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January 6, 2011 Practical Aspects of Modern Cryptography 

Cryptography is ... 

Protecting Privacy of Data 

Authentication of Identities 

Preservation of Integrity 

 

… basically any protocols designed to operate in 
an environment absent of universal trust. 
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Characters 
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Basic Communication 

Hello

Alice talking to Bob 
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Another Character 

Eve 
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Basic Communication Problem 

Hello

    Eve listening to  
Alice talking to Bob 
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Two-Party Environments 

Alice                Bob 
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Remote Coin Flipping 

 

Alice and Bob decide to make a decision 
by flipping a coin. 

 

Alice and Bob are not in the same place. 
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Ground Rule 

Protocol must be asynchronous. 
 

We cannot assume simultaneous actions. 

 

Players must take turns. 
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Is Remote Coin Flipping Possible? 
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Is Remote Coin Flipping Possible? 

Two-part answer: 
 

 

13 



January 6, 2011 Practical Aspects of Modern Cryptography 

Is Remote Coin Flipping Possible? 

Two-part answer: 

 

NO – I will sketch a formal proof. 
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Is Remote Coin Flipping Possible? 

Two-part answer: 

 

NO – I will sketch a formal proof. 

 

YES – I will provide an effective protocol. 
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A Protocol Flow Tree 

A: 

B: 

A: 

B: 
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Pruning the Tree 
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A Protocol Flow Tree 

A: 

B: 

A: 

B: 

B 

B A 

B A 

A B 

B A B B 

B 

B A 

B A 

B B 

A A B 

20 



January 6, 2011 Practical Aspects of Modern Cryptography 

A Protocol Flow Tree 
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A Protocol Flow Tree 
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A Protocol Flow Tree 
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A Protocol Flow Tree 
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A Protocol Flow Tree 

A 
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Completing the Pruning 

When the pruning is complete one will end 
up with either 
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Completing the Pruning 

When the pruning is complete one will end 
up with either 

 

 a winner before the protocol has begun, or 
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Completing the Pruning 

When the pruning is complete one will end 
up with either 

 

 a winner before the protocol has begun, or 

 

 a useless infinite game. 
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Conclusion of Part I 

Remote coin flipping 
is utterly 
impossible!!! 
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How to Remotely Flip a Coin 

The INTEGERS 

 

                            0        4        8        12        16  … 

                               1        5        9        13        17  … 
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How to Remotely Flip a Coin 

The INTEGERS 

 

                            0        4        8        12        16  … 

                               1        5        9        13        17  … 

                                  2        6        10      14        18  … 
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How to Remotely Flip a Coin 

The INTEGERS 

 

                            0        4        8        12        16  … 

                               1        5        9        13        17  … 

                                  2        6        10      14        18  … 

                                     3        7        11      15        19  … 
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How to Remotely Flip a Coin 

The INTEGERS 

 

                            0        4        8        12        16  … 

                               1        5        9        13        17  … 

                                  2        6        10      14        18  … 

                                     3        7        11      15        19  … 

Even 
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How to Remotely Flip a Coin 

The INTEGERS 

 

                            0        4        8        12        16  … 

                               1        5        9        13        17  … 

                                  2        6        10      14        18  … 

                                     3        7        11      15        19  … 

4n + 1: 

4n - 1: 
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How to Remotely Flip a Coin 

The INTEGERS 

 

                            0        4        8        12        16  … 

                               1        5        9        13        17  … 

                                  2        6        10      14        18  … 

                                     3        7        11      15        19  … 

Type +1: 

Type -1: 
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How to Remotely Flip a Coin 

Fact 1 
 

Multiplying two (odd) integers of the same type 
always yields a product of Type +1. 

 

(4p+1)(4q+1) = 16pq+4p+4q+1 = 4(4pq+p+q)+1 
 

(4p–1)(4q–1) = 16pq–4p–4q+1 = 4(4pq–p–q)+1 
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How to Remotely Flip a Coin 

Fact 2 
 

There is no known method (other than 
factoring) to distinguish a product of two 
“Type +1” integers from a product of two 
“Type –1” integers. 
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How to Remotely Flip a Coin 

Fact 3 
 

Factoring large integers is believed to be 
much harder than multiplying large 
integers. 
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How to Remotely Flip a Coin 
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How to Remotely Flip a Coin 

Alice Bob 
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How to Remotely Flip a Coin 

Alice 

 Randomly select a bit 
b{1} and two large 
integers P and Q – both of 
type b. 

Bob 
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How to Remotely Flip a Coin 

Alice 

 Randomly select a bit 
b{1} and two large 
integers P and Q – both of 
type b. 

 Compute N = PQ. 

Bob 

 

52 



January 6, 2011 Practical Aspects of Modern Cryptography 

How to Remotely Flip a Coin 

Alice 

 Randomly select a bit 
b{1} and two large 
integers P and Q – both of 
type b. 

 Compute N = PQ. 

 Send N to Bob. 

Bob 
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How to Remotely Flip a Coin 

Alice                Bob 

N 
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How to Remotely Flip a Coin 

Alice 

 Randomly select a bit 
b{1} and two large 
integers P and Q – both of 
type b. 

 Compute N = PQ. 

 Send N to Bob. 

Bob 
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How to Remotely Flip a Coin 

Bob 

 After receiving N from 
Alice, guess the value of b 
and send this guess to 
Alice. 

Alice 

 Randomly select a bit 
b{1} and two large 
integers P and Q – both of 
type b. 

 Compute N = PQ. 

 Send N to Bob. 
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How to Remotely Flip a Coin 

Alice                Bob 

b 
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How to Remotely Flip a Coin 

Bob 

 After receiving N from 
Alice, guess the value of b 
and send this guess to 
Alice. 

Alice 

 Randomly select a bit 
b{1} and two large 
integers P and Q – both of 
type b. 

 Compute N = PQ. 

 Send N to Bob. 
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How to Remotely Flip a Coin 

Bob 

 After receiving N from 
Alice, guess the value of b 
and send this guess to 
Alice. 

Bob wins if and only 
if he correctly guesses 
the value of b. 

Alice 

 Randomly select a bit 
b{1} and two large 
integers P and Q – both of 
type b. 

 Compute N = PQ. 

 Send N to Bob. 
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How to Remotely Flip a Coin 

Bob 

 After receiving N from 
Alice, guess the value of b 
and send this guess to 
Alice. 

Bob wins if and only 
if he correctly guesses 
the value of b. 

Alice 

 Randomly select a bit 
b{1} and two large 
integers P and Q – both of 
type b. 

 Compute N = PQ. 

 Send N to Bob. 

    After receiving b from 
Bob, reveal P and Q. 
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How to Remotely Flip a Coin 

Alice                Bob 

P,Q 
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How to Remotely Flip a Coin 

Bob 

 After receiving N from 
Alice, guess the value of b 
and send this guess to 
Alice. 

Bob wins if and only 
if he correctly guesses 
the value of b. 

Alice 

 Randomly select a bit 
b{1} and two large 
integers P and Q – both of 
type b. 

 Compute N = PQ. 

 Send N to Bob. 

    After receiving b from 
Bob, reveal P and Q. 
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Let’s Play 

The INTEGERS 

 

                            0        4        8        12        16  … 

                               1        5        9        13        17  … 

                                  2        6        10      14        18  … 

                                     3        7        11      15        19  … 

Type +1: 

Type -1: 
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How to Remotely Flip a Coin 

Bob 

 After receiving N from 
Alice, guess the value of b 
and send this guess to 
Alice. 

Bob wins if and only 
if he correctly guesses 
the value of b. 

Alice 

 Randomly select a bit 
b{1} and two large 
integers P and Q – both of 
type b. 

 Compute N = PQ. 

 Send N to Bob. 

    After receiving b from 
Bob, reveal P and Q. 
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How to Remotely Flip a Coin 

Bob 

 After receiving N from 
Alice, guess the value of b 
and send this guess to 
Alice. 

Bob wins if and only 
if he correctly guesses 
the value of b. 

Alice 

 Randomly select a bit 
b{1} and two large 
primes    P and Q – both of 
type b. 

 Compute N = PQ. 

 Send N to Bob. 

    After receiving b from 
Bob, reveal P and Q. 
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Checking Primality  

Basic result from group theory – 

If p is a prime, then for integers a such that     
0 < a < p, then a p 

-
 
1 mod p = 1. 

This is almost never true when p is composite. 
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How are the Answers Reconciled? 
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The impossibility proof assumed 
unlimited computational ability. 

How are the Answers Reconciled? 
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The impossibility proof assumed 
unlimited computational ability. 

 

The protocol is not 50/50 – Bob has a 
small advantage. 

How are the Answers Reconciled? 
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Applications of Remote Flipping 

 

Remote Card Playing 

 

Internet Gambling 

 

Various “Fair” Agreement Protocols 
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Bit Commitment 

We have implemented remote coin flipping 
via bit commitment. 

 

Commitment protocols can also be used for 

 Sealed bidding 

Undisclosed contracts 

Authenticated predictions 
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One-Way Functions 

We have implemented bit commitment via 
one-way functions. 

 

One-way functions can be used for 

Authentication 

Data integrity 

 Strong “randomness” 
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One-Way Functions 
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One-Way Functions 

Two basic classes of one-way functions 

 

Mathematical 

Multiplication:  Z=XY 

76 



January 6, 2011 Practical Aspects of Modern Cryptography 

One-Way Functions 

Two basic classes of one-way functions 

 

Mathematical 

Multiplication:  Z=XY 

Modular Exponentiation:  Z = YX mod N 
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One-Way Functions 

Two basic classes of one-way functions 

 

Mathematical 

Multiplication:  Z=X×Y 

Modular Exponentiation:  Z = YX mod N 

Ugly 
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The Fundamental Equation 

 

Z=YX mod N 
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Modular Arithmetic 
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Modular Arithmetic 

Z mod N is the integer remainder when Z is 
divided by N. 
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Modular Arithmetic 

Z mod N is the integer remainder when Z is 
divided by N. 

The Division Theorem 

For all integers Z and N>0, there exist 
unique integers Q and R such that                 
Z = QN + R and 0  R  N. 
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Modular Arithmetic 

Z mod N is the integer remainder when Z is 
divided by N. 

The Division Theorem 

For all integers Z and N>0, there exist 
unique integers Q and R such that                 
Z = QN + R and 0  R  N. 

By definition, this unique R = Z mod N. 
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Modular Arithmetic 

 To compute (A+B) mod N, 

compute (A+B) and take the result mod N. 
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Modular Arithmetic 

 To compute (A+B) mod N, 

compute (A+B) and take the result mod N. 

 To compute (A-B) mod N, 

compute (A-B) and take the result mod N. 
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Modular Arithmetic 

 To compute (A+B) mod N, 

compute (A+B) and take the result mod N. 

 To compute (A-B) mod N, 

compute (A-B) and take the result mod N. 

 To compute (A×B) mod N, 

compute (A×B) and take the result mod N. 
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Modular Arithmetic 

 To compute (A+B) mod N, 

compute (A+B) and take the result mod N. 

 To compute (A-B) mod N, 

compute (A-B) and take the result mod N. 

 To compute (A×B) mod N, 

compute (A×B) and take the result mod N. 

 To compute (A÷B) mod N, … 
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Modular Division 

What is the value of (1÷2) mod 7? 

    We need a solution to 2x mod 7 = 1. 
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Modular Division 

What is the value of (1÷2) mod 7? 

    We need a solution to 2x mod 7 = 1. 

Try x = 4. 
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Modular Division 

What is the value of (1÷2) mod 7? 

    We need a solution to 2x mod 7 = 1. 

Try x = 4. 

 

What is the value of (7÷5) mod 11? 

    We need a solution to 5x mod 11 = 7. 
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Modular Division 

What is the value of (1÷2) mod 7? 

    We need a solution to 2x mod 7 = 1. 

Try x = 4. 

 

What is the value of (7÷5) mod 11? 

    We need a solution to 5x mod 11 = 7. 

Try x = 8. 
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Modular Division 
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Modular Division 

Is modular division always well-defined? 
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Modular Division 

Is modular division always well-defined? 
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Modular Division 

Is modular division always well-defined? 

(1÷3) mod 6 = ? 

3x mod 6 = 1 has no solution! 
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Modular Division 

Is modular division always well-defined? 

(1÷3) mod 6 = ? 

3x mod 6 = 1 has no solution! 

 

Fact 

(A÷B) mod N always has a solution when 
gcd(B,N) = 1. 
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Modular Division 

Fact 1 

(A÷B) mod N always has a solution when 
gcd(B,N) = 1. 
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Modular Division 

Fact 1 

(A÷B) mod N always has a solution when 
gcd(B,N) = 1. 

 

Fact 2 

(A÷B) mod N never has a solution when 

 gcd(A,B) = 1 and gcd(B,N) ≠ 1. 
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Greatest Common Divisors 
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Greatest Common Divisors 

gcd(A , B) = gcd(B , A – B) 
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Greatest Common Divisors 

gcd(A , B) = gcd(B , A – B) 

    since any common factor of A and B 

 is also a factor of A – B 

 and 

since any common factor of B and A – B 

is also a factor of A. 
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Greatest Common Divisors 

gcd(A , B) = gcd(B , A – B) 

 

gcd(21,12) = gcd(12,9) = gcd(9,3)  

    = gcd(3,6) = gcd(6,3) = gcd(3,3) 

    = gcd(3,0) = 3 
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Greatest Common Divisors 

gcd(A , B) = gcd(B , A – B) 
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Greatest Common Divisors 

gcd(A , B) = gcd(B , A – B) 

gcd(A , B) = gcd(B , A – kB) for any integer k. 
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Greatest Common Divisors 

gcd(A , B) = gcd(B , A – B) 

gcd(A , B) = gcd(B , A – kB) for any integer k. 

gcd(A , B) = gcd(B , A mod B) 
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Greatest Common Divisors 

gcd(A , B) = gcd(B , A – B) 

gcd(A , B) = gcd(B , A – kB) for any integer k. 

gcd(A , B) = gcd(B , A mod B) 

 

 gcd(21,12) = gcd(12,9) = gcd(9,3) 

    = gcd(3,0) = 3 
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Extended Euclidean Algorithm 

Given integers A and B, find integers X and Y 
such that AX + BY = gcd(A,B). 
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Extended Euclidean Algorithm 

Given integers A and B, find integers X and Y 
such that AX + BY = gcd(A,B). 

 

When gcd(A,B) = 1, solve AX mod B = 1,   by 
finding X and Y such that 

AX + BY = gcd(A,B) = 1. 
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Extended Euclidean Algorithm 

Given integers A and B, find integers X and Y 
such that AX + BY = gcd(A,B). 

 

When gcd(A,B) = 1, solve AX mod B = 1,   by 
finding X and Y such that 

AX + BY = gcd(A,B) = 1. 
 

Compute (C÷A) mod B as C×(1÷A) mod B. 
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Extended Euclidean Algorithm 

 gcd(35, 8) =  

     gcd(8, 35 mod 8) = gcd(8, 3) = 

     gcd(3, 8 mod 3) = gcd(3, 2) = 

     gcd(2, 3 mod 2) = gcd(2, 1) = 

     gcd(1, 2 mod 1) = gcd(1, 0) = 1 
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Extended Euclidean Algorithm 

 35 = 8  4 + 3 
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Extended Euclidean Algorithm 

 35 = 8  4 + 3 

 

   8 = 3  2 + 2 
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Extended Euclidean Algorithm 

 35 = 8  4 + 3 

 

   8 = 3  2 + 2 

 

   3 = 2  1 + 1 
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Extended Euclidean Algorithm 

 35 = 8  4 + 3 

 

   8 = 3  2 + 2 

 

   3 = 2  1 + 1 

 

   2 = 1  2 + 0 
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Extended Euclidean Algorithm 

 35 = 8  4 + 3                    3 = 35 – 8  4 

 

   8 = 3  2 + 2                    2 = 8 – 3  2 

 

   3 = 2  1 + 1                    1 = 3 – 2  1 

 

   2 = 1  2 + 0 
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Extended Euclidean Algorithm 

3 = 35 – 8  4 

 

2 = 8 – 3  2 

 

1 = 3 – 2  1 
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Extended Euclidean Algorithm 

3 = 35 – 8  4 

 

2 = 8 – 3  2 

 

1 = 3 – 2  1 = (35 – 8  4) – (8 – 3  2)  1 
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Extended Euclidean Algorithm 

3 = 35 – 8  4 

 

2 = 8 – 3  2 

 

1 = 3 – 2  1 = (35 – 8  4) – (8 – 3  2)  1   = 
(35 – 8  4) – (8 – (35 – 8  4)  2)  1 
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Extended Euclidean Algorithm 

3 = 35 – 8  4 

 

2 = 8 – 3  2 

 

1 = 3 – 2  1 = (35 – 8  4) – (8 – 3  2)  1   = 
(35 – 8  4) – (8 – (35 – 8  4)  2)  1   = 35  
3 – 8  13 
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Extended Euclidean Algorithm 

Given 𝐴, 𝐵 > 0, set 𝑥1 = 1, 𝑥2 = 0, 𝑦1 = 0, 𝑦2 = 1, 
𝑎1 = 𝐴, 𝑏1 = 𝐵,  𝑖 = 1. 

 

Repeat while 𝑏𝑖 > 0 : {𝑖 = 𝑖 + 1;  

    𝑞𝑖 = 𝑎𝑖−1div 𝑏𝑖−1; 𝑏𝑖 = 𝑎𝑖−1 − 𝑞𝑖𝑏𝑖−1; 𝑎𝑖 = 𝑏𝑖−1; 

    𝑥𝑖+1 = 𝑥𝑖−1 − 𝑞1𝑥𝑖; 𝑦𝑖+1 = 𝑦𝑖−1 − 𝑞1𝑦𝑖}. 
 

For all 𝑖: 𝐴𝑥𝑖 +  𝐵𝑦𝑖 =  𝑎𝑖.  Final 𝑎𝑖 = gcd(𝐴,𝐵). 

If 𝑎𝑖 = 1, then 𝑥𝑖 = 𝐴−1 mod 𝐵 and 𝑦𝑖 =  𝐵−1 mod 𝐴. 

121 



January 6, 2011 Practical Aspects of Modern Cryptography 

The Fundamental Equation 

 

Z=YX mod N 
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The Fundamental Equation 

 

Z=YX mod N 
When Z is unknown, it can be efficiently 

computed. 
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The Fundamental Equation 

 

Z=YX mod N 
When X is unknown, the problem is known 

as the discrete logarithm and is generally 
believed to be hard to solve. 
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The Fundamental Equation 

 

Z=YX mod N 
When Y is unknown, the problem is known 

as discrete root finding and is generally 
believed to be hard to solve... 
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The Fundamental Equation 

 

Z=YX mod N 
… unless the factorization of N is known.  
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The Fundamental Equation 

 

Z=YX mod N 
The problem is not well-studied for the 

case when N is unknown. 
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Implementation 

 

Z=YX mod N 
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How to compute YX mod N 

129 



January 6, 2011 Practical Aspects of Modern Cryptography 

How to compute YX mod N 

Compute YX and then reduce mod N. 
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How to compute YX mod N 

Compute YX and then reduce mod N. 

 

If X, Y, and N each are 2,048-bit integers,  
YX  consists of ~22059 bits. 
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How to compute YX mod N 

Compute YX and then reduce mod N. 

 

If X, Y, and N each are 2,048-bit integers,  
YX  consists of ~22059 bits. 

 

Since there are roughly 2250 particles in 
the universe, storage is a problem. 
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How to compute YX mod N 
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How to compute YX mod N 

Repeatedly multiplying by Y (followed 
each time by a reduction modulo N) X 
times solves the storage problem. 
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How to compute YX mod N 

Repeatedly multiplying by Y (followed 
each time by a reduction modulo N) X 
times solves the storage problem. 
 

However, we would need to perform 
~2900 64-bit multiplications per second to 
complete the computation before the sun 
burns out. 
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How to compute YX mod N 
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How to compute YX mod N 

Multiplication by Repeated Doubling 
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How to compute YX mod N 

Multiplication by Repeated Doubling 
 

To compute X × Y, 
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How to compute YX mod N 

Multiplication by Repeated Doubling 
 

To compute X × Y, 

   compute        Y, 2Y, 4Y, 8Y, 16Y,…  
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How to compute YX mod N 

Multiplication by Repeated Doubling 
 

To compute X × Y, 

   compute        Y, 2Y, 4Y, 8Y, 16Y,…  

   and sum up those values dictated by the 
binary representation of X. 
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How to compute YX mod N 

Multiplication by Repeated Doubling 
 

To compute X × Y, 

   compute        Y, 2Y, 4Y, 8Y, 16Y,…  

   and sum up those values dictated by the 
binary representation of X. 

 

Example:  26Y = 2Y + 8Y + 16Y. 
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How to compute YX mod N 
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How to compute YX mod N 

Exponentiation by Repeated Squaring 
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How to compute YX mod N 

Exponentiation by Repeated Squaring 
 

To compute YX, 
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How to compute YX mod N 

Exponentiation by Repeated Squaring 
 

To compute YX, 

   compute        Y, Y2, Y4, Y8, Y16, …  
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How to compute YX mod N 

Exponentiation by Repeated Squaring 
 

To compute YX, 

   compute        Y, Y2, Y4, Y8, Y16, …  

   and multiply those values dictated by the 
binary representation of X. 
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How to compute YX mod N 

Exponentiation by Repeated Squaring 
 

To compute YX, 

   compute        Y, Y2, Y4, Y8, Y16, …  

   and multiply those values dictated by the 
binary representation of X. 

 

Example:  Y26 = Y2 × Y8 × Y16. 
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How to compute YX mod N 

We can now perform a 2,048-bit modular 
exponentiation using ~3,072 2,048-bit 
modular multiplications. 

 

2,048 squarings:  y, y2, y4, …, y22048
 

 

~1024 “ordinary” multiplications 
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Large-Integer Operations 

 

Addition and Subtraction 

Multiplication 

Division and Remainder (Mod N) 

Exponentiation 
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Large-Integer Addition 

 

+ 
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Large-Integer Addition 

 

+ 

152 



January 6, 2011 Practical Aspects of Modern Cryptography 

Large-Integer Addition 
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Large-Integer Addition 

 

+ 
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Large-Integer Addition 

 

+ 
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Large-Integer Addition 

 

In general, adding two large integers – 
each consisting of n small blocks – 
requires O(n) small-integer additions. 

 

Large-integer subtraction is similar. 
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Large-Integer Multiplication 
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Large-Integer Multiplication 
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Large-Integer Multiplication 
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Large-Integer Multiplication 
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Large-Integer Multiplication 
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Large-Integer Multiplication 
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Large-Integer Multiplication 

 

In general, multiplying two large integers – 
each consisting of n small blocks – 
requires O(n2) small-integer 
multiplications and O(n) large-integer 
additions. 
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Large-Integer Squaring 
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Large-Integer Squaring 
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Large-Integer Squaring 
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Large-Integer Squaring 

 

Careful bookkeeping can save nearly 
half of the small-integer 
multiplications (and nearly half of the 
time). 

167 



January 6, 2011 Practical Aspects of Modern Cryptography 

Recall computing YX mod N 

About 2/3 of the multiplications required 
to compute YX are actually squarings. 

 

Overall, efficient squaring can save about 
1/3 of the small multiplications required 
for modular exponentiation. 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

 

Given 4 coefficients A, B, C, and D, 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

 

Given 4 coefficients A, B, C, and D, 

 we need to compute 3 values: 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

 

Given 4 coefficients A, B, C, and D, 

 we need to compute 3 values: 

 AC, AD+BC, and BD. 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

 

Given 4 coefficients A, B, C, and D, 

 we need to compute 3 values: 

 AC, AD+BC, and BD. 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

 

Given 4 coefficients A, B, C, and D, 

 we need to compute 3 values: 

 AC, AD+BC, and BD. 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

 

Given 4 coefficients A, B, C, and D, 

 we need to compute 3 values: 

 AC, AD+BC, and BD. 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

4 multiplications, 1 addition 
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4 multiplications, 1 addition 
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Karatsuba Multiplication 
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Karatsuba Multiplication 
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4 multiplications, 1 addition 
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Karatsuba Multiplication 
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4 multiplications, 1 addition 
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Karatsuba Multiplication 
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4 multiplications, 1 addition 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

4 multiplications, 1 addition 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

4 multiplications, 1 addition 

 

(A+B)(C+D) = AC + AD + BC + BD 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

4 multiplications, 1 addition 

 

(A+B)(C+D) = AC + AD + BC + BD 

(A+B)(C+D) – AC – BD = AD + BC 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

4 multiplications, 1 addition 

 

(A+B)(C+D) = AC + AD + BC + BD 

(A+B)(C+D) – AC – BD = AD + BC 

3 multiplications, 2 additions, 2 subtractions 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

4 multiplications, 1 addition 

 

(A+B)(C+D) = AC + AD + BC + BD 

(A+B)(C+D) – AC – BD = AD + BC 

3 multiplications, 2 additions, 2 subtractions 
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Karatsuba Multiplication 
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4 multiplications, 1 addition 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

4 multiplications, 1 addition 

 

(A+B)(C+D) = AC + AD + BC + BD 

(A+B)(C+D) – AC – BD = AD + BC 

3 multiplications, 2 additions, 2 subtractions 
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Karatsuba Multiplication 
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4 multiplications, 1 addition 

 

(A+B)(C+D) = AC + AD + BC + BD 

(A+B)(C+D) – AC – BD = AD + BC 

3 multiplications, 2 additions, 2 subtractions 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

4 multiplications, 1 addition 

 

(A+B)(C+D) = AC + AD + BC + BD 

(A+B)(C+D) – AC – BD = AD + BC 

3 multiplications, 2 additions, 2 subtractions 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

4 multiplications, 1 addition 

 

(A+B)(C+D) = AC + AD + BC + BD 

(A+B)(C+D) – AC – BD = AD + BC 

3 multiplications, 2 additions, 2 subtractions 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

4 multiplications, 1 addition 

 

(A+B)(C+D) = AC + AD + BC + BD 

(A+B)(C+D) – AC – BD = AD + BC 

3 multiplications, 2 additions, 2 subtractions 
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Karatsuba Multiplication 

 

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD 

4 multiplications, 1 addition 

 

(A+B)(C+D) = AC + AD + BC + BD 

(A+B)(C+D) – AC – BD = AD + BC 

3 multiplications, 2 additions, 2 subtractions 
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Karatsuba Multiplication 

 

This can be done on integers as well as on 
polynomials, but it’s not as nice on 
integers because of carries. 

 

The larger the integers, the larger the 
benefit. 
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Karatsuba Multiplication 

(A2k+B)(C2k+D) = 

 AC22k + (AD+BC)2k + BD 

4 multiplications, 1 addition 

 

(A+B)(C+D) = AC + AD + BC + BD 

(A+B)(C+D) – AC – BD = AD + BC 

3 multiplications, 2 additions, 2 subtractions 
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Chinese Remaindering 

 

If X = A mod P, X = B mod Q, and gcd(P,Q) = 1, 
then X mod P·Q can be computed as 

 

X = A·Q·(Q-1 mod P) + B·P·(P-1 mod Q). 
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Chinese Remaindering 

If N = PQ, then a computation mod N can be 
accomplished by performing the same 
computation mod P and again mod Q and then 
using Chinese Remaindering to derive the 
answer to the mod N computation. 
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Chinese Remaindering 

Since modular exponentiation of n-bit integers 
requires O(n3) time, performing two modular 
exponentiations on half size values requires 
only about one quarter of the time of a single 
n-bit modular exponentiation. 
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Modular Reduction 

Generally, computing (AB) mod N requires 
much more than twice the time to compute 
AB. 
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Modular Reduction 

Generally, computing (AB) mod N requires 
much more than twice the time to compute 
AB. 

 

Large-integer division is … 
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Modular Reduction 

Generally, computing (AB) mod N requires 
much more than twice the time to compute 
AB. 

 

Large-integer division is … 

  slow …  

201 



January 6, 2011 Practical Aspects of Modern Cryptography 

Modular Reduction 

Generally, computing (AB) mod N requires 
much more than twice the time to compute 
AB. 

 

Large-integer division is … 

  slow … cumbersome 
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Modular Reduction 

Generally, computing (AB) mod N requires 
much more than twice the time to compute 
AB. 

 

Large-integer division is … 

  slow … cumbersome … disgusting 
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Modular Reduction 

Generally, computing (AB) mod N requires 
much more than twice the time to compute 
AB. 

 

Large-integer division is … 

  slow … cumbersome … disgusting … wretched 
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The Montgomery Method 

The Montgomery Method performs a domain 
transform to a domain in which the modular 
reduction operation can be achieved by 
multiplication and simple truncation. 

Since a single modular exponentiation requires 
many modular multiplications and reductions, 
transforming the arguments is well justified. 
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Montgomery Multiplication 

Let A, B, and M be n-block integers represented 
in base x with 0  M  xn. 

Let R = xn.  GCD(R,M) = 1. 

The Montgomery Product of A and B modulo M 
is the integer ABR–1 mod M. 

Let M = –M–1 mod R and S = ABM mod R. 

Fact:  (AB+SM)/R  ABR–1 (mod M). 
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Using the Montgomery Product 

The Montgomery Product ABR–1 mod M can be 
computed in the time required for two 
ordinary large-integer multiplications. 

Montgomery transform: AAR mod M. 

The Montgomery product of (AR mod M) and 
(BR mod M) is (ABR mod M). 
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One-Way Functions 

 

Z=YX mod N 

208 



January 6, 2011 Practical Aspects of Modern Cryptography 

One-Way Functions 

Informally, F : X  Y is a one-way if 

 

Given x, y = F(x) is easily computable. 

 

Given y, it is difficult to find any x for  
 which y = F(x). 
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One-Way Functions 

The family of functions 

FY,N(X) = YX mod N 

is believed to be one-way for most N and Y. 
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One-Way Functions 

The family of functions 

FY,N(X) = YX mod N 

is believed to be one-way for most N and Y. 
 

No one has ever proven a function to be 
one-way, and doing so would, at a 
minimum, yield as a consequence that 
PNP. 
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One-Way Functions 

When viewed as a two-argument function, the 
(candidate) one-way function 

FN(Y,X) = YX mod N 

also satisfies a useful additional property which 
has been termed quasi-commutivity: 

F(F(Y,X1),X2) = F(F(Y,X2),X1) 

since YX1X2 = YX2X1. 
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Diffie-Hellman Key Exchange 

Alice Bob 
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Diffie-Hellman Key Exchange 

Alice 

Randomly select a 
large integer a and 
send A  = Ya mod N. 

Bob 

Randomly select a 
large integer b and 
send B  = Yb mod N. 
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Diffie-Hellman Key Exchange 

Alice                Bob 

A 

B 
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Diffie-Hellman Key Exchange 

Alice 

Randomly select a 
large integer a and 
send A  = Ya mod N. 

Bob 

Randomly select a 
large integer b and 
send B  = Yb mod N. 
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Diffie-Hellman Key Exchange 

Alice 

Randomly select a 
large integer a and 
send A  = Ya mod N. 

Compute the key       
K = Ba mod N. 

Bob 

Randomly select a 
large integer b and 
send B  = Yb mod N. 

Compute the key       
K = Ab mod N. 
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Diffie-Hellman Key Exchange 

Alice 

Randomly select a 
large integer a and 
send A  = Ya mod N. 

Compute the key       
K = Ba mod N. 

Bob 

Randomly select a 
large integer b and 
send B  = Yb mod N. 

Compute the key       
K = Ab mod N. 
 

Ba = Yba = Yab = Ab 
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Diffie-Hellman Key Exchange 
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Diffie-Hellman Key Exchange 

What does Eve see? 
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Diffie-Hellman Key Exchange 

What does Eve see? 

Y, Ya, Yb 
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Diffie-Hellman Key Exchange 

What does Eve see? 

Y, Ya, Yb 

… but the exchanged key is Yab. 
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Diffie-Hellman Key Exchange 

What does Eve see? 

Y, Ya, Yb 

… but the exchanged key is Yab. 

Belief:  Given Y, Ya, Yb it is difficult to compute 
Yab. 
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Diffie-Hellman Key Exchange 

What does Eve see? 

Y, Ya, Yb 

… but the exchanged key is Yab. 

Belief:  Given Y, Ya, Yb it is difficult to compute 
Yab. 

Contrast with discrete logarithm assumption:  
Given Y, Ya it is difficult to compute a. 
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More on Quasi-Commutivity 

Quasi-commutivity has additional 
applications. 

 

decentralized digital signatures 

membership testing 

digital time-stamping 
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One-Way Trap-Door Functions 

 

Z=YX mod N 
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One-Way Trap-Door Functions 

 

Z=YX mod N 
Recall that this equation is solvable for Y if 

the factorization of N is known, but is 
believed to be hard otherwise. 
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RSA Public-Key Cryptosystem 

Alice Anyone 
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RSA Public-Key Cryptosystem 

Alice 
 Select two large 

random primes P & Q. 

Anyone 
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RSA Public-Key Cryptosystem 

Alice 
 Select two large 

random primes P & Q. 

 Publish the product 
N=PQ. 

Anyone 
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RSA Public-Key Cryptosystem 

Alice 
 Select two large 

random primes P & Q. 

 Publish the product 
N=PQ. 

Anyone 
 To send message Y to 

Alice, compute   
 Z=YX mod N. 
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RSA Public-Key Cryptosystem 

Alice 
 Select two large 

random primes P & Q. 

 Publish the product 
N=PQ. 

Anyone 
 To send message Y to 

Alice, compute   
 Z=YX mod N. 

 Send Z and X to Alice. 
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RSA Public-Key Cryptosystem 

Alice 
 Select two large 

random primes P & Q. 

 Publish the product 
N=PQ. 

 Use knowledge of P & 
Q to compute Y. 

Anyone 
 To send message Y to 

Alice, compute   
 Z=YX mod N. 

 Send Z and X to Alice. 
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RSA Public-Key Cryptosystem 

 

In practice, the exponent X is almost 
always fixed to be X = 65537 = 216 + 1. 
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Some RSA Details 

When N=PQ is the product of distinct primes, 

YX mod N = Y  
whenever 

X mod (P-1)(Q-1) = 1 and 0 YN. 
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Some RSA Details 

When N=PQ is the product of distinct primes, 

YX mod N = Y  
whenever 

X mod (P-1)(Q-1) = 1 and 0 YN. 

Alice can easily select integers E and D such that 
ED mod (P-1)(Q-1) = 1. 
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Some RSA Details 

Encryption:  E(Y) = YE mod N. 

Decryption:  D(Y) = YD mod N. 
 

   D(E(Y))  

    = (YE mod N)D mod N  

    = YED mod N  

    = Y 
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RSA Signatures 

An additional property 

 D(E(Y)) = YED mod N = Y  
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RSA Signatures 

An additional property 

 D(E(Y)) = YED mod N = Y  

 E(D(Y)) = YDE mod N = Y 
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RSA Signatures 

An additional property 

 D(E(Y)) = YED mod N = Y  

 E(D(Y)) = YDE mod N = Y 

Only Alice (knowing the factorization of N) 
knows D.  Hence only Alice can compute 
D(Y) = YD mod N. 
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RSA Signatures 

An additional property 

 D(E(Y)) = YED mod N = Y  

 E(D(Y)) = YDE mod N = Y 

Only Alice (knowing the factorization of N) 
knows D.  Hence only Alice can compute 
D(Y) = YD mod N. 

This D(Y) serves as Alice’s signature on Y. 
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Public Key Directory 

Name Public Key Encryption 

Alice NA EA(Y)=YE mod NA 

Bob NB EB(Y)=YE mod NB 

Carol NC EC(Y)=YE mod NC 

∶ ∶ ∶ 
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Public Key Directory 

Name Public Key Encryption 

Alice NA EA(Y)=YE mod NA 

Bob NB EB(Y)=YE mod NB 

Carol NC EC(Y)=YE mod NC 

∶ ∶ ∶ 

   
 

 

(Recall that E is commonly fixed to be  
   E=65537.) 
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Certificate Authority 

“Alice’s public modulus is 
 NA = 331490324840…” 
  -- signed CA. 
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Trust Chains 

Alice certifies Bob’s key. 

Bob certifies Carol’s key. 

 

If I trust Alice should I accept Carol’s key? 

247 



January 6, 2011 Practical Aspects of Modern Cryptography 

Authentication 

248 



January 6, 2011 Practical Aspects of Modern Cryptography 

Authentication 

How can I use RSA to authenticate 
someone’s identity? 

249 



January 6, 2011 Practical Aspects of Modern Cryptography 

Authentication 

How can I use RSA to authenticate 
someone’s identity? 

 

If Alice’s public key EA, just pick a random 
message m and send EA(m). 
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Authentication 

How can I use RSA to authenticate 
someone’s identity? 

 

If Alice’s public key EA, just pick a random 
message m and send EA(m). 

 

If m comes back, I must be talking to Alice. 
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Authentication 

Should Alice be happy with this method of 
authentication? 
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Authentication 

Should Alice be happy with this method of 
authentication? 

 

Bob sends Alice the authentication string       
y = “I owe Bob $1,000,000 - signed Alice.” 
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Authentication 

Should Alice be happy with this method of 
authentication? 

 

Bob sends Alice the authentication string       
y = “I owe Bob $1,000,000 - signed Alice.” 

 

Alice dutifully authenticates herself by 
decrypting (putting her signature on) y. 
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Authentication 

What if Alice only returns authentication 
queries when the decryption has a 
certain format? 
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RSA Cautions 

Is it reasonable to sign/decrypt something 
given to you by someone else? 

 

Note that RSA is multiplicative.  Can this 
property be used/abused? 
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RSA Cautions 

D(Y1)  D(Y2) = D(Y1  Y2) 
 

Thus, if I’ve decrypted (or signed) Y1 and Y2,    
I’ve also decrypted (or signed) Y1  Y2. 
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The Hastad Attack 

Given 

  E1(x) = x3 mod n1 

  E2(x) = x3 mod n2 

  E3(x) = x3 mod n3 

 one can easily compute x. 
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The Bleichenbacher Attack 

PKCS#1 Message Format: 

 

 00 01 XX XX ... XX 00 YY YY ... YY 
random 

non-zero 
bytes 

message 
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“Man-in-the-Middle” Attacks 

Alice Bob

Alice   Eve Bob
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The Practical Side 

RSA can be used to encrypt any data. 
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The Practical Side 

RSA can be used to encrypt any data. 

 

Public-key (asymmetric) cryptography is 
very inefficient when compared to 
traditional private-key (symmetric) 
cryptography. 
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The Practical Side 

For efficiency, one generally uses RSA (or 
another public-key algorithm) to transmit 
a private (symmetric) key. 
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The Practical Side 

For efficiency, one generally uses RSA (or 
another public-key algorithm) to transmit 
a private (symmetric) key. 

The private session key is used to encrypt 
any subsequent data. 
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The Practical Side 

For efficiency, one generally uses RSA (or 
another public-key algorithm) to transmit 
a private (symmetric) key. 

The private session key is used to encrypt 
any subsequent data. 

 

Digital signatures are only used to sign a 
digest of the message. 
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