CSEP 590 Data Compression Autumn 2007

Context Based Arithmetic Coding for the DCT (CBACD) (Kyle Littlefield, 2006)

CSEP 590 - Lecture 10 - Autumn 2007

CBACD overview

- · Evolved out of PACW
 - A simple wavelet based coder developed at UW by Dane Barney and Amanda Askew
- - Replace wavelet transform with the DCT
 - Replace context model with one suitable for the DCT
 - Compare performance to
 - Existing DCT-based methods, primarily JPEG
 - · State of the art wavelet methods

CSEP 590 - Lecture 10 - Autumn 2007

CBACD Overview - Results Performs significantly better than JPEG · Performs slightly under wavelet (BP) 30 30 28 based methods such as SPIHT and JPEG-2000 CSEP 590 - Lecture 10 - Autumn 2007

Context Modeling - Significance Bits

- Based on two factors

 Intra-block correlation: Relationships between subbands within a block.

 Inter-block correlation: Relationships to neighboring blocks, within the same subband.

- Coefficient of interest
- Intra-block/inter-subband
- ☐ Inter-block/intra-subband coefficients (For which information from the current bit-plane is available.)
- Inter-block/intra-subband coefficients (For which only information from the previous bit-plane is available.)

CSEP 590 - Lecture 10 - Autumn 2007

Context Modeling - Significance Bits

First a significance factor is computed, based on a linear sum of the two factors

$$f(sub, x, y) = c_{spatial} \sum_{i,j} \frac{isSig(sub, x+i, y+j)}{dist(i, j)} + c_{frequency} \sum_{i=1}^{63} isSig(i, x, y) + c_{constant}$$

- Details
 - c_{spatial} is set to 1.5, $c_{\text{frequency}}$ to 0.225, c_{constant} to .375
 - The distance formula is taken to be the square of the Euclidean distance: i2+j2

CSEP 590 - Lecture 10 - Autumn 2007

Context Modeling - Significance Bits

- · A context is determined from the significance factor by truncating to an integer which is used to look up the context.
- A maximum of five contexts are used per subband (each subband is treated separately).
 - All significance factors larger than 4 are truncated to 4.

CSEP 590 - Lecture 10 - Autumn 2007

Context Dilution Concerns

- Context dilution occurs when only a few bits are encoded in each context
 - Results in decreased arithmetic coding performance, as contexts do not have enough bits encoded to meaningfully update statistics
- · Most context-based coders use many fewer contexts than CBACD
 - EBCOT 27
 - PACW 30-56 (variable)
 - JPEG-2000 27
- · CBACD uses 340 contexts

CSEP 590 - Lecture 10 - Autumn 2007

Context Dilution Experiments

- · Context dilution concerns were approached by trying various grouping of subbands.
- · If context dilution was occuring, grouping subbands should result in large improvements in PSNR

CSEP 590 - Lecture 10 - Autumn 2007

Subband groupings

(64 groups / 320 contexts)

Single group (1 group / 5 contexts)

CSEP 590 - Lecture 10 - Autumn 2007

More subband groupings

Circular (10 groups / 50 contexts)

split (19 groups / 95 contexts)

Context Dilution Results

- Over a set of six images encoded at 0.25 bits per pixel (changes in PSNR dB)
 - Single grouping: -0.128
 - Circular: +0.006
 - Circular with horizontal/vertical split: +0.008
 - Diagonal: +0.016
 - Max Frequency: +0.002
 - Max Frequency with horizontal/vertical split: +0.006
 - Grouping by type: -0.004

CSEP 590 - Lecture 10 - Autumn 2007

Context Dilution - Conclusions

- The single grouping (not surprisingly) does significantly worse than any other
- The other groupings perform about the same
 - The original CBACD is among the worst of these
- Context dilution is only a very slight concern within the CBACD architecture

CSEP 590 - Lecture 10 - Autumn 2007

16

Context Modeling - Sign Bits

- Modeled similar to refinement bits, except:
 - No intra-block correlation
 - Smaller area over which sum is taken
 - All subbands use a single set of contexts
 - 9 contexts used (instead of 5)

CSEP 590 - Lecture 10 - Autumn 2007

17

Context Modeling - Refinement Bits

- · Bits are placed into contexts based on the number of bit planes since the coefficient became significant
- · Provides significant improvements over putting all refinement bits in 1 context
 - Leads to PSNR improvements of up to .1 dB at high bit rates

	# 0s	# 1s	% 0s
1	26758	14575	64.74
2	13737	9511	59.09
3	3610	5324	54.23
4	2927	2677	52.23
5	1491	1436	50.93
CSEP 50A	Lacture 649	Autumn 650	, 49.96

19

Coefficient Extrapolation

- The bit plane process guarantees that only the first few bits of each coefficient will be transmitted to the decoder.
 - The decoder must decide how to fill in the untransmitted bits

Transmitted coefficient .0101???????... .0101000000000... .0101111111111... Possible extrapolations .010110000000... .010101011001...

CSEP 590 - Lecture 10 - Autumn 2007

20

Coefficient Extrapolation - Goal

- Reduce reconstructed image distortion
- Reduce distortion as measured by PSNR
- · Reduce average per-pixel difference between original and deconstructed image
- Reduce average difference between original DCT coefficient and reconstructed DCT coefficient
- · Reduce average distance across possible DCT coefficient distribution.

Coefficient Extrapolation

- Can not calculate best extrapolation for every possible set of transmitted
- Instead, compute best extrapolation for every possible pair of

 Bit plane that the coefficient became significant in

 - Number of bits transmitted after the coefficient became significant
- Best extrapolation is computed
- Best extrapolation is computed separately for each subband The 'standard' coefficient distribution consists of the sum of the distributions from 250 images pulled from the CBIRT database (http://www.cs.washington.edu/rese arch/imagedatabase/groundtruth/)

CSEP 590 - Lecture 10 - Autumn 2007

Results

- For images involving a lot of high frequency information, such as Barbara and Mandrill
 - CBACD performance is a fraction of a dB worse than wavelet methods.
- For images with fewer high-frequency components, such as Pentagon
 - CBACD performs somewhat worse than wavelet methods, from .5 dB at high bit rates, up to 1.5 dB at very low bit rates.

CSEP 590 - Lecture 10 - Autumn 2007

30