Practical Aspects of Modern Cryptography Winter 2011

> Josh Benaloh Brian LaMacchia

Cryptography is ...

- Protecting Privacy of Data
- Authentication of Identities
- Preservation of Integrity

... basically any protocols designed to operate in an environment *absent* of universal trust.

Characters

Alice

January 6, 2011

Characters

Bob

Basic Communication

Another Character

Eve

Basic Communication Problem Eve listening to Alice talking to Bob

Two-Party Environments

Remote Coin Flipping

Alice and Bob decide to make a decision by flipping a coin.

Alice and Bob are not in the same place.

Ground Rule

Protocol must be asynchronous.

We cannot assume simultaneous actions.

Players must take turns.

Two-part answer:

Two-part answer:

NO – I will sketch a formal proof.

Two-part answer:

NO – I will sketch a formal proof.

• YES – I will provide an effective protocol.

Pruning the Tree

Pruning the Tree

A: A B: A: B: Control Control

January 6, 2011

Completing the Pruning

When the pruning is complete one will end up with either

Completing the Pruning

When the pruning is complete one will end up with either

a winner before the protocol has begun, or

Completing the Pruning

When the pruning is complete one will end up with either

a winner before the protocol has begun, or

a useless infinite game.

Conclusion of Part I

Remote coin flipping

is utterly

impossible!!!
The INTEGERS

The INTEGERS

0 4 8 12 16 ...

The INTEGERS

0 4 8 12 16 ... 1 5 9 13 17 ...

The INTEGERS

0 4 8 12 16 ... 1 5 9 13 17 ... 2 6 10 14 18 ...

The INTEGERS

0 4 8 12 16 ... 1 5 9 13 17 ... 2 6 10 14 18 ... 3 7 11 15 19 ...

The INTEGERS

The INTEGERS

 0
 4
 8
 12
 16
 ...

 4n + 1:
 1
 5
 9
 13
 17
 ...

 2
 6
 10
 14
 18
 ...

 4n - 1:
 3
 7
 11
 15
 19
 ...

The INTEGERS

 0
 4
 8
 12
 16
 ...

 Type +1:
 1
 5
 9
 13
 17
 ...

 2
 6
 10
 14
 18
 ...

 Type -1:
 3
 7
 11
 15
 19
 ...

Fact 1

Multiplying two (odd) integers of the same type always yields a product of Type +1.

(4p+1)(4q+1) = 16pq+4p+4q+1 = 4(4pq+p+q)+1(4p-1)(4q-1) = 16pq-4p-4q+1 = 4(4pq-p-q)+1

Fact 2

There is no known method (other than factoring) to distinguish a product of two "Type +1" integers from a product of two "Type -1" integers.

Fact 3

Factoring large integers is believed to be *much* harder than multiplying large integers.

<u>Alice</u>

<u>Bob</u>

<u>Alice</u>

Randomly select a bit
 b∈{±1} and two large
 integers P and Q – both of
 type b.

<u>Alice</u>

- Randomly select a bit
 b∈{±1} and two large
 integers P and Q both of
 type b.
- Compute N = PQ.

<u>Alice</u>

- Randomly select a bit
 b∈{±1} and two large
 integers P and Q both of
 type b.
- Compute N = PQ.
- Send N to Bob.

January 6, 2011

Practical Aspects of Modern Cryptography

<u>Alice</u>

- Randomly select a bit
 b∈{±1} and two large
 integers P and Q both of
 type b.
- Compute N = PQ.
- Send N to Bob.

<u>Alice</u>

- Randomly select a bit
 b∈{±1} and two large
 integers P and Q both of
 type b.
- Compute N = PQ.
- Send N to Bob.

Bob

 After receiving N from Alice, guess the value of b and send this guess to Alice.

<u>Alice</u>

- Randomly select a bit
 b∈{±1} and two large
 integers P and Q both of
 type b.
- Compute N = PQ.
- Send N to Bob.

Bob

 After receiving N from Alice, guess the value of b and send this guess to Alice.

<u>Alice</u>

- Randomly select a bit
 b∈{±1} and two large
 integers P and Q both of
 type b.
- Compute N = PQ.
- Send N to Bob.

Bob

 After receiving N from Alice, guess the value of b and send this guess to Alice.

Bob wins if and only if he correctly guesses the value of *b*.

<u>Alice</u>

- Randomly select a bit
 b∈{±1} and two large
 integers P and Q both of
 type b.
- Compute *N* = *PQ*.
- Send N to Bob.

After receiving *b* from Bob, reveal *P* and *Q*.

Bob

 After receiving N from Alice, guess the value of b and send this guess to Alice.

Bob wins if and only if he correctly guesses the value of *b*.

January 6, 2011

Practical Aspects of Modern Cryptography

<u>Alice</u>

- Randomly select a bit
 b∈{±1} and two large
 integers P and Q both of
 type b.
- Compute *N* = *PQ*.
- Send N to Bob.

After receiving *b* from Bob, reveal *P* and *Q*.

Bob

 After receiving N from Alice, guess the value of b and send this guess to Alice.

Bob wins if and only if he correctly guesses the value of *b*.

The INTEGERS

 0
 4
 8
 12
 16
 ...

 Type +1:
 1
 5
 9
 13
 17
 ...

 2
 6
 10
 14
 18
 ...

 Type -1:
 3
 7
 11
 15
 19
 ...

<u>Alice</u>

- Randomly select a bit
 b∈{±1} and two large
 integers P and Q both of
 type b.
- Compute *N* = *PQ*.
- Send N to Bob.

After receiving *b* from Bob, reveal *P* and *Q*.

Bob

 After receiving N from Alice, guess the value of b and send this guess to Alice.

Bob wins if and only if he correctly guesses the value of *b*.

<u>Alice</u>

- Randomly select a bit
 b∈{±1} and two large
 primes P and Q both of
 type b.
- Compute *N* = *PQ*.
- Send N to Bob.

After receiving *b* from Bob, reveal *P* and *Q*.

Bob

 After receiving N from Alice, guess the value of b and send this guess to Alice.

Bob wins if and only if he correctly guesses the value of *b*.

Checking Primality

Basic result from group theory –

If *p* is a prime, then for integers a such that 0 < a < p, then $a^{p-1} \mod p = 1$.

This is almost never true when *p* is composite.

How are the Answers Reconciled?

How are the Answers Reconciled?

The impossibility proof assumed unlimited computational ability.

How are the Answers Reconciled?

 The impossibility proof assumed unlimited computational ability.

The protocol is not 50/50 – Bob has a small advantage.

Applications of Remote Flipping

Remote Card Playing

Internet Gambling

Various "Fair" Agreement Protocols

Bit Commitment

We have implemented remote coin flipping via *bit commitment*.

Commitment protocols can also be used for

- Sealed bidding
- Undisclosed contracts
- Authenticated predictions

One-Way Functions

We have implemented bit commitment via one-way functions.

One-way functions can be used for

- Authentication
- Data integrity
- Strong "randomness"
Two basic classes of one-way functions

Two basic classes of one-way functions

Mathematical

Two basic classes of one-way functions

Mathematical

• Multiplication: Z=X×Y

Two basic classes of one-way functions

Mathematical

- Multiplication: Z=X×Y
- Modular Exponentiation: Z = Y^X mod N

Two basic classes of one-way functions

Mathematical

- Multiplication: Z=X×Y
- Modular Exponentiation: Z = Y^X mod N
- Ugly

The Fundamental Equation

$Z=Y^X \mod N$

Practical Aspects of Modern Cryptography

Z mod N is the integer remainder when Z is divided by N.

- Z mod N is the integer remainder when Z is divided by N.
- **The Division Theorem**
 - For all integers Z and N>0, there exist unique integers Q and R such that $Z = Q \times N + R$ and $0 \le R < N$.

- Z mod N is the integer remainder when Z is divided by N.
- The Division Theorem
 - For all integers Z and N>0, there exist unique integers Q and R such that $Z = Q \times N + R$ and $0 \le R < N$.
- By definition, this unique $R = Z \mod N$.

To compute (A+B) mod N, compute (A+B) and take the result mod N.

- To compute (A+B) mod N, compute (A+B) and take the result mod N.
- To compute (A-B) mod N, compute (A-B) and take the result mod N.

To compute (A+B) mod N, compute (A+B) and take the result mod N.
To compute (A-B) mod N, compute (A-B) and take the result mod N.
To compute (A×B) mod N,

compute $(A \times B)$ and take the result mod N.

- To compute (A+B) mod N, compute (A+B) and take the result mod N.
 To compute (A-B) mod N, compute (A-B) and take the result mod N.
- To compute (A×B) mod N, compute (A×B) and take the result mod N.
- To compute (A÷B) mod N, ...

What is the value of $(1\div 2) \mod 7$? We need a solution to $2x \mod 7 = 1$.

What is the value of $(1\div 2) \mod 7$? We need a solution to $2x \mod 7 = 1$.

Try x = 4.

What is the value of $(1\div 2) \mod 7$? We need a solution to $2x \mod 7 = 1$. Try x = 4.

What is the value of $(7\div5) \mod 11$? We need a solution to $5x \mod 11 = 7$.

What is the value of $(1\div 2) \mod 7$? We need a solution to $2x \mod 7 = 1$. Try x = 4.

What is the value of $(7\div5) \mod 11$? We need a solution to $5x \mod 11 = 7$. Try x = 8.

Is modular division always well-defined?

Is modular division always well-defined? (1÷3) mod 6 = ?

Is modular division always well-defined? $(1\div3) \mod 6 = ?$ $3x \mod 6 = 1$ has no solution!

Is modular division always well-defined? $(1\div3) \mod 6 = ?$ $3x \mod 6 = 1$ has no solution!

<u>Fact</u>

(A÷B) mod N always has a solution when gcd(B,N) = 1.

Fact 1

(A÷B) mod N always has a solution when gcd(B,N) = 1.

Fact 1

(A÷B) mod N always has a solution when gcd(B,N) = 1.

Fact 2

(A÷B) mod N never has a solution when gcd(A,B) = 1 and gcd(B,N) ≠ 1.

gcd(A, B) = gcd(B, A - B)

gcd(A, B) = gcd(B, A - B)

since any common factor of A and B is also a factor of A – B and since any common factor of B and A – B is also a factor of A.

gcd(A, B) = gcd(B, A - B)

gcd(21,12) = gcd(12,9) = gcd(9,3) = gcd(3,6) = gcd(6,3) = gcd(3,3) = gcd(3,0) = 3

gcd(A, B) = gcd(B, A - B)

gcd(A, B) = gcd(B, A - B)gcd(A, B) = gcd(B, A - kB) for any integer k.

gcd(A, B) = gcd(B, A - B)

gcd(A, B) = gcd(B, A - kB) for any integer k.

 $gcd(A, B) = gcd(B, A \mod B)$

107

gcd(21,12) = gcd(12,9) = gcd(9,3) = gcd(3,0) = 3

gcd(A, B) = gcd(B, A mod B)

gcd(A, B) = gcd(B, A - B)

gcd(A, B) = gcd(B, A - kB) for any integer k.

Greatest Common Divisors

Extended Euclidean Algorithm

Given integers A and B, find integers X and Y such that AX + BY = gcd(A,B).
Given integers A and B, find integers X and Y such that AX + BY = gcd(A,B).

When gcd(A,B) = 1, solve AX mod B = 1, by finding X and Y such that

AX + BY = gcd(A,B) = 1.

Given integers A and B, find integers X and Y such that AX + BY = gcd(A,B).

When gcd(A,B) = 1, solve AX mod B = 1, by finding X and Y such that

AX + BY = gcd(A,B) = 1.

Compute (C \div A) mod B as C×(1 \div A) mod B.

gcd(35, 8) = gcd(8, 35 mod 8) = gcd(8, 3) = gcd(3, 8 mod 3) = gcd(3, 2) = gcd(2, 3 mod 2) = gcd(2, 1) = gcd(1, 2 mod 1) = gcd(1, 0) = 1

 $35 = 8 \times 4 + 3$

 $35 = 8 \times 4 + 3$ $8 = 3 \times 2 + 2$

 $3=35-8\times 4$

 $\mathbf{2} = \mathbf{8} - \mathbf{3} \times \mathbf{2}$

 $\mathbf{1} = \mathbf{3} - \mathbf{2} \times \mathbf{1}$

$\mathbf{3} = \mathbf{35} - \mathbf{8} \times \mathbf{4}$

$\mathbf{2} = \mathbf{8} - \mathbf{3} \times \mathbf{2}$

$1 = 3 - 2 \times 1$

January 6, 2011

Practical Aspects of Modern Cryptography

$\mathbf{3} = \mathbf{35} - \mathbf{8} \times \mathbf{4}$

$\mathbf{2} = \mathbf{8} - \mathbf{3} \times \mathbf{2}$

$1 = 3 - 2 \times 1 = (35 - 8 \times 4) - (8 - 3 \times 2) \times 1$

$\mathbf{3}=\mathbf{35}-\mathbf{8}\times\mathbf{4}$

$\mathbf{2} = \mathbf{8} - \mathbf{3} \times \mathbf{2}$

$1 = 3 - 2 \times 1 = (35 - 8 \times 4) - (8 - 3 \times 2) \times 1 = (35 - 8 \times 4) - (8 - (35 - 8 \times 4) \times 2) \times 1$

$\mathbf{3}=\mathbf{35}-\mathbf{8}\times\mathbf{4}$

$\mathbf{2} = \mathbf{8} - \mathbf{3} \times \mathbf{2}$

$1 = 3 - 2 \times 1 = (35 - 8 \times 4) - (8 - 3 \times 2) \times 1 = (35 - 8 \times 4) - (8 - (35 - 8 \times 4) \times 2) \times 1 = 35 \times 3 - 8 \times 13$

Given A, B > 0, set $x_1 = 1, x_2 = 0, y_1 = 0, y_2 = 1, a_1 = A, b_1 = B, i = 1.$

Repeat while $b_i > 0 : \{i = i + 1;$

 $q_i = a_{i-1} \text{div } b_{i-1}; b_i = a_{i-1} - q_i b_{i-1}; a_i = b_{i-1};$ $x_{i+1} = x_{i-1} - q_1 x_i; y_{i+1} = y_{i-1} - q_1 y_i \}.$

For all $i: Ax_i + By_i = a_i$. Final $a_i = gcd(A,B)$. If $a_i = 1$, then $x_i = A^{-1} \mod B$ and $y_i = B^{-1} \mod A$.

$Z=Y^X \mod N$

Practical Aspects of Modern Cryptography

Z=Y^X mod N

When Z is unknown, it can be efficiently computed.

Z=Y^X mod N

When X is unknown, the problem is known as the *discrete logarithm* and is generally believed to be hard to solve.

Z=Y^X mod N

When Y is unknown, the problem is known as *discrete root finding* and is generally believed to be hard to solve...

Z=Y^X mod N

... unless the factorization of N is known.

January 6, 2011

Practical Aspects of Modern Cryptography

Z=Y^X mod N

The problem is not well-studied for the case when N is unknown.

Implementation

Z=Y^X mod N

Practical Aspects of Modern Cryptography

<u>Compute Y^X and then reduce mod N.</u>

<u>Compute Y^X and then reduce mod N.</u>

If X, Y, and N each are 2,048-bit integers, Y^X consists of ~2²⁰⁵⁹ bits.

<u>Compute Y^X and then reduce mod N.</u>

If X, Y, and N each are 2,048-bit integers,
Y^X consists of ~2²⁰⁵⁹ bits.

 Since there are roughly 2²⁵⁰ particles in the universe, storage is a problem.

 Repeatedly multiplying by Y (followed each time by a reduction modulo N) X times solves the storage problem.

- Repeatedly multiplying by Y (followed each time by a reduction modulo N) X times solves the storage problem.
- However, we would need to perform ~2⁹⁰⁰ 64-bit multiplications per second to complete the computation before the sun burns out.

Multiplication by Repeated Doubling

Multiplication by Repeated Doubling

To compute $X \times Y$,

Multiplication by Repeated Doubling

To compute X × Y, compute Y, 2Y, 4Y, 8Y, 16Y,...

Multiplication by Repeated Doubling

To compute $X \times Y$,

compute Y, 2Y, 4Y, 8Y, 16Y,...

and sum up those values dictated by the binary representation of X.

Multiplication by Repeated Doubling

To compute $X \times Y$,

compute Y, 2Y, 4Y, 8Y, 16Y,...

and sum up those values dictated by the binary representation of X.

<u>Example</u>: 26Y = 2Y + 8Y + 16Y.

Exponentiation by Repeated Squaring

Exponentiation by Repeated Squaring

To compute Y^X,
Exponentiation by Repeated Squaring

To compute Y^X, compute Y, Y², Y⁴, Y⁸, Y¹⁶, ...

Exponentiation by Repeated Squaring

To compute Y^{X} ,

compute $Y, Y^2, Y^4, Y^8, Y^{16}, ...$

and multiply those values dictated by the binary representation of X.

Exponentiation by Repeated Squaring

To compute Y^{X} ,

compute $Y, Y^2, Y^4, Y^8, Y^{16}, ...$

and multiply those values dictated by the binary representation of X.

Example: $Y^{26} = Y^2 \times Y^8 \times Y^{16}$.

- We can now perform a 2,048-bit modular exponentiation using ~3,072 2,048-bit modular multiplications.
- 2,048 squarings: *y*, *y*², *y*⁴, ..., *y*²²⁰⁴⁸

~1024 "ordinary" multiplications

Large-Integer Operations

Addition and Subtraction

- Multiplication
- Division and Remainder (Mod N)
- Exponentiation

In general, adding two large integers – each consisting of *n* small blocks – requires *O*(*n*) small-integer additions.

Large-integer subtraction is similar.

In general, multiplying two large integers – each consisting of *n* small blocks – requires *O*(*n*²) small-integer multiplications and *O*(*n*) *large-integer* additions.

Careful bookkeeping can save nearly half of the small-integer multiplications (and nearly half of the time).

Recall computing Y^X mod N

 About 2/3 of the multiplications required to compute Y^X are actually squarings.

 Overall, efficient squaring can save about 1/3 of the small multiplications required for modular exponentiation.

$(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$

$(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$

Given 4 coefficients A, B, C, and D,

$(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$

Given 4 coefficients A, B, C, and D, we need to compute 3 values:

$(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$
$(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

$(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

$(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

(A+B)(C+D) = AC + AD + BC + BD

January 6, 2011

Practical Aspects of Modern Cryptography

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

> (A+B)(C+D) = AC + AD + BC + BD(A+B)(C+D) - AC - BD = AD + BC

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

 $(Ax+B)(Cx+D) = ACx^2 + (AD+BC)x + BD$ 4 multiplications, 1 addition

 This can be done on integers as well as on polynomials, but it's not as nice on integers because of carries.

• The larger the integers, the larger the benefit.

 $(A \times 2^{k}+B)(C \times 2^{k}+D) =$ $AC \times 2^{2k} + (AD+BC) \times 2^{k} + BD$ 4 multiplications, 1 addition

Chinese Remaindering

If $X = A \mod P$, $X = B \mod Q$, and gcd(P,Q) = 1, then $X \mod P \cdot Q$ can be computed as

 $X = A \cdot Q \cdot (Q^{-1} \mod P) + B \cdot P \cdot (P^{-1} \mod Q).$

January 6, 2011

Practical Aspects of Modern Cryptography

Chinese Remaindering

If N = PQ, then a computation mod N can be accomplished by performing the same computation mod P and again mod Q and then using Chinese Remaindering to derive the answer to the mod N computation.

Chinese Remaindering

Since modular exponentiation of *n*-bit integers requires $O(n^3)$ time, performing two modular exponentiations on half size values requires only about one quarter of the time of a single *n*-bit modular exponentiation.

Generally, computing (A×B) mod N requires much more than twice the time to compute A×B.

Generally, computing (A×B) mod N requires much more than twice the time to compute A×B.

Large-integer division is ...

Generally, computing (A×B) mod N requires much more than twice the time to compute A×B.

Large-integer division is ... slow ...

Generally, computing (A×B) mod N requires much more than twice the time to compute A×B.

Large-integer division is ... slow ... cumbersome

Generally, computing (A×B) mod N requires much more than twice the time to compute A×B.

Large-integer division is ... slow ... cumbersome ... disgusting

Generally, computing (A×B) mod N requires much more than twice the time to compute A×B.

Large-integer division is ... slow ... cumbersome ... disgusting ... wretched

The Montgomery Method

- The Montgomery Method performs a domain transform to a domain in which the modular reduction operation can be achieved by multiplication and simple truncation.
- Since a single modular exponentiation requires many modular multiplications and reductions, transforming the arguments is well justified.

Montgomery Multiplication

- Let A, B, and M be *n*-block integers represented in base x with $0 \le M < x^n$.
- Let $R = x^n$. GCD(R,M) = 1.
- The *Montgomery Product* of A and B modulo M is the integer ABR⁻¹ mod M.
- Let $M' = -M^{-1} \mod R$ and $S = ABM' \mod R$.
- Fact: $(AB+SM)/R \equiv ABR^{-1} \pmod{M}$.

Using the Montgomery Product

- The Montgomery Product ABR⁻¹ mod M can be computed in the time required for two ordinary large-integer multiplications.
- Montgomery transform: $A \rightarrow AR \mod M$.
- The Montgomery product of (AR mod M) and (BR mod M) is (ABR mod M).

Z=Y^X mod N

Practical Aspects of Modern Cryptography

Informally, $F : X \rightarrow Y$ is a *one-way* if

• Given x, y = F(x) is easily computable.

Given y, it is difficult to find any x for which y = F(x).

The family of functions $F_{Y,N}(X) = Y^X \mod N$ is *believed* to be one-way for *most* N and Y.

The family of functions

 $F_{Y,N}(X) = Y^X \mod N$

is *believed* to be one-way for *most* N and Y.

No one has ever *proven* a function to be one-way, and doing so would, at a minimum, yield as a consequence that P≠NP.

When viewed as a two-argument function, the (candidate) one-way function

 $F_N(Y,X) = Y^X \mod N$

also satisfies a useful additional property which has been termed *quasi-commutivity:*

 $F(F(Y,X_1),X_2) = F(F(Y,X_2),X_1)$

since $Y^{X_1X_2} = Y^{X_2X_1}$.

<u>Alice</u>

Bob

Alice

 Randomly select a large integer *a* and send A = Y^a mod N.

Bob

 Randomly select a large integer b and send B = Y^b mod N.

January 6, 2011

Practical Aspects of Modern Cryptography

Alice

 Randomly select a large integer *a* and send A = Y^a mod N.

Bob

 Randomly select a large integer b and send B = Y^b mod N.
Alice

- Randomly select a large integer *a* and send A = Y^a mod N.
- Compute the key
 K = B^a mod N.

Bob

- Randomly select a large integer b and send B = Y^b mod N.
- Compute the key
 K = A^b mod N.

Alice

- Randomly select a large integer *a* and send A = Y^a mod N.
- Compute the key
 K = B^a mod N.

Bob

- Randomly select a large integer b and send B = Y^b mod N.
- Compute the key
 K = A^b mod N.

$$\mathbf{B}^a = \mathbf{Y}^{ba} = \mathbf{Y}^{ab} = \mathbf{A}^b$$

What does Eve see?

What does Eve see?

Y, Y^a, Y^b

What does Eve see?

Y, Y^a, Y^b

... but the exchanged key is Y^{ab}.

What does Eve see?

Y, Y^a, Y^b

... but the exchanged key is Y^{ab}. Belief: Given Y, Y^a, Y^b it is difficult to compute Y^{ab}.

What does Eve see?

Y, Y^a, Y^b

- ... but the exchanged key is Y^{ab}.
- Belief: Given Y, Y^a, Y^b it is difficult to compute Y^{ab} .

Contrast with discrete logarithm assumption: Given Y, Y^a it is difficult to compute *a*.

More on Quasi-Commutivity

Quasi-commutivity has additional applications.

- decentralized digital signatures
- membership testing
- digital time-stamping

One-Way Trap-Door Functions

Z=Y^X mod N

One-Way Trap-Door Functions

Z=Y^X mod N

Recall that this equation is solvable for Y if the factorization of N is known, but is *believed* to be hard otherwise.

<u>Alice</u>

<u>Anyone</u>

Alice

 Select two large random primes P & Q.

Alice

- Select two large random primes P & Q.
- Publish the product N=PQ.

<u>Alice</u>

- Select two large random primes P & Q.
- Publish the product N=PQ.

Anyone

 To send message Y to Alice, compute Z=Y^X mod N.

<u>Alice</u>

- Select two large random primes P & Q.
- Publish the product N=PQ.

Anyone

- To send message Y to Alice, compute Z=Y^X mod N.
- Send Z and X to Alice.

<u>Alice</u>

- Select two large random primes P & Q.
- Publish the product N=PQ.

Anyone

- To send message Y to Alice, compute Z=Y^X mod N.
- Send Z and X to Alice.
- Use knowledge of P &
 Q to compute Y.

In practice, the exponent X is almost always fixed to be $X = 65537 = 2^{16} + 1$.

Some RSA Details

When N=PQ is the product of distinct primes, $Y^X \mod N = Y$ whenever $X \mod (P-1)(Q-1) = 1 \text{ and } 0 \le Y < N.$

Some RSA Details

When N=PQ is the product of distinct primes, $Y^{X} \mod N = Y$ whenever X mod (P-1)(Q-1) = 1 and $0 \le Y \le N$. Alice can easily select integers E and D such that $E \times D \mod (P-1)(Q-1) = 1.$

Some RSA Details

Encryption: $E(Y) = Y^{E} \mod N$. Decryption: $D(Y) = Y^{D} \mod N$.

> D(E(Y))= (Y^E mod N)^D mod N = Y^{ED} mod N = Y

An additional property

An additional property D(E(Y)) = Y^{ED} mod N = Y

An additional property $D(E(Y)) = Y^{ED} \mod N = Y$ $E(D(Y)) = Y^{DE} \mod N = Y$

An additional property $D(E(Y)) = Y^{ED} \mod N = Y$ $E(D(Y)) = Y^{DE} \mod N = Y$ Only Alice (knowing the factorization of N) knows D. Hence only Alice can compute $D(Y) = Y^{D} \mod N$.

An additional property $D(E(Y)) = Y^{ED} \mod N = Y$ $E(D(Y)) = Y^{DE} \mod N = Y$

Only Alice (knowing the factorization of N) knows D. Hence only Alice can compute D(Y) = Y^D mod N.

This D(Y) serves as Alice's signature on Y.

Public Key Directory

<u>Name</u>	Public Key
Alice	N _A
Bob	N _B
Carol	N _C

$$\label{eq:Encryption} \begin{split} & \underbrace{Encryption} \\ & E_A(Y){=}Y^E \bmod N_A \\ & E_B(Y){=}Y^E \bmod N_B \\ & E_C(Y){=}Y^E \bmod N_C \end{split}$$

Practical Aspects of Modern Cryptography

Public Key Directory

<u>Name</u>	Public Key	Encryption	
Alice	N _A	$E_A(Y)=Y^E \mod N_A$	
Bob	N _B	$E_B(Y)=Y^E \mod N_B$	
Carol	N _C	$E_{C}(Y)=Y^{E} \mod N_{C}$	
:			
(Recall that E is commonly fixed to be			
E=65537.)			

Certificate Authority

Trust Chains

Alice certifies Bob's key. Bob certifies Carol's key.

If I trust Alice should I accept Carol's key?

How can I use RSA to *authenticate* someone's identity?

How can I use RSA to *authenticate* someone's identity?

If Alice's public key E_A , just pick a random message *m* and send $E_A(m)$.

How can I use RSA to *authenticate* someone's identity?

If Alice's public key E_A , just pick a random message *m* and send $E_A(m)$.

If *m* comes back, I must be talking to Alice.

January 6, 2011

Should Alice be happy with this method of authentication?
Authentication

Should Alice be happy with this method of authentication?

Bob sends Alice the authentication string y = "I owe Bob \$1,000,000 - signed Alice."

Authentication

Should Alice be happy with this method of authentication?

Bob sends Alice the authentication string y = "I owe Bob \$1,000,000 - signed Alice."

Alice dutifully authenticates herself by decrypting (putting her signature on) y.

Authentication

What if Alice only returns authentication queries when the decryption has a certain format?

RSA Cautions

Is it reasonable to sign/decrypt something given to you by someone else?

Note that RSA is multiplicative. Can this property be used/abused?

RSA Cautions

$D(Y_1) \times D(Y_2) = D(Y_1 \times Y_2)$

Thus, if I've decrypted (or signed) Y_1 and Y_2 , I've also decrypted (or signed) $Y_1 \times Y_2$.

The Hastad Attack

Given $E_1(x) = x^3 \mod n_1$ $E_2(x) = x^3 \mod n_2$ $E_3(x) = x^3 \mod n_3$ one can easily compute *x*.

The Bleichenbacher Attack

PKCS#1 Message Format:

00 01 XX XX ... XX 00 YY YY ... YY

random non-zero bytes

message

"Man-in-the-Middle" Attacks

RSA can be used to encrypt any data.

RSA can be used to encrypt any data.

 Public-key (asymmetric) cryptography is very inefficient when compared to traditional private-key (symmetric) cryptography.

For efficiency, one generally uses RSA (or another public-key algorithm) to transmit a private (symmetric) key.

For efficiency, one generally uses RSA (or another public-key algorithm) to transmit a private (symmetric) key.

The private *session* key is used to encrypt any subsequent data.

For efficiency, one generally uses RSA (or another public-key algorithm) to transmit a private (symmetric) key.

The private *session* key is used to encrypt any subsequent data.

Digital signatures are only used to sign a *digest* of the message.