MobileASL: Making Cell Phones Accessible to the **Deaf Community**

Richard Ladner University of Washington

MobileASL

American Sign Language (ASL)

ASL is the preferred language for about 500,000 - 1,000,000 Deaf people in the U.S and most of Canada.

- · ASL is not a code for English
- Signs usually occur within the "sign-box"
- Composed of location, orientation, shape of hands and \mbox{arms} + facial expressions
- Usually uses 2 hands, but one-handed signing not

Current Technology for Deaf People (text) TTY Benefits:

Sidekicks and Blackberries (text, pictures, non-real-time video)

Low bandwidth Mobile (PDAs)

Problems:

English, not ASL

Current Technology for Deaf People (video phones) Set-top boxes

Web cams

Benefits:

ASL, not English

Problems:

Requires high bandwidth Not mobile

Our goal:

· ASL communication using video cell phones over current U.S. cell phone network

Challenges:

- · Limited network bandwidth
- · Limited processing power on cell phones

Architecture Cell phone user interface Sender Receiver Camera Player Encoder Decoder Transmitter Receiver Cell Phone Network

Cell Phone Network Constraints

- MobileASL is about fair access to the current network
 - As soon as possible, no special accommodations
- · Low bit rate constraint
 - GPRS Ranges from 30kbps to 80kbps (download)
- Low Power
 - Cell phones run at much lower Hz then PCs
- · New mobile broadband services
 - Higher bandwidth for download, not upload.

MobileASL

/

Portrait

- Special Codec from Microsoft Asia
- Low Bandwidth, Low Power, small size video (160 x 120)
- May not be suitable for sign language

Keman Yu, Jiangbo Lv, Jiang Li and Shipeng Li, 2003

MobileASL

9

Codec Used: x264*

- Open source implementation of H.264 standard
- Doubles compression ratio over MPEG2
- · x264 offers faster encoding
- · Main profile
- Off-the-shelf H.264 decoder can be used
- *The code is written from scratch by Laurent Aimar, <u>Loren Merritt</u>. Eric Petis, Min Chen, Justin Clay, Mans Rullgard, Radek Czyz, Christian Heine, Alex Izvorski, and Alex Wright. It is released under the terms of the GPL license.

MobileASL

10

Outline

- Motivation
- Introduction
- User Studies
- · Rate, distortion, complexity optimization
- X264 implementation
- · User Interface
- · Current and future research

MobileASL

11

MobileASL Focus Group

- · 4 Deaf people, mid-20s to mid-40s,
- Open ended questions:
 - Physical Setup
 - · Camera, distance, ...
 - Features
 - Compatibility, text, ...
 - Privacy Concerns
 - ASL is a visual language
 - Scenarios
 - Lighting, driving, relay services, ...

lobileASL

Implications of Focus Group

- "I don't foresee any limitations. I would use the phone anywhere: the grocery store, the bus, the car, a restaurant, ... anywhere!"
- · There is a need within the Deaf Community for mobile ASL conversations
- · Existing video phone technology (with minor modifications) would be usable

obileASL

Eyetracking Studies

- Participants watched ASL videos while eye movements were tracked
- Important regions of the video could be encoded differently

* Muir et al. (2005) and Agrafiotis et al. (2003)

MobileASI

Eyetracking Results

- · 95% of eye movements within 2 degrees visual angle of the signer's face (demo)
- · Implications: Face region of video is most visually important
 - Detailed grammar in face requires foveal vision
 - Hands and arms can be viewed in peripheral vision

* Muir et al. (2005) and Agrafiotis et al. (2003)

Mobile Video Phone Study

- 3 Region-of-Interest (ROI) values
- · 2 Frame rates, frames per second (FPS)
- · 3 different Bit rates
 - 15 kbps, 20 kbps, 25 kbps
- 18 participants (7 women)
 - 10 Deaf, 5 hearing, 3 CODA*
 - All fluent in ASL

* CODA = (Hearing) Child of a Deaf Adult

Example of ROI

Varied quality in fixed-sized region around the face

6 ROI

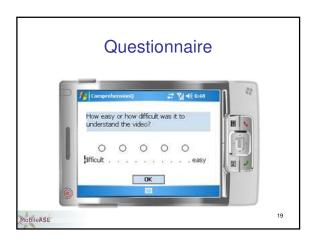
2x quality in face

12 ROI 4x quality in face

(demo)

13

Examples of FPS

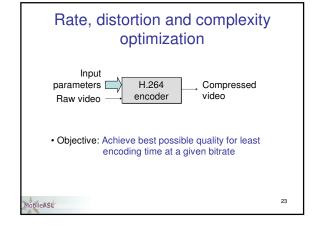

- · Varied frame rate: 10 fps and 15 fps
- For a given bit rate:

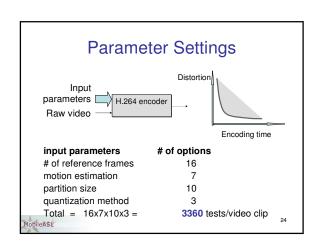
Fewer frames = more bits per frame

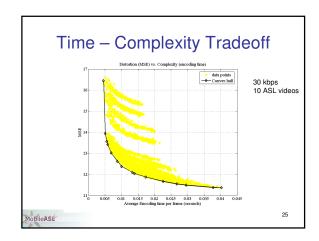
• (demo)

ileASL

Implications of results

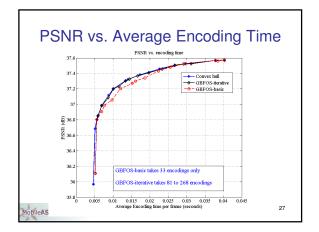

- · A mid-range ROI was preferred
 - Optimal tradeoff between clarity in face and distortion in rest of "sign-box"
- · Lower frame rate preferred
 - Optimal tradeoff between clarity of frames and number of frames per second
- · Results independent of bit rate


obileASL


Outline

- Motivation
- · Introduction
- · User studies
- Rate, distortion, complexity optimization
- X264 implementation
- User Interface
- · Current and future research

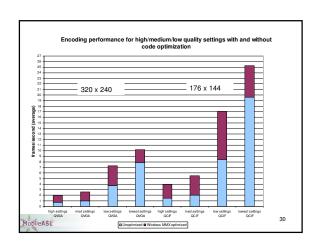
Mobile ASL 22



GBFOS Approach Chou, Lookabaugh, Gray, 1989

- Choose input parameter that minimizes the slope on the convex hull and repeat.
- Parameter settings are not independent.
- Basic Compute slopes once.
- Iterative Recompute slopes after each parameter is chosen.

26 MobileASL


Outline

- Motivation
- Introduction
- · User studies
- · Rate, distortion, complexity optimization
- X264 implementation
- User Interface
- · Current and future research

MobileASL

Encoding/Decoding on the Cell Phone

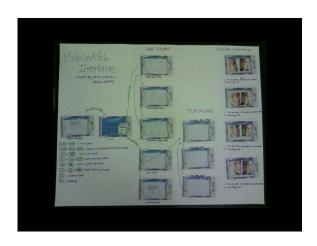
- · Implemented a command-line version of x264 on a cell phone using Windows Mobile Edition 5.0.
- · Required significant modifications to the Linux based x264 codec.

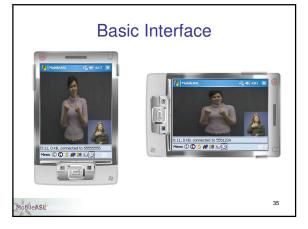
Examples of Low Frame Rates

• Demo

MobileASE

Outline


- Motivation
- Introduction
- · User studies
- Rate, distortion, complexity optimization
- X264 implementation
- User Interface
- · Current and future research


MobileASL

User Interface Design: Goals

- · Usable, intuitive, easy to learn
- Inspired by Deaf users
- Utilize existing knowledge (VP, Webcam, Sorenson ...)
- Design stages:
 - Story boards
 - Paper prototype testing
 - Digital prototyping

ASE

Outline

- Motivation
- Introduction
- User studies
- Rate, distortion, complexity optimization
- X264 implementation
- User Interface
- Current and future research

MobileASL

38

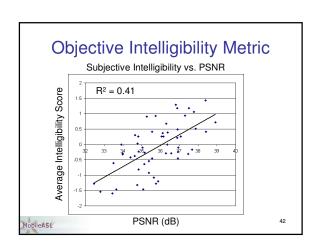
Current Work

- · Dynamic Region-of-Interest
 - Skin detection algorithms
- Objective Metrics
 - For ASL Understandability
- Activity Recognition
 - Fingerspelling, signing, "listening"
- · Building the System
 - Transmission, Receiving, Playing
 - Packet loss on GPRS

39

Dynamic Region of Interest

- Use skin detection algorithms to drive region of interest.
- · Fast skin detection algorithms exist
- Demo

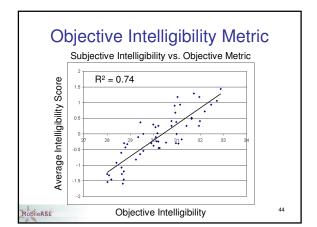

MobileASL

Objective Metric

- Importance
 - Face

lobileASL

- Hands
- Signing Box
- Weighted MSE based on where the pixels are



Objective Intelligibility Metric

$$I = 10\log_{10} \frac{255^2}{F \times MSE_F + H \times MSE_H}$$

where F = 0.6 and H = 0.4

MobileASE 43

Activity Recognition

- · Motivation:
 - Finger spelling requires a higher bit rate and/or frame rate for intelligibility than signing
 - We want to minimize encoding complexity when not signing.
- Goal:
 - Recognize these three states: finger spelling, signing, not signing
 - Perform recognition in real time

obileASL

Possible Solution

- Use H.264 motion vectors as features
- Use probabilistic techniques to automatically recognize activity

Kalman filters or particle filters

46

Building the System

- in C#:
 - Really easy to develop GUIs.
 - Developers can only use their predefined interface for the camera. The interface is simple, but extremely limited.
- In C++:
 - GUI development much more complex.
 - Accessing camera requires knowledge of windows COM system.

4

Thanks

- Co-Pls
 - Eve Riskin and Sheila Hemami
- Graduate Students
 - Anna Cavender, Rahul Vanam, Neva Cherniavsky, Frank Ciaramello, Dane Barney, Carl Hartung
- Undergraduate Students
 - Jessica DeWitt, Loren Merritt, Sam Whittle
- National Science Foundation

