MobileASL: Making Cell Phones Accessible to the Deaf Community

> Richard Ladner University of Washington

American Sign Language (ASL)

- ASL is the preferred language for about 500,000 - 1,000,000 Deaf people in the U.S and most of Canada.
- ASL is not a code for English

MobileASL

- Signs usually occur within the "sign-box"
- Composed of location, orientation, shape of hands and arms + facial expressions
- Usually uses 2 hands, but one-handed signing not uncommon

Current Technology for Deaf People (text)

Sidekicks and Blackberries (text, pictures, non-real-time video)

Benefits:

Low bandwidth Mobile (PDAs)

Problems:

English, not ASL

Current Technology for Deaf People (video phones)

Set-top boxes

Web cams

Benefits:

ASL, not English

Problems:

Requires high bandwidth Not mobile 4

Our goal:

• ASL communication using video cell phones over current U.S. cell phone network

Challenges:

- Limited network bandwidth
- Limited processing power on cell phones

Architecture

Cell phone user interface

Cell Phone Network

Cell Phone Network Constraints

- MobileASL is about fair access to the current network
 - As soon as possible, no special accommodations
- Low bit rate constraint
 - GPRS Ranges from 30kbps to 80kbps (download)
- Low Power
 - Cell phones run at much lower Hz then PCs
- New mobile broadband services
 - Higher bandwidth for download, not upload.

What about 3G?

Portrait

- Special Codec from Microsoft Asia
- Low Bandwidth, Low Power, small size video (160 x 120)
- May not be suitable for sign language

Keman Yu, Jiangbo Lv, Jiang Li and Shipeng Li, 2003

Codec Used: x264*

- Open source implementation of H.264 standard
- Doubles compression ratio over MPEG2
- x264 offers faster encoding
- Main profile
- Off-the-shelf H.264 decoder can be used

*The code is written from scratch by Laurent Aimar, <u>Loren Merritt</u>, Eric Petis, Min Chen, Justin Clay, Mans Rullgard, Radek Czyz, Christian Heine, Alex Izvorski, and Alex Wright. It is released under the terms of the GPL license.

Outline

- Motivation
- Introduction
- User Studies
- Rate, distortion, complexity optimization
- X264 implementation
- User Interface
- Current and future research

MobileASL Focus Group

- 4 Deaf people, mid-20s to mid-40s,
- Open ended questions:
 - Physical Setup
 - Camera, distance, ...
 - Features
 - Compatibility, text, ...
 - Privacy Concerns
 - ASL is a visual language
 - Scenarios
 - Lighting, driving, relay services, ...

Implications of Focus Group

- "I don't foresee any limitations. I would use the phone anywhere: the grocery store, the bus, the car, a restaurant, ... anywhere!"
- There is a need within the Deaf Community for mobile ASL conversations
- Existing video phone technology (with minor modifications) would be usable

Eyetracking Studies

- Participants watched ASL videos while eye movements were tracked
- Important regions of the video could be encoded differently

* Muir et al. (2005) and Agrafiotis et al. (2003)

Eyetracking Results

- 95% of eye movements within 2 degrees visual angle of the signer's face (demo)
- Implications: Face region of video is most visually important
 - Detailed grammar in face requires foveal vision
 - Hands and arms can be viewed in peripheral vision

* Muir et al. (2005) and Agrafiotis et al. (2003)

Mobile Video Phone Study

- 3 Region-of-Interest (ROI) values
- 2 Frame rates, frames per second (FPS)
- 3 different Bit rates
 - 15 kbps, 20 kbps, 25 kbps
- 18 participants (7 women)
 - 10 Deaf, 5 hearing, 3 CODA*
 - All fluent in ASL

* CODA = (Hearing) Child of a Deaf Adult

Example of ROI

Varied quality in fixed-sized region around the face

2x quality in face

12 ROI 4x quality in face

Examples of FPS

- Varied frame rate: 10 fps and 15 fps
- For a given bit rate:

Fewer frames = more bits per frame

MobileASL

Questionnaire

2 Con	prehension	0	# Y	 -(€ 5:48	
How unde	easy or ho rstand the	w difficult video?	t was it t	0	E .
(jifficu	о с it	0	0	O . easy	
8		OK .			

User Preferences Results

Implications of results

- A mid-range ROI was preferred
 - Optimal tradeoff between clarity in face and distortion in rest of "sign-box"
- Lower frame rate preferred
 - Optimal tradeoff between clarity of frames and number of frames per second
- Results independent of bit rate

Outline

- Motivation
- Introduction
- User studies
- Rate, distortion, complexity optimization
- X264 implementation
- User Interface
- Current and future research

Rate, distortion and complexity optimization

• Objective: Achieve best possible quality for least encoding time at a given bitrate

Parameter Settings

Time – Complexity Tradeoff

MobileASL

30 kbps 10 ASL videos

GBFOS Approach

Chou, Lookabaugh, Gray, 1989

- Choose input parameter that minimizes the slope on the convex hull and repeat.
- Parameter settings are not independent.
- Basic Compute slopes once.
- Iterative Recompute slopes after each parameter is chosen.

PSNR vs. Average Encoding Time

MobileAS

Outline

- Motivation
- Introduction
- User studies
- Rate, distortion, complexity optimization
- X264 implementation
- User Interface
- Current and future research

Encoding/Decoding on the Cell Phone

- Implemented a command-line version of x264 on a cell phone using Windows Mobile Edition 5.0.
- Required significant modifications to the Linux based x264 codec.

Encoding performance for high/medium/low quality settings with and without code optimization

Examples of Low Frame Rates

• Demo

Outline

- Motivation
- Introduction
- User studies
- Rate, distortion, complexity optimization
- X264 implementation
- User Interface
- Current and future research

User Interface Design: Goals

- Usable, intuitive, easy to learn
- Inspired by Deaf users
- Utilize existing knowledge (VP, Webcam, Sorenson ...)
- Design stages:
 - Story boards
 - Paper prototype testing
 - Digital prototyping

Basic Interface

Split Screen with Text

Call Set-up

Dialing/Call	Ended	0:00	12
			Sign
1	2 abc	3 def	Call History
4 ghi	5 jkl	6 mno	Contacts
7 pqrs	8 tuv	9 wxyz	VRS
*	0 +	#	Text

Outline

- Motivation
- Introduction
- User studies
- Rate, distortion, complexity optimization
- X264 implementation
- User Interface
- Current and future research

Current Work

- Dynamic Region-of-Interest
 - Skin detection algorithms
- Objective Metrics

 For ASL Understandability
- Activity Recognition
 - Fingerspelling, signing, "listening"
- Building the System
 - Transmission, Receiving, Playing
- Packet loss on GPRS

Dynamic Region of Interest

- Use skin detection algorithms to drive region of interest.
- Fast skin detection algorithms exist
- Demo

Objective Metric

- Importance
 - Face
 - Hands
 - Signing Box
- Weighted MSE based on where the pixels are

Objective Intelligibility Metric

Subjective Intelligibility vs. PSNR

Objective Intelligibility Metric

$$I = 10\log_{10} \frac{255^2}{F \times MSE_F + H \times MSE_H}$$

where F = 0.6 and H = 0.4

Objective Intelligibility Metric

Subjective Intelligibility vs. Objective Metric

Objective Intelligibility

MobileASL

Activity Recognition

- Motivation:
 - Finger spelling requires a higher bit rate and/or frame rate for intelligibility than signing
 - We want to minimize encoding complexity when not signing.
- Goal:
 - Recognize these three states: finger spelling, signing, not signing
 - Perform recognition in real time

Possible Solution

- Use H.264 motion
 vectors as features
- Use probabilistic techniques to automatically recognize activity
 - Hidden Markov Models
 - Kalman filters or particle filters

Building the System

- in C#:
 - Really easy to develop GUIs.
 - Developers can only use their predefined interface for the camera. The interface is simple, but extremely limited.
- In C++:
 - GUI development much more complex.
 - Accessing camera requires knowledge of windows COM system.

Thanks

- Co-Pls
 - Eve Riskin and Sheila Hemami
- Graduate Students
 - Anna Cavender, Rahul Vanam, Neva Cherniavsky, Frank Ciaramello, Dane Barney, Carl Hartung
- Undergraduate Students
 - Jessica DeWitt, Loren Merritt, Sam Whittle
- National Science Foundation

