Practical Aspects of Modern Cryptography Winter 2011

> Josh Benaloh Brian LaMacchia

Public-Key History

- 1976 New Directions in Cryptography Whit Diffie and Marty Hellman
 - One-Way functions
 - Diffie-Hellman Key Exchange
- 1978 RSA paper

Ron Rivest, Adi Shamir, and Len Adleman

- RSA Encryption System
- RSA Digital Signature Mechanism

The Fundamental Equation

Z=Y^X mod N

Diffie-Hellman

Z=Y^X mod N

When X is unknown, the problem is known as the *discrete logarithm* and is generally believed to be hard to solve.

Diffie-Hellman Key Exchange

Alice

- Randomly select a large integer *a* and send A = Y^a mod N.
- Compute the key
 K = B^a mod N.

Bob

- Randomly select a large integer b and send B = Y^b mod N.
- Compute the key
 K = A^b mod N.

$$\mathbf{B}^a = \mathbf{Y}^{ba} = \mathbf{Y}^{ab} = \mathbf{A}^b$$

One-Way Trap-Door Functions

Z=Y^X mod N

Recall that this equation is solvable for Y if the factorization of N is known, but is *believed* to be hard otherwise.

RSA Public-Key Cryptosystem

<u>Alice</u>

- Select two large random primes P & Q.
- Publish the product N=PQ.

Anyone

- To send message Y to Alice, compute Z=Y^X mod N.
- Send Z and X to Alice.
- Use knowledge of P &
 Q to compute Y.

Why Does RSA Work?

Fact

When N = PQ is the product of distinct primes, $Y^X \mod N = Y$ whenever $X \mod (P-1)(Q-1) = 1 \text{ and } 0 \leq Y < N.$

Fermat's Little Theorem

If p is prime, then $x^{p-1} \mod p = 1$ for all 0 < x < p.

Equivalently ...

If p is prime, then $x^p \mod p = x \mod p$ for all integers x.

The Binomial Theorem

 $(x+y)^p = \sum_{i=0}^p \binom{n}{i} x^i y^{p-i} \text{ where } \binom{p}{i} = \frac{p!}{i!(p-i)!}$

The Binomial Theorem

$$(x+y)^p = \sum_{i=0}^p \binom{n}{i} x^i y^{p-i} \text{ where } \binom{p}{i} = \frac{p!}{i!(p-i)!}$$

If p is prime, then $\binom{p}{i} = 0$ for 0 < i < p.

The Binomial Theorem

$$(x + y)^{p} = \sum_{i=0}^{p} {n \choose i} x^{i} y^{p-i}$$
 where ${p \choose i} = \frac{p!}{i!(p-i)!}$

If p is prime, then $\binom{p}{i} = 0$ for 0 < i < p.

Thus, $(x + y)^p \mod p = (xp + yp) \mod p$.

 $x^p \mod p = x \mod p$

$x^p \mod p = x \mod p$

By induction on x...

$x^p \mod p = x \mod p$

By induction on x...

Basis

$x^p \mod p = x \mod p$

By induction on *x*...

Basis

If x = 0, then $x^p \mod p = 0 = x \mod p$.

 $x^p \mod p = x \mod p$

By induction on *x*...

Basis

If x = 0, then $x^p \mod p = 0 = x \mod p$. If x = 1, then $x^p \mod p = 1 = x \mod p$.

Inductive Step

Inductive Step

Assume that $x^p \mod p = x \mod p$.

Inductive Step

Assume that $x^p \mod p = x \mod p$. Then $(x + 1)^p \mod p = (x^p + 1^p) \mod p$ (by the binomial theorem)

Inductive Step

Assume that $x^p \mod p = x \mod p$. Then $(x + 1)^p \mod p = (x^p + 1^p) \mod p$ $= (x + 1) \mod p$ (by inductive hypothesis).

Inductive Step

Assume that $x^p \mod p = x \mod p$. Then $(x + 1)^p \mod p = (x^p + 1^p) \mod p$ $= (x + 1) \mod p$ (by inductive hypothesis). Hence, $x^p \mod p = x \mod p$ for integers $x \ge 0$.

Inductive Step

Assume that $x^p \mod p = x \mod p$. Then $(x + 1)^p \mod p = (x^p + 1^p) \mod p$ $= (x + 1) \mod p$ (by inductive hypothesis). Hence, $x^p \mod p = x \mod p$ for integers $x \ge 0$.

Also true for negative x, since $(-x)^p = (-1)^p x^p$.

Proof of RSA

Proof of RSA

We have shown ... $Y^P \mod P = Y$ whenever $0 \le Y < P$ and P is prime.

Proof of RSA

We have shown ... $Y^P \mod P = Y$ whenever $0 \le Y < P$ and P is prime.

You will show ... $Y^{K(P-1)(Q-1)+1} \mod PQ = Y$ when $0 \le Y < PQ$ P and Q are distinct primes and $K \ge 0$.

Corollary of Fermat

$x^{p} \mod p = x \mod p$ \downarrow $x^{k(p-1)+1} \mod p = x \mod p$ For all prime p and $k \ge 0$.

Euclid's proof of the infinity of primes

Suppose that the set of all primes were finite.

- Suppose that the set of all primes were finite.
- Let N be the product of all of the primes.

- Suppose that the set of all primes were finite.
- Let N be the product of all of the primes.
- Consider N + 1.

- Suppose that the set of all primes were finite.
- Let N be the product of all of the primes.
- Consider N + 1. Is N + 1 prime or composite?

- Suppose that the set of all primes were finite.
- Let N be the product of all of the primes.
- Consider N + 1. Is N + 1 prime or composite?
- The prime factors of N + 1 are not among the finite set of primes multiplied to form N.

- Suppose that the set of all primes were finite.
- Let N be the product of all of the primes.
- Consider N + 1. Is N + 1 prime or composite?
- The prime factors of N + 1 are not among the finite set of primes multiplied to form N.
- So *N* must be a prime not in the set.

- Suppose that the set of all primes were finite.
- Let N be the product of all of the primes.
- Consider N + 1. Is N + 1 prime or composite?
- The prime factors of N + 1 are not among the finite set of primes multiplied to form N.
- So *N* must be a prime not in the set.
- This contradicts the assumption that the set of all primes is finite.
The Prime Number Theorem

The Prime Number Theorem

The number of primes less than N is approximately $N/(\ln N)$.

The Prime Number Theorem

The number of primes less than N is approximately $N/(\ln N)$.

Thus, approximately 1 out of every *n* randomly selected *n*-bit integers will be prime.

But How Do We Find Primes?

Testing Primality

Testing Primality

Recall Fermat's Little Theorem

If p is prime, then $a^{p-1} \mod p = 1$ for all a in the range 0 < a < p.

Testing Primality

Recall Fermat's Little Theorem

If p is prime, then $a^{p-1} \mod p = 1$ for all a in the range 0 < a < p.

Fact

For almost all composite p and a > 1, $a^{p-1} \mod p \neq 1$.

To test an integer N for primality, write N-1 as $N-1 = m2^k$ where m is odd.

To test an integer N for primality, write N-1 as $N-1 = m2^k$ where m is odd. Repeat several (many) times

• Select a random a in 1 < a < N-1

- Select a random a in 1 < a < N-1
- Compute a^m , a^{2m} , a^{4m} , ..., $a^{(N-1)/2}$ all mod N.

- Select a random a in 1 < a < N-1
- Compute a^m , a^{2m} , a^{4m} , ..., $a^{(N-1)/2}$ all mod N.
- If $a^m = \pm 1$ or if some $a^{2^i m} = -1$, then N is probably prime continue.

- Select a random a in 1 < a < N-1
- Compute a^m , a^{2m} , a^{4m} , ..., $a^{(N-1)/2}$ all mod N.
- If $a^m = \pm 1$ or if some $a^{2^i m} = -1$, then N is probably prime continue.
- Otherwise, *N* is composite stop.

Pick a random starting point N.

Ν	N+1	N+2	N+3	N+4	N+5	N+6	N+7	N+8	N+9	N+10	N+11

Pick a random starting point N.

Ν	N+1	N+2	N+3	N+4	N+5	N+6	N+7	N+8	N+9	N+10	N+11
	\mathbf{X}										

Pick a random starting point N.

Ν	N+1	N+2	N+3	N+4	N+5	N+6	N+7	N+8	N+9	N+10	N+11
	X		\mathbf{X}								

Pick a random starting point N.

Sieving out multiples of 5

Only a few "good" candidate primes will survive.

Use sieving to find large candidate primes.

- Use sieving to find large candidate primes.
- Use Miller-Rabin on candidate primes to find two almost certainly prime integers *P* and *Q*.

- Use sieving to find large candidate primes.
- Use Miller-Rabin on candidate primes to find two almost certainly prime integers *P* and *Q*.
- Form public modulus N = PQ.

- Use sieving to find large candidate primes.
- Use Miller-Rabin on candidate primes to find two *almost* certainly prime integers *P* and *Q*.
- Form public modulus N = PQ.
- Select public exponent e (usually e = 65537).
Reprise of RSA Set-Up

- Use sieving to find large candidate primes.
- Use Miller-Rabin on candidate primes to find two almost certainly prime integers *P* and *Q*.
- Form public modulus N = PQ.
- Select public exponent e (usually e = 65537).
- Use extended Euclidean algorithm to compute private exponent $d = e^{-1} \mod (P-1)(Q-1)$.

Reprise of RSA Set-Up

- Use sieving to find large candidate primes.
- Use Miller-Rabin on candidate primes to find two *almost* certainly prime integers *P* and *Q*.
- Form public modulus N = PQ.
- Select public exponent e (usually e = 65537).
- Use extended Euclidean algorithm to compute private exponent $d = e^{-1} \mod (P-1)(Q-1)$.
- Publish public key *N* (and *e*).

• Use public key to encrypt message $0 \le m < N$ as

• Use public key to encrypt message $0 \le m < N$ as $E(m) = m^e \mod N$.

• Use public key to encrypt message $0 \le m < N$ as $E(m) = m^e \mod N$.

Use private decryption exponent d to decrypt

• Use public key to encrypt message $0 \le m < N$ as $E(m) = m^e \mod N$.

• Use private decryption exponent d to decrypt $D(E(m)) = (m^e \mod N)^d \mod N$

• Use public key to encrypt message $0 \le m < N$ as $E(m) = m^e \mod N$.

• Use private decryption exponent d to decrypt $D(E(m)) = (m^e \mod N)^d \mod N$ $= m^{ed} \mod N$

• Use public key to encrypt message $0 \le m < N$ as $E(m) = m^e \mod N$.

• Use private decryption exponent d to decrypt $D(E(m)) = (m^e \mod N)^d \mod N$ $= m^{ed} \mod N$ = m

• Use private decryption exponent d to sign message $0 \le m < N$ as

• Use private decryption exponent d to sign message $0 \le m < N$ as

 $D(m) = m^d \mod N.$

• Use private decryption exponent d to sign message $0 \le m < N$ as

 $D(m) = m^d \mod N.$

Verify signature by using public key to compute

• Use private decryption exponent d to sign message $0 \le m < N$ as

 $D(m) = m^d \mod N.$

• Verify signature by using public key to compute $E(D(m)) = (m^d \mod N)^e \mod N$

• Use private decryption exponent d to sign message $0 \le m < N$ as

 $D(m) = m^d \mod N.$

• Verify signature by using public key to compute $E(D(m)) = (m^d \mod N)^e \mod N$ $= m^{de} \mod N$

• Use private decryption exponent d to sign message $0 \le m < N$ as

 $D(m) = m^d \mod N.$

• Verify signature by using public key to compute $E(D(m)) = (m^d \mod N)^e \mod N$ $= m^{de} \mod N$ = m

In 1991, the National Institute of Standards and Technology published a Digital Signature Standard that was intended as an option free of intellectual property constraints.

DSA uses the following parameters

- Prime p anywhere from 512 to 1024 bits
- Prime q 160 bits such that q divides p 1
- Integer h in the range 1 < h < p 1
- Integer $g = h^{(p-1)/q} \mod p$
- Secret integer x in the range 1 < x < q
- Integer $y = g^x \mod p$

To sign a 160-bit message M,

To sign a 160-bit message M,

• Generate a random integer k with 0 < k < q,

To sign a 160-bit message M,

- Generate a random integer k with 0 < k < q,
- Compute $r = (g^k \mod p) \mod q$,

To sign a 160-bit message M,

- Generate a random integer k with 0 < k < q,
- Compute $r = (g^k \mod p) \mod q$,
- Compute $s = ((M + xr)/k) \mod q$.

To sign a 160-bit message M,

- Generate a random integer k with 0 < k < q,
- Compute $r = (g^k \mod p) \mod q$,
- Compute $s = ((M + xr)/k) \mod q$.

The pair (r, s) is the signature on M.

A signature (r, s) on M is verified as follows:

• Compute $w = 1/s \mod q$,

- A signature (r, s) on M is verified as follows:
- Compute $w = 1/s \mod q$,
- Compute $a = wM \mod q$,

- Compute $w = 1/s \mod q$,
- Compute $a = wM \mod q$,
- Compute $b = wr \mod q$,

- Compute $w = 1/s \mod q$,
- Compute $a = wM \mod q$,
- Compute $b = wr \mod q$,
- Compute $v = (g^a y^b \mod p) \mod q$.

- Compute $w = 1/s \mod q$,
- Compute $a = wM \mod q$,
- Compute $b = wr \mod q$,
- Compute $v = (g^a y^b \mod p) \mod q$.

```
Accept the signature only if v = r.
```

Elliptic Curve Cryptosystems

Elliptic Curve Cryptosystems

An elliptic curve

Elliptic Curve Cryptosystems

An elliptic curve

 $y^2 = x^3 + Ax + B$

Practical Aspects of Modern Cryptography

Elliptic Curves

$y^2 = x^3 + Ax + B$

Elliptic Curves

$y = x^3 + Ax + B$
Elliptic Curves $y = x^3 + Ax + B$ y

Practical Aspects of Modern Cryptography

X

Elliptic Curves

Elliptic Curves $y^2 = x^3 + Ax + B$ y

Practical Aspects of Modern Cryptography

X

Elliptic Curves

$y^2 = x^3 + Ax + B$

Elliptic Curves

Elliptic Curves

Non-vertical Lines

$$\begin{cases} y^{2} = x^{3} + Ax + B \\ y = ax + b \end{cases}$$

$$(ax + b)^{2} = x^{3} + Ax + B \\ x^{3} + A'x^{2} + B'x + C' = 0 \end{cases}$$

Non-vertical Lines

- 1 intersection point
- 2 intersection points
- 3 intersection points

(typical case)(tangent case)(typical case)

Vertical Lines

 $\begin{cases} y^2 = x^3 + Ax + B \\ x = c \end{cases}$ $y^2 = c^3 + Ac + B$ $y^2 = C'$

Vertical Lines

- 0 intersection point
- 1 intersection points
- 2 intersection points

(typical case)(tangent case)(typical case)

$y^2 = x^3 + Ax + B$ Y X

January 13, 2011

$y^2 = x^3 + Ax + B$ Y X

$y^2 = x^3 + Ax + B$ Y X

$y^2 = x^3 + Ax + B$ Y X

$y^2 = x^3 + Ax + B$

Add an "artificial" point I to handle the vertical line case.

This point I also serves as the group identity value.

$y^2 = x^3 + Ax + B$

 $(x_1,y_1) \times (x_2,y_2) = (x_3,y_3)$

$$x_{3} = ((y_{2}-y_{1})/(x_{2}-x_{1}))^{2} - x_{1} - x_{2}$$

$$y_{3} = -y_{1} + ((y_{2}-y_{1})/(x_{2}-x_{1})) (x_{1}-x_{3})$$

when $\mathbf{x}_1 \neq \mathbf{x}_2$

$(x_1,y_1) \times (x_2,y_2) = (x_3,y_3)$

$x_{3} = ((3x_{1}^{2}+A)/(2y_{1}))^{2} - 2x_{1}$ $y_{3} = -y_{1} + ((3x_{1}^{2}+A)/(2y_{1})) (x_{1}-x_{3})$

when $x_1 = x_2$ and $y_1 = y_2 \neq 0$

$(x_1, y_1) \times (x_2, y_2) = I$ when $x_1 = x_2$ but $y_1 \neq y_2$ or $y_1 = y_2 = 0$

 $(\mathbf{x}_1,\mathbf{y}_1) \times I = (\mathbf{x}_1,\mathbf{y}_1) = I \times (\mathbf{x}_1,\mathbf{y}_1)$

$I \times I = I$

Finite Elliptic Groups
Finite Elliptic Groups

 The equations use basic arithmetic operations (addition, subtraction, multiplication, and division) on *real* values.

Finite Elliptic Groups

- The equations use basic arithmetic operations (addition, subtraction, multiplication, and division) on *real* values.
- But we know how to do modular operations, so we can do the same computations modulo a prime p.

 $(x_1,y_1) \times (x_2,y_2) = (x_3,y_3)$

$$x_{3} = ((y_{2}-y_{1})/(x_{2}-x_{1}))^{2} - x_{1} - x_{2}$$

$$y_{3} = -y_{1} + ((y_{2}-y_{1})/(x_{2}-x_{1})) (x_{1}-x_{3})$$

when $\mathbf{x}_1 \neq \mathbf{x}_2$

January 13, 2011

 $(x_1,y_1) \times (x_2,y_2) = (x_3,y_3)$

$$x_{3} = ((y_{2}-y_{1})/(x_{2}-x_{1}))^{2} - x_{1} - x_{2} \mod p$$

$$y_{3} = -y_{1} + ((y_{2}-y_{1})/(x_{2}-x_{1})) (x_{1}-x_{3}) \mod p$$

when $\mathbf{x}_1 \neq \mathbf{x}_2$

January 13, 2011

 $(x_1,y_1) \times (x_2,y_2) = (x_3,y_3)$

$x_{3} = ((3x_{1}^{2}+A)/(2y_{1}))^{2} - 2x_{1}$ $y_{3} = -y_{1} + ((3x_{1}^{2}+A)/(2y_{1})) (x_{1}-x_{3})$

when $x_1 = x_2$ and $y_1 = y_2 \neq 0$

 $(x_1,y_1) \times (x_2,y_2) = (x_3,y_3)$

$x_3 = ((3x_1^2 + A)/(2y_1))^2 - 2x_1 \mod p$ $y_3 = -y_1 + ((3x_1^2 + A)/(2y_1))(x_1 - x_3) \mod p$

when $x_1 = x_2$ and $y_1 = y_2 \neq 0$

 $(x_1, y_1) \times (x_2, y_2) = I$ when $x_1 = x_2$ but $y_1 \neq y_2$ or $y_1 = y_2 = 0$

 $(\mathbf{x}_1,\mathbf{y}_1) \times I = (\mathbf{x}_1,\mathbf{y}_1) = I \times (\mathbf{x}_1,\mathbf{y}_1)$

 $I \times I = I$

Z=Y^X mod N

$Z = Y^X in E_p(A,B)$

$Z = Y^{X} in E_{p}(A,B)$

When Z is unknown, it can be efficiently computed by repeated squaring.

$Z = Y^X in E_p(A,B)$

When X is unknown, this version of the discrete logarithm is believed to be quite hard to solve.

$Z = Y^X$ in $E_p(A,B)$

When Y is unknown, it *can* be efficiently computed by "sophisticated" means.

Diffie-Hellman Key Exchange

Alice

- Randomly select a large integer *a* and send A = Y^a mod N.
- Compute the key
 K = B^a mod N.

Bob

- Randomly select a large integer b and send B = Y^b mod N.
- Compute the key
 K = A^b mod N.

$$\mathbf{B}^a = \mathbf{Y}^{ba} = \mathbf{Y}^{ab} = \mathbf{A}^b$$

Diffie-Hellman Key Exchange

Alice

- Randomly select a large integer *a* and send A = Y^a in E_p.
- Compute the key
 K = B^a in E_p.

Bob

- Randomly select a large integer b and send B = Y^b in E_p.
- Compute the key $K = A^b$ in E_p .

$$\mathbf{B}^a = \mathbf{Y}^{ba} = \mathbf{Y}^{ab} = \mathbf{A}^b$$

DSA on Elliptic Curves

DSA on Elliptic Curves

Almost identical to DSA over the integers.

DSA on Elliptic Curves

Almost identical to DSA over the integers.

Replace operations mod *p* and *q* with operations in E_p and E_q.

 The best *currently known* algorithm for EC discrete logarithms would take about as long to find a 160-bit EC discrete log as the best *currently known* algorithm for integer discrete logarithms would take to find a 1024-bit discrete log.

- The best *currently known* algorithm for EC discrete logarithms would take about as long to find a 160-bit EC discrete log as the best *currently known* algorithm for integer discrete logarithms would take to find a 1024-bit discrete log.
- 160-bit EC algorithms are somewhat faster and use shorter keys than 1024-bit "traditional" algorithms.

 EC discrete logarithms have been studied far less than integer discrete logarithms.

- EC discrete logarithms have been studied far less than integer discrete logarithms.
- Results have shown that a fundamental break in integer discrete logs would also yield a fundamental break in EC discrete logs, although the reverse may not be true.

- EC discrete logarithms have been studied far less than integer discrete logarithms.
- Results have shown that a fundamental break in integer discrete logs would also yield a fundamental break in EC discrete logs, although the reverse may not be true.
- Basic EC operations are more cumbersome than integer operations, so EC is only faster if the keys are much smaller.

Symmetric

Cryptography

Practical Aspects of Modern Cryptography

The Practical Side

For efficiency, one generally uses RSA (or another public-key algorithm) to transmit a private (symmetric) key.

The private *session* key is used to encrypt and authenticate any subsequent data.

Digital signatures are only used to sign a *digest* of the message.

One-Way Hash Functions

Generally, a one-way hash function is a function H : $\{0,1\}^* \rightarrow \{0,1\}^k$ (typically k is 128, 160, 256, 384, or 512) such that given an input value x, one cannot find a value $x' \neq x$ such H(x) = H(x').

One-Way Hash Functions

- There are many measures for one-way hashes.
- Non-invertability: given y, it's difficult to find any x such that H(x) = y.
- Collision-intractability: one cannot find a pair of values x'≠ x such that H(x) = H(x').

One-Way Hash Functions

 When using a stream cipher, a hash of the message can be appended to ensure integrity. [Message Authentication Code]

 When forming a digital signature, the signature need only be applied to a hash of the message. [Message Digest]

- What's in the final 32-bit transform?
- Take the rightmost word.
- Add in the leftmost word rotated 5 bits.
- Add in a round-dependent function f of the middle three words.

One of 80 rounds

Depending on the round, the "non-linear" function f is one of the following.

 $f(X,Y,Z) = (X \land Y) \lor ((\neg X) \land Z)$ $f(X,Y,Z) = (X \land Y) \lor (X \land Z) \lor (Y \land Z)$ $f(X,Y,Z) = X \oplus Y \oplus Z$

What's in the final 32-bit transform?

- Take the rightmost word.
- Add in the leftmost word rotated 5 bits.
- Add in a round-dependent function f of the middle three words.

What's in the final 32-bit transform?

- Take the rightmost word.
- Add in the leftmost word rotated 5 bits.
- Add in a round-dependent function f of the middle three words.
- Add in a round-dependent constant.

What's in the final 32-bit transform?

- Take the rightmost word.
- Add in the leftmost word rotated 5 bits.
- Add in a round-dependent function f of the middle three words.
- Add in a round-dependent constant.
- Add in a portion of the 512-bit message.

One of 80 rounds

Symmetric Ciphers

Private-key (symmetric) ciphers are usually divided into two classes.

Stream ciphers

Block ciphers

Symmetric Ciphers

Private-key (symmetric) ciphers are usually divided into two classes.

Stream ciphers

Block ciphers

Stream Ciphers

- Use the key as a seed to a pseudo-random number-generator.
- Take the stream of output bits from the PRNG and XOR it with the plaintext to form the ciphertext.

Stream Cipher Encryption

Stream Cipher Decryption

Ciphertext:

A PRNG: Alleged RC4

Initialization S[0..255] = 0,1,...,255 K[0..255] = Key,Key,Key,... for i = 0 to 255 j = (j + S[i] + K[i]) mod 256 swap S[i] and S[j]

A PRNG: Alleged RC4

<u>Iteration</u>

- i = (i + 1) mod 256
- j = (j + S[i]) mod 256
- swap S[i] and S[j]
- t = (S[i] + S[j]) mod 256

Output S[t]

Stream Cipher Integrity

- It is easy for an adversary (even one who can't decrypt the ciphertext) to alter the plaintext in a known way.
- Bob to Bob's Bank:
 - Please transfer \$0,000,002.00 to the account of my good friend Alice.

Stream Cipher Integrity

- It is easy for an adversary (even one who can't decrypt the ciphertext) to alter the plaintext in a known way.
- Bob to Bob's Bank:
 - Please transfer \$1,000,002.00 to the account of my good friend Alice.

Stream Cipher Integrity

- It is easy for an adversary (even one who can't decrypt the ciphertext) to alter the plaintext in a known way.
- Bob to Bob's Bank:
 - Please transfer \$1,000,002.00 to the account of my good friend Alice.
- This can be protected against by the careful addition of appropriate redundancy.

Symmetric Ciphers

Private-key (symmetric) ciphers are usually divided into two classes.

Stream ciphers

Block ciphers

Electronic Code Book (ECB) Encryption:

Electronic Code Book (ECB) Decryption:

Electronic Code Book (ECB) Encryption:

Cipher Block Chaining (CBC) Encryption:

Cipher Block Chaining (CBC) Decryption:

Plaintext

Cipher Block Chaining (CBC) Encryption:

Plaintext

How to Build a Block Cipher

January 13, 2011

Practical Aspects of Modern Cryptography

- Typically, most Feistel ciphers are iterated for about 16 rounds.
- Different "sub-keys" are used for each round.

 Even a weak round function can yield a strong Feistel cipher if iterated sufficiently.

Data Encryption Standard (DES)

Data Encryption Standard (DES)

Data Encryption Standard (DES)

DES Round

Simplified DES Round Function

January 13, 2011

Practical Aspects of Modern Cryptography

Actual DES Round Function

January 13, 2011

Practical Aspects of Modern Cryptography

Cryptographic Tools

One-Way Trapdoor Functions Public-Key Encryption Schemes One-Way Functions One-Way Hash Functions <u>Pseudo-Random Number-Generators</u> Secret-Key Encryption Schemes Digital Signature Schemes