CSEP 590 Data Compression Autumn 2007

EBCOT JPEG 2000

History

- Embedded Block Coding with Optimized Truncation (EBCOT)
 - Taubman journal paper 2000
 - Algorithm goes back to 1998 or maybe earlier
 - Basis of JPEG 2000

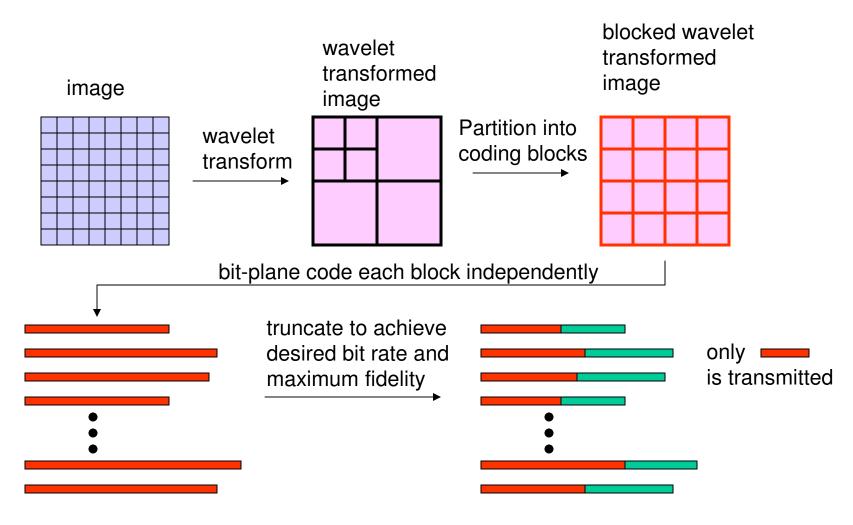
Embedded

- Prefixes of the encoded bit stream are legal encodings at lower fidelity, like SPIHT and GTW
- Block coding
 - Entropy coding of blocks of bit planes, not block transform coding like JPEG.

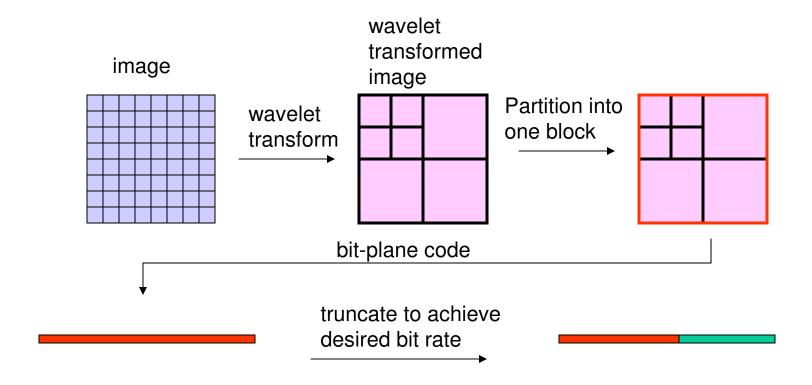
Features at a High Level

- SNR scalability (Signal to Noise Ratio)
 - Embedded code The compressed bit stream can be truncated to yield a smaller compressed image at lower fidelity
 - Layered code The bit stream can be partitioned into a base layer and enhancement layers. Each enhancement layer improves the fidelity of the image
- Resolution scalability
 - The lowest subband can be transmitted first yielding a smaller image at high fidelity.
 - Successive subbands can be transmitted to yield larger and larger images

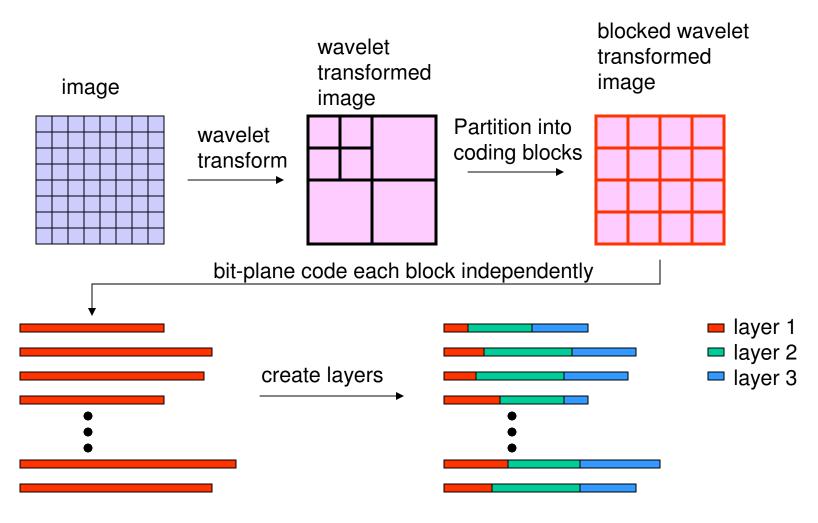
Block Diagram of Encoder



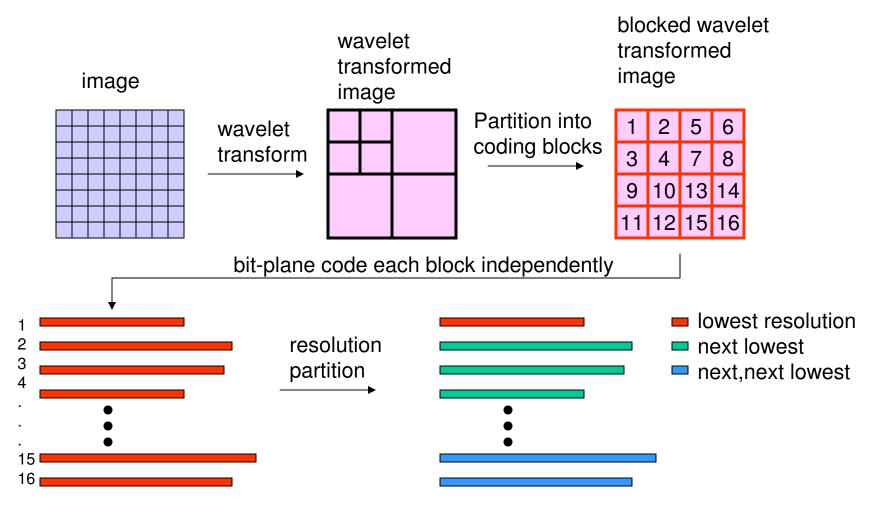
Extreme Case is Normal



Layering



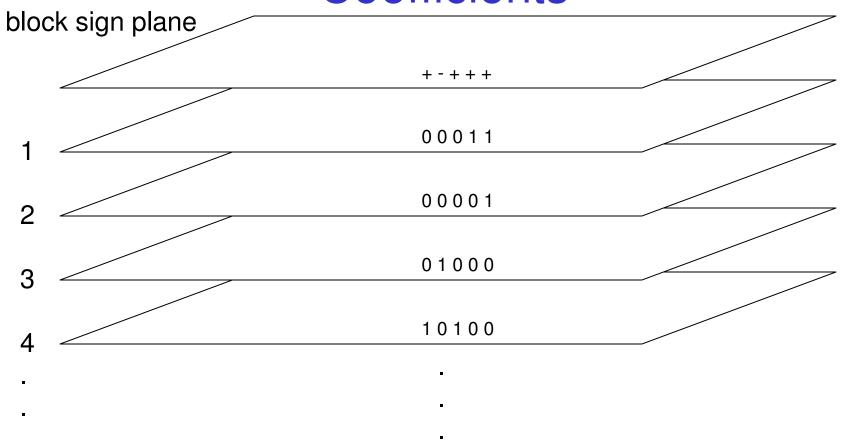
Resolution Ordering



Block Coding

- Assume we are in block k, and c(i,j) is a coefficient in block k.
- Divide c(i,j) into its sign s(i,j) and m(i,j) its magnitude.
- Quantize to $v(i, j) = \lfloor m(i, j)/q_k + .5 \rfloor$ where q_k is the quantization step for block k.
- Example: c(i,j) = -10, $q_k = 3$.
 - -s(i,j)=0
 - v(i,j) = floor(-10/3 + .5) = -2

Bit Planes of Normalized Quantized Coefficients



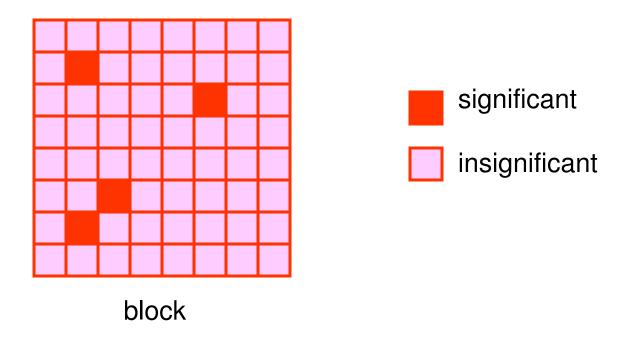
Quantized coefficients are normalized between -1 and 1

Bit-Plane Coding of Blocks

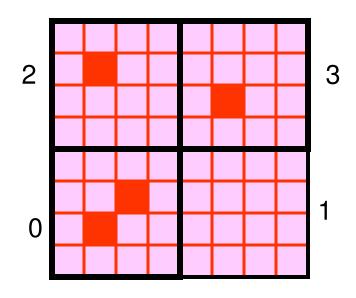
- Sub-block significance coding (like group testing)
 - Some sub-blocks are declared insignificant
 - Significant sub-blocks must be coded
- Contexts are defined based on the previous bit-plane significance.
 - Zero coding (ZC) 9 contexts
 - Run length coding (RLC) 1 context
 - Sign coding (SC) 5 contexts
 - Magnitude refinement coding (MR) 3 contexts
- Block coded in raster order using arithmetic coding

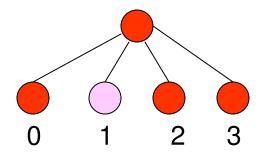
Sub-Block Significance Coding

- Quad-tree organized group testing
- Block divided into 16x16 sub-blocks
- Identify in few bits the sub-blocks that are significant

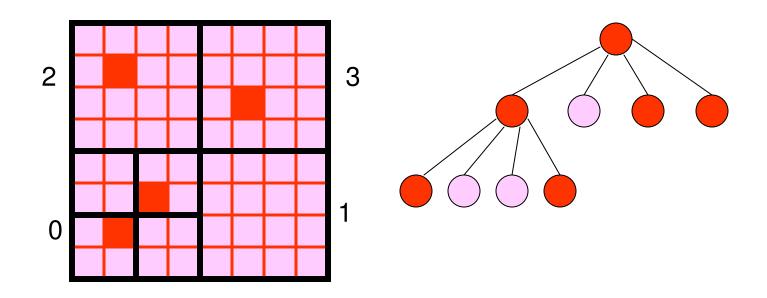


Quad-Tree Subdivision

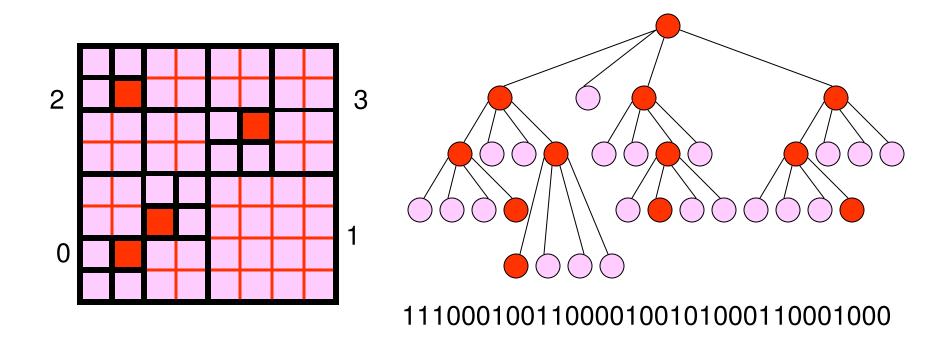




Quad-Tree Subdivision

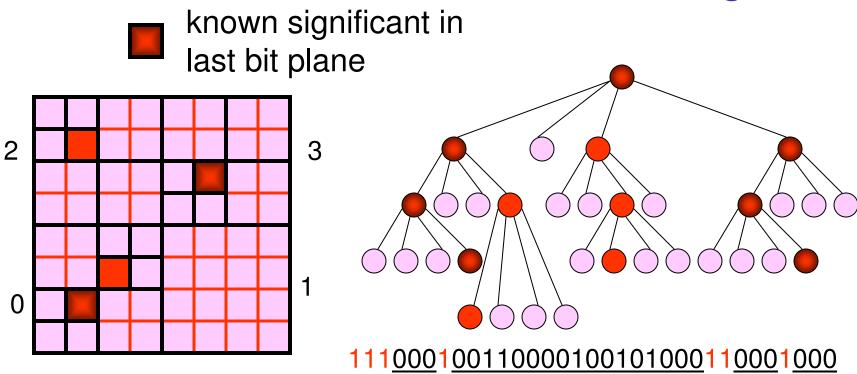


Quad-Tree Subdivision Coding



Depth-first code = 1 for significant 0 for insignificant

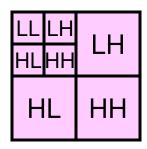
Quad-Tree Subdivision Coding



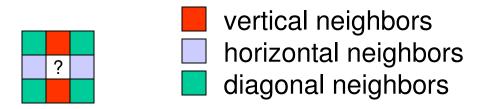
Skip symbols that are already known:

- 1. nodes significant in previous bit plane
- 2. last child of significant parent of other children are insignificant

ZC – Zero Coding



- LH is transposed so that it can be treated the same as HL. (LH)^T has similar characteristics to HL.
- Each coefficient has its neighbors in the same subband



ZC Contexts

- v = number of vertical neighbors significant in the previous bit-plane
- h = number of horizontal neighbors significant in the previous bit-plane
- d = number of diagonal neighbors significant in the previous bit-plane

0	<u><</u>	h,	V	<u><</u>	2
0	<u><</u>	d <u>:</u>	<u><</u>	4	

higher labels mean more likely to be significant

	HL	$(LH)^{T}$ LL		HH	
label	h	V	d	d	h+v
	0	0	0	0	0
1	0	0	1	0	1
2	0	0	> 1	0	> 1
3	0	1	*	1	0
4	0	2	*	1	1
5	1	0	0	1	> 1
6	1	0	> 0	2	0
7	1	> 0	*	2	> 0
8	2	*	*	> 2	*

CSEP 590 - Lecture 12 - Autumn 2007

Examples

significant in previous bit-plane

HL

$$h = 0$$

$$d = 0$$

HH

$$h = 0$$

$$v = 2$$

$$d = 0$$

Context 4

Context 2

HL

$$h = 2$$

$$V = 0$$

$$d = 0$$

HH

$$h = 2$$

$$v = 0$$

$$d = 0$$

Context 8

Context 2

HL

$$h = 0$$

$$v = 0$$

$$d = 2$$

HH

$$h = 0$$

$$v = 0$$

$$d = 2$$

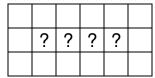
Context 2

Context 6

CSEP 590 - Lecture 12 - Autumn 2007

RLC – Run Length Coding

Looks for runs of 4 that are likely to be insignificant

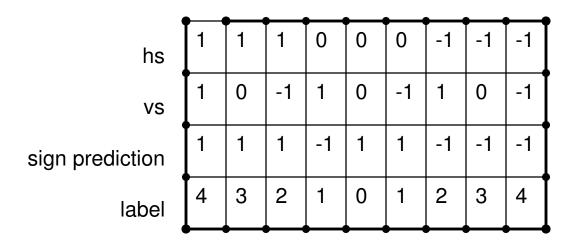


- If all insignificant then code as a single symbol
- Main purpose to lighten the load on the arithmetic coder.

SC – Sign Coding

 $hs = \begin{cases} 0 & \text{if horizontal neighbors are both insignificant or of opposite sign} \\ 1 & \text{if at least one horizontal neighbor is positive} \\ -1 & \text{if at least one horizontal neighbor is negative} \end{cases}$

 $vs = \begin{cases} 0 & \text{if vertical neighbors are both insignificant or of opposite sign} \\ 1 & \text{if at least one vertical neighbor is positive} \\ -1 & \text{if at least one vertical neighbor is negative} \end{cases}$



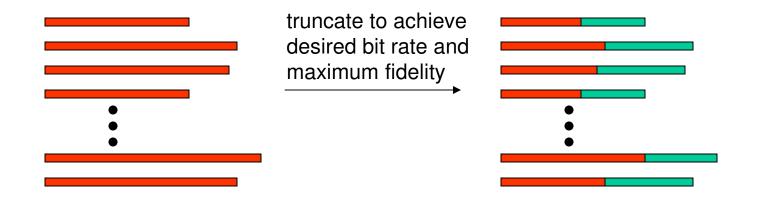
MR – Magnitude Refinement

- This is the refinement pass.
- Define t = 0 if first refinement bit, t = 1 otherwise.

t	h + v
0	0
0	> 0
1	*
	t 0 0

Bit Allocation

 How do we truncate the encoded blocks to achieve a desired bit rate and get maximum fidelity



Basic Set Up

- Encoded block k can be truncated to n_k bits.
- Total Bit Rate

$$\sum_{k} n_{k}$$

Distortion attributable to block k is

$$D_{k}^{n_{k}} = w_{k}^{2} \sum_{(i,j) \in B_{k}} (c^{n_{k}}(i,j) - c(i,j))^{2}$$

where w_k is the "weight" of the basis vectors for block k and $c^{n_k}(i,j)$ is the recovered coefficients from n_k bits of block k.

Bit Allocation as an Optimization Problem

- Input: Given m embedded codes and a bit rate target R
- Output: Find truncation values n_k, 1≤ k ≤ m, such that

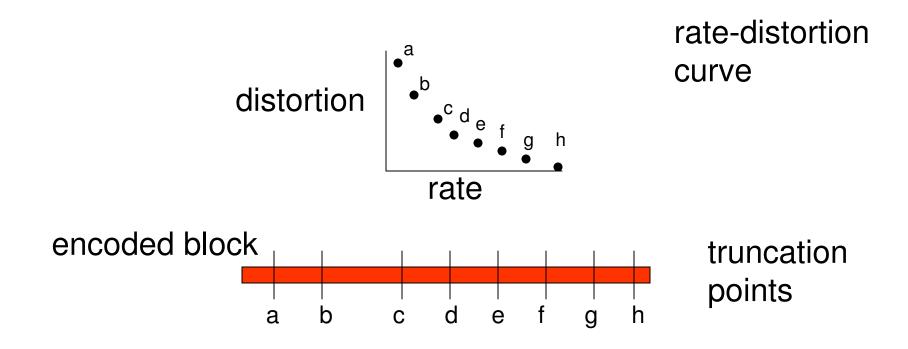
$$D = \sum_{k} D_{k}^{n_{k}} \quad \text{is minimized and}$$

$$\sum_{k} n_{k} \leq R$$

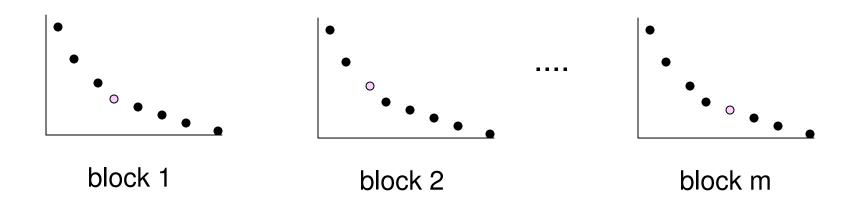
Facts about Bit Allocation

- It is an NP-hard problem generally
- There are fast approximate algorithms that work well in practice
 - GBFOS
 - Lagrange multiplier method
 - Multiple choice knapsack method

Rate-Distortion Curve



Picture of Bit Allocation



Pick one point from each curve so that the sum of the x values is bounded by R and the sum of the y values is minimized.

Good approximate algorithms exist because the curves are almost convex.

Notes on EBCOT

- EBCOT is quite complicated with many features.
- JPEG 2000 based on EBCOT but differs to improve compression and decompression time.
- EBCOT has
 - resolution scalability
 - SNR scalability
 - quantization
 - bit allocation
 - arithmetic coding with context and adaptivity
 - group testing (quad trees)
 - sign and refinement bit contexts
 - lots of engineering

Notes on Wavelet Compression

- Wavelets appear to be excellent for image compression
 - No blocking artifacts
 - Wavelet coding techniques abound and are very effective
- Some of the wavelet coding techniques can apply to block transforms.
- Newest generation of image compressor use wavelets, JPEG 2000.