CSEP 590 Data Compression Autumn 2007
Context Based Arithmetic Coding for the DCT (CBACD) (Kyle Littlefield, 2006)
CSSFPso - Lextue 10 - Atumm 2007

CBACD overview

- Evolved out of PACW
- A simple wavelet based coder developed at UW by Dane Barney and Amanda Askew
- Goals:
- Replace wavelet transform with the DCT
- Replace context model with one suitable for the DCT
- Compare performance to
- Existing DCT-based methods, primarily JPEG
- State of the art wavelet methods

CBACD Overview

CSEP 590 - Lecture 10 - Autumn 2007
4

Context Modeling - Significance Bits

- First a significance factor is computed, based on a linear sum of the two factors
$f(s u b, x, y)=c_{\text {spatial }} \sum_{i, j} \frac{i s \operatorname{Sig}(\operatorname{sub}, x+i, y+j)}{\operatorname{dist}(i, j)}+c_{\text {frequency }} \sum_{i=1}^{63} i s \operatorname{Sig}(i, x, y)+c_{\text {constant }}$
- Details
$-\mathrm{c}_{\text {spatial }}$ is set to $1.5, \mathrm{c}_{\text {frequency }}$ to $0.225, \mathrm{c}_{\text {constant }}$ to .375
- The distance formula is taken to be the square of the Euclidean distance: $\mathrm{i}^{2}+\mathrm{j}^{2}$

Context Modeling - Significance Bits

- Interblock correlation sum is taken over 24 surrounding blocks. Closer blocks have more influence.
- Blue denotes blocks for which information is available for the current bit plane.
- Red denotes blocks for which information is only available for the previous
 available

Context Dilution Concerns

- Context dilution occurs when only a few bits are encoded in each context
- Results in decreased arithmetic coding performance, as contexts do not have enough bits encoded to meaningfully update statistics
- Most context-based coders use many fewer contexts than CBACD
- EBCOT - 27
- PACW - 30-56 (variable)
- JPEG-2000 - 27
- CBACD uses 340 contexts

Context Dilution Experiments

- Context dilution concerns were approached by trying various grouping of subbands.
- If context dilution was occuring, grouping subbands should result in large improvements in PSNR

More subband groupings

More subband groupings

Context Dilution Results

- Over a set of six images encoded at 0.25 bits per pixel (changes in PSNR dB)
- Single grouping: -0.128
- Circular: +0.006
- Circular with horizontal/vertical split: +0.008
- Diagonal: +0.016
- Max Frequency: +0.002
- Max Frequency with horizontal/vertical split: +0.006
- Grouping by type: -0.004

Context Modeling - Sign Bits

- Modeled similar to refinement bits, except:

Context Modeling - Refinement Bits

- Model is based on coefficient distribution
- Coefficients are skewed towards 0 , so refinement bits are also skewed towards 0
- Smaller area over which sum is taken
- All subbands use a single set of contexts
-9 contexts used (instead of 5)

Context Dilution - Conclusions

- The single grouping (not surprisingly) does significantly worse than any other
- The other groupings perform about the same
- The original CBACD is among the worst of these
- Context dilution is only a very slight concern within the CBACD architecture ค

Context Modeling - Refinement Bits

- Bits are placed into contexts based on the number of bit planes since the coefficient became significant
- Provides significant improvements over putting all refinement bits in 1 context
- Leads to PSNR improvements of up to .1 dB at high bit rates

	\# 0s	\# 1s	\% Os
1	26758	14575	64.74
2	13737	9511	59.09
3	3610	5324	54.23
4	2927	2677	52.23
5	1491	1436	50.93
CSEP 596	Lecture 649	Autumn 6880	7 49.96

Coefficient Extrapolation - Goal

- Reduce reconstructed image distortion
- Reduce distortion as measured by PSNR
- Reduce average per-pixel difference between original and deconstructed image
- Reduce average difference between original DCT coefficient and reconstructed DCT coefficient
- Reduce average distance across possible DCT coefficient distribution.

Coefficient Extrapolation

- Can not calculate best extrapolation for every possible set of transmitted bits
- Instead, compute best extrapolation for every possible pair of

Bit plane that the coefficient became
significant in Number of
Number of bits transmitted after the coefficient became significant Bestarately for each subband separately for each subband

- The 'standard' coefficient distribution consists of the sum of the from the CBIRT database pulled (http://www.cs.washington.edu/rese arch/imagedatabase/groundtruth/)

Coefficient Extrapolation

- The bit plane process guarantees that only the first few bits of each coefficient will be transmitted to the decoder.
- The decoder must decide how to fill in the untransmitted bits

Transmitted coefficient .0101????????...
. 010100000000 ..
Possible extrapolations $\begin{array}{ll}.010111111111 . . \\ .010110000000 \text {.. }\end{array}$
.010110000000 ..

[^0]

Results - Pentagon

Results

- For images involving a lot of high frequency information, such as Barbara and Mandrill
- CBACD performance is a fraction of a dB worse than wavelet methods.
- For images with fewer high-frequency components, such as Pentagon
- CBACD performs somewhat worse than wavelet methods, from .5 dB at high bit rates, up to 1.5 dB at very low bit rates.

[^0]: Best Extrapolation for .0101?????????... is . 010101101100 ..

