rightarrow A A$.

Sequitur Example (14)

bbebeebebebbebee
$\mathrm{S} \rightarrow \mathrm{bBeB}$
$\mathrm{A} \rightarrow \mathrm{be}$
$B \rightarrow A A$

Sequitur Example (15)

bbebeebebebbebee
$\mathrm{S} \rightarrow \mathrm{bBeBb}$
$\mathrm{A} \rightarrow \mathrm{be}$
$B \rightarrow A A$

Sequitur Example (16)

bbebeebebebbebee
$\mathrm{S} \rightarrow \mathrm{bBeBbb}$
$\mathrm{A} \rightarrow \mathrm{be}$
$B \rightarrow A A$

Sequitur Example (17)

bbebeebebebbebee
$\mathrm{S} \rightarrow \mathrm{bBeBbbe}$
$\mathrm{A} \rightarrow \mathrm{be}$
Enforce digram uniqueness.
$B \rightarrow A A$ be occurs twice.
Use existing rule $\mathrm{A} \rightarrow$ be.

Sequitur Example (18)

bbebeebebebbebee

$\mathrm{S} \rightarrow \mathrm{bBeBbA}$
$\mathrm{A} \rightarrow$ be
$B \rightarrow A A$

Sequitur Example (19)

bbebeebebebbebee

S -> bBeBbAb
A $->$ be
$B \rightarrow A A$

Sequitur Example (20)

bbebeebebebbebee
$\mathrm{S} \rightarrow \mathrm{bBeBbAbe} \quad$ Enforce digram uniqueness.
$\mathrm{A} \rightarrow$ be be occurs twice.
$B \rightarrow A A \quad$ Use existing rule $A \rightarrow$ be.

Sequitur Example (21)

bbebeebebebbebee
$\mathrm{S} \rightarrow \mathrm{bBeBbAA} \quad$ Enforce digram uniqueness.
$\mathrm{A} \rightarrow \mathrm{be}$
$B \rightarrow A A$ AA occurs twice.
Use existing rule $B \rightarrow A A$.

Sequitur Example (22)
 bbebeebebebbebee

$S \rightarrow b B e B b B$
$\mathrm{A} \rightarrow$ be
$B \rightarrow A A$

Enforce digram uniqueness.
bB occurs twice.
Create new rule $C \rightarrow b B$.

Sequitur Example (23)

bbebeebebebbebee
$\mathrm{S} \rightarrow \mathrm{CeBC}$
$\mathrm{A} \rightarrow$ be
$B \rightarrow A A$
$C \rightarrow b B$

Sequitur Example (24)

bbebeebebebbebee
$\mathrm{S} \rightarrow \mathrm{CeBCe}$
$\mathrm{A} \rightarrow \mathrm{be}$
$\mathrm{B} \rightarrow \mathrm{AA}$
$\mathrm{C} \rightarrow \mathrm{bB}$
Enforce digram uniqueness. Ce occurs twice.
Create new rule $\mathrm{D} \rightarrow \mathrm{Ce}$.

Sequitur Example (25)

bbebeebebebbebee

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{DBD} \\
& \mathrm{~A} \rightarrow \mathrm{be} \\
& \mathrm{~B} \rightarrow \mathrm{AA} \\
& \mathrm{C} \rightarrow \mathrm{bB} \\
& \mathrm{D} \rightarrow \mathrm{Ce}
\end{aligned}
$$

Enforce rule utility.
C occurs only once.
Remove $\mathrm{C} \rightarrow \mathrm{bB}$.

Sequitur Example (26)

bbebeebebebbebee
$S \rightarrow$ DBD
$A \rightarrow$ be
$B \rightarrow A A$
$D \rightarrow b B e$

The Hierarchy

bbebeebebebbebee

$$
\begin{aligned}
& S \rightarrow \mathrm{DBD} \\
& \mathrm{~A} \rightarrow \mathrm{be} \\
& \mathrm{~B} \rightarrow \mathrm{AA} \\
& \mathrm{D} \rightarrow \mathrm{bBe}
\end{aligned}
$$

Is there compression? In this small example, probably not.

Sequitur Algorithm

Input the first symbol s to create the production $\mathrm{S} \rightarrow \mathrm{s}$; repeat
match an existing rule:

$$
\begin{aligned}
& \mathrm{A} \rightarrow \ldots . \mathrm{XY} \ldots \\
& \mathrm{~B} \rightarrow \mathrm{XY}
\end{aligned} \quad \longrightarrow \quad \begin{aligned}
& \mathrm{A} \rightarrow \ldots . \mathrm{B} \ldots . \\
& \mathrm{B} \rightarrow \mathrm{XY}
\end{aligned}
$$

create a new rule:
$\mathrm{A} \rightarrow \ldots . \mathrm{XY} \ldots$.
$\longrightarrow \quad \mathrm{A} \rightarrow \ldots \mathrm{C} \ldots$
$B \rightarrow \ldots . X Y \ldots$.
$B \rightarrow \ldots . . .$.
remove a rule:
$\mathrm{A} \rightarrow \ldots$.....
$B \rightarrow X_{1} X_{2} \ldots X_{k} \quad \longrightarrow \quad A \rightarrow \ldots X_{1} X_{2} \ldots X_{k} \ldots$
input a new symbol:

$$
S \rightarrow X_{1} X_{2} \ldots X_{k} \quad \longrightarrow S \rightarrow X_{1} X_{2} \ldots X_{k} S
$$

until no symbols left

Exercise

Use Sequitur to construct a grammar for aaaaaaaaaa $=\mathrm{a}^{10}$

Complexity

- The number of non-input sequitur operations applied $<2 n$ where n is the input length.
- Since each operation takes constant time, sequitur is a linear time algorithm

Amortized Complexity Argument

- Let $m=\#$ of non-input sequitur operations.

Let $\mathrm{n}=$ input length. Show $\mathrm{m} \leq 2 \mathrm{n}$.

- Let $s=$ the sum of the right hand sides of all the production rules. Let $r=$ the number of rules.
- We evaluate $2 s$ - r.
- Initially $2 s-r=1$ because $s=1$ and $r=1$.
$-2 s-r>0$ at all times because each rule has at least 1 symbol on the right hand side.

Sequitur Rule Complexity

- Digram Uniqueness - match an existing rule.

$$
\begin{aligned}
& \mathrm{A} \rightarrow \ldots \mathrm{XY} \ldots \\
& \mathrm{~B} \rightarrow \mathrm{XY}
\end{aligned} \quad \longrightarrow \begin{aligned}
& \mathrm{A} \rightarrow \ldots \mathrm{~B} \ldots . \\
& \mathrm{B} \rightarrow \mathrm{XY}
\end{aligned} \quad \begin{array}{rlc}
\mathrm{s} & \mathrm{r} \\
-1 & 0 & 2 \mathrm{l}-\mathrm{r} \\
\hline
\end{array}
$$

- Digram Uniqueness - create a new rule.
- Rule Utility - Remove a rule.

$$
\begin{aligned}
& \mathrm{A} \rightarrow \ldots . \mathrm{B} \ldots . \\
& \mathrm{B} \rightarrow \mathrm{X}_{1} \mathrm{X}_{2} \ldots X_{k}
\end{aligned} \quad \longrightarrow \quad \mathrm{~A} \rightarrow \ldots . X_{1} X_{2} \ldots X_{k} \ldots . \begin{array}{ccc}
\mathrm{s} & \mathrm{r} & 2 \mathrm{~s}-\mathrm{r} \\
-1 & -1 & -1
\end{array}
$$

Amortized Complexity Argument

$-2 s-r \geq 0$ at all times because each rule has at least 1 symbol on the right hand side.
$-2 s-r$ increases by 2 for every input operation.
$-2 s-r$ decreases by at least 1 for each non-input sequitur rule applied.

- $\mathrm{n}=$ number of input symbols $m=$ number of non-input operations
$-2 n-m \geq 0 . m \leq 2 n$.

Amortized Complexity Argument

Linear Time Algorithm

- There is a data structure to implement all the sequitur operations in constant time.
- Production rules in an array of doubly linked lists.
- Each production rule has reference count of the number of times used.
- Each nonterminal points to its production rule.
- Digrams stored in a hash table for quick lookup.

Data Structure Example

$\mathrm{S} \rightarrow \mathrm{CeBCe}$
$\mathrm{A} \rightarrow$ be
$\mathrm{B} \rightarrow \mathrm{AA}$
$\mathrm{C} \rightarrow \mathrm{bB}$

Basic Encoding a Grammar

Grammar	$\begin{aligned} & \mathrm{S} \rightarrow \mathrm{DBD} \\ & \mathrm{~A} \rightarrow \mathrm{be} \end{aligned}$	Symbol Code			No code for S needed
			e	001	
	$\mathrm{B} \rightarrow \mathrm{AA}$		A	010	
			B	011	
	$\mathrm{D} \rightarrow \mathrm{bBe}$		D	100	
			\#	101	

Grammar Code
D B D \# b e \# A A \# b B e 10001110010100000110101001010100001100139 bits
|Grammar Code $\mid=(s+r-1)\left\lceil\log _{2}(r+a)\right\rceil$
$r=$ number of rules
$s=$ sum of right hand sides
$a=$ number in original symbol alphabet

Better Encoding of the Grammar

- Nevill-Manning and Witten suggest a more efficient encoding of the grammar that uses LZ77 ideas.
- Send the right hand side of the S production.
- The first time a nonterminal is sent, its right hand side is transmitted instead.
- The second time a nonterminal is sent as a triple [$i, j, d]$, which says the right hand side starts at position j in production rule i and is d long. A new production rule is then added to a dictionary.
- Subsequently, the nonterminal is represented by the index of the production rule.

Transmission Example

$\mathrm{S} \rightarrow$ tAABCa	$\mathrm{T}=$ Transmitted	
$\mathrm{A} \rightarrow \mathrm{BBB}$		
$\mathrm{B} \rightarrow \mathrm{Ct} t$	T tagt	
$\mathrm{C} \rightarrow \mathrm{ag}$		X_{0} tagt

Transmission Example

Transmission Example

$\mathrm{A} \rightarrow \mathrm{BBB}$
$\mathrm{B} \rightarrow \mathrm{Ct}$
$\mathrm{C} \rightarrow \mathrm{ag}$

$\mathrm{T}=$ Transmitted

T tagt $[0,1,3] 1$
$\mathrm{X}_{0} t \mathrm{X}_{1} \mathrm{X}_{1} \mathrm{X}_{1} \quad \mathrm{I}_{0}=4$
X_{1} agt
$l_{1}=3$

Transmission Example

$\mathrm{A} \rightarrow \mathrm{BBB}$
$\mathrm{B} \rightarrow \mathrm{Ct}$
$\mathrm{C} \rightarrow \mathrm{ag}$

T = Transmitted

```
T tagt[0, 1, 3] 1[0, 1, 3]
```

```
T tagt[0, 1, 3] 1[0, 1, 3]
```

$\mathrm{X}_{0} t \mathrm{X}_{2} \mathrm{X}_{2}$
$\mathrm{I}_{0}=3$
X_{1} agt
$\mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{1} \mathrm{X}_{1}$
$\mathrm{I}_{2}=3$

Transmission Example

Transmission Example

Transmission Example

Kieffer-Yang Improvement

- Kieffer and Yang developed a theoretical framework for studying these types of grammars in 2000.
- KY is universal; it achieves entropy in the limit
- Add to sequitur Reduction Rule 5:

$$
\begin{aligned}
& S \rightarrow A B \quad S \rightarrow A A \\
& A \rightarrow C D \quad A \rightarrow C D \\
& \mathrm{~B} \rightarrow \mathrm{aE} \quad \Rightarrow \quad \mathrm{~B} \rightarrow \mathrm{aE} \\
& \mathrm{C} \rightarrow a b \quad \mathrm{C} \rightarrow a b \quad \text { makes sequitur } \\
& \mathrm{D} \rightarrow c d \quad \mathrm{D} \rightarrow c d \quad \text { universal. } \\
& <A>==a b c d
\end{aligned}
$$

Compression Quality

- Neville-Manning and Witten 1997

	size	comp	gzip	sequitur	PPMC	bzip2
bib	111261	3.35	2.51	2.48	2.12	1.98
book	768771	3.46	3.35	2.82	2.52	2.42
geo	102400	6.08	5.34	4.74	5.01	4.45
obj2	246814	4.17	2.63	2.68	2.77	2.48
pic	513216	0.97	0.82	0.90	0.98	0.78
progc	38611	3.87	2.68	2.83	2.49	2.53
= First;						= Second;
\square						= Third.

Files from the Calgary Corpus
Units in bits per character (8 bits)
compress - based on LZW
gzip - based on LZ77
PPMC - adaptive arithmetic coding with context
bzip2 - Burrows-Wheeler block sorting

Notes on Sequitur

- Yields compression and hierarchical structure simultaneously.
- With clever encoding is competitive with the best of the standards.
- The grammar size is not close to approximation algorithms
- Upper $=\mathrm{O}\left((n / \log n)^{3 / 4}\right)$; Lower $=\Omega\left(n^{1 / 3}\right) . \quad($ Lehman, 2002)
- But! Practical linear time encoding and decoding.

Other Grammar Based Methods

- Longest Match
- Most frequent digram
- Match producing the best compression

