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January 13, 2011 Practical Aspects of Modern Cryptography 

Public-Key History 

 1976  New Directions in Cryptography 

Whit Diffie and Marty Hellman 
 One-Way functions 

 Diffie-Hellman Key Exchange 

 1978  RSA paper 

Ron Rivest, Adi Shamir, and Len Adleman 
 RSA Encryption System 

 RSA Digital Signature Mechanism 
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The Fundamental Equation 

 

Z=YX mod N 
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Diffie-Hellman 

 

Z=YX mod N 
When X is unknown, the problem is known 

as the discrete logarithm and is generally 
believed to be hard to solve. 
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Diffie-Hellman Key Exchange 

Alice 

Randomly select a 
large integer a and 
send A  = Ya mod N. 

Compute the key       
K = Ba mod N. 

Bob 

Randomly select a 
large integer b and 
send B  = Yb mod N. 

Compute the key       
K = Ab mod N. 
 

Ba = Yba = Yab = Ab 
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One-Way Trap-Door Functions 

 

Z=YX mod N 
Recall that this equation is solvable for Y if 

the factorization of N is known, but is 
believed to be hard otherwise. 
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RSA Public-Key Cryptosystem 

Alice 
 Select two large 

random primes P & Q. 

 Publish the product 
N=PQ. 

 Use knowledge of P & 
Q to compute Y. 

Anyone 
 To send message Y to 

Alice, compute   
 Z=YX mod N. 

 Send Z and X to Alice. 
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Why Does RSA Work? 

Fact 
 

When 𝑁 = 𝑃𝑄 is the product of distinct primes, 

𝑌𝑋 mod 𝑁 = 𝑌  
whenever 

𝑋 mod (𝑃 − 1)(𝑄 − 1)  =  1 and 0 𝑌𝑁. 
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Fermat’s Little Theorem 

If 𝑝 is prime, 

    then 𝑥𝑝−1mod 𝑝 = 1 for all 0 < 𝑥 < 𝑝. 
 

Equivalently … 
 

If 𝑝 is prime, then 

𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝 

 for all integers 𝑥. 
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The Binomial Theorem 

𝑥 + 𝑦 𝑝 =  𝑛
𝑖
𝑥𝑖𝑦𝑝−𝑖

𝑝
𝑖=0  where 𝑝

𝑖
=

𝑝!

𝑖! 𝑝−𝑖 !
 

 

Proof of Fermat’s Little Theorem 
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The Binomial Theorem 

𝑥 + 𝑦 𝑝 =  𝑛
𝑖
𝑥𝑖𝑦𝑝−𝑖

𝑝
𝑖=0  where 𝑝

𝑖
=

𝑝!

𝑖! 𝑝−𝑖 !
 

 

If 𝑝 is prime, then 𝑝
𝑖
= 0 for 0 < 𝑖 < 𝑝. 

 
 

Proof of Fermat’s Little Theorem 
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The Binomial Theorem 

𝑥 + 𝑦 𝑝 =  𝑛
𝑖
𝑥𝑖𝑦𝑝−𝑖

𝑝
𝑖=0  where 𝑝

𝑖
=

𝑝!

𝑖! 𝑝−𝑖 !
 

 

If 𝑝 is prime, then 𝑝
𝑖
= 0 for 0 < 𝑖 < 𝑝. 

 

Thus, (𝑥 + 𝑦)𝑝 mod 𝑝 = (𝑥𝑝 + 𝑦𝑝) mod 𝑝. 
 

Proof of Fermat’s Little Theorem 
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Proof of Fermat’s Little Theorem 

𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 
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Proof of Fermat’s Little Theorem 

𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 
 

By induction on 𝑥… 
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Proof of Fermat’s Little Theorem 

𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 
 

By induction on 𝑥… 
 

Basis 
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Proof of Fermat’s Little Theorem 

𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 
 

By induction on 𝑥… 
 

Basis 

If 𝑥 = 0, then 𝑥𝑝 mod 𝑝 = 0 = 𝑥 mod 𝑝. 
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Proof of Fermat’s Little Theorem 

𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 
 

By induction on 𝑥… 
 

Basis 

If 𝑥 = 0, then 𝑥𝑝 mod 𝑝 = 0 = 𝑥 mod 𝑝. 

If 𝑥 = 1, then 𝑥𝑝 mod 𝑝 = 1 = 𝑥 mod 𝑝. 
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Proof of Fermat’s Little Theorem 

Inductive Step 
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Proof of Fermat’s Little Theorem 

Inductive Step 
 

Assume that 𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝. 
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Proof of Fermat’s Little Theorem 

Inductive Step 
 

Assume that 𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝. 

Then (𝑥 + 1)𝑝 mod 𝑝 = (𝑥𝑝 + 1𝑝) mod 𝑝 

    (by the binomial theorem) 
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Proof of Fermat’s Little Theorem 

Inductive Step 
 

Assume that 𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝. 

Then (𝑥 + 1)𝑝 mod 𝑝 = (𝑥𝑝 + 1𝑝) mod 𝑝 

= (𝑥 + 1) mod 𝑝 (by inductive hypothesis). 
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Proof of Fermat’s Little Theorem 

Inductive Step 
 

Assume that 𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝. 

Then (𝑥 + 1)𝑝 mod 𝑝 = (𝑥𝑝 + 1𝑝) mod 𝑝 

= (𝑥 + 1) mod 𝑝 (by inductive hypothesis). 

Hence, 𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 for integers 𝑥 ≥ 0. 
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Proof of Fermat’s Little Theorem 

Inductive Step 
 

Assume that 𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝. 

Then (𝑥 + 1)𝑝 mod 𝑝 = (𝑥𝑝 + 1𝑝) mod 𝑝 

= (𝑥 + 1) mod 𝑝 (by inductive hypothesis). 

Hence, 𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 for integers 𝑥 ≥ 0. 
 

Also true for negative 𝑥, since (−𝑥)𝑝 = (−1)𝑝𝑥𝑝. 
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Proof of RSA 
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Proof of RSA 

We have shown … 

𝑌𝑃mod 𝑃 = 𝑌 whenever 0 ≤ 𝑌 < 𝑃 

and 𝑃 is prime. 
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Proof of RSA 

We have shown … 

𝑌𝑃mod 𝑃 = 𝑌 whenever 0 ≤ 𝑌 < 𝑃 

and 𝑃 is prime. 

 

You will show … 

𝑌𝐾 𝑃−1 𝑄−1 +1 mod 𝑃𝑄 = 𝑌 when 0 ≤ 𝑌 < 𝑃𝑄 

𝑃 and 𝑄 are distinct primes and 𝐾 ≥ 0. 
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Corollary of Fermat 

𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝 
⇓ 

𝑥𝑘 𝑝−1 +1 mod 𝑝 =  𝑥 mod 𝑝 

For all prime 𝑝 and 𝑘 ≥ 0. 
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Finding Primes 
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Finding Primes 

Euclid’s proof of the infinity of primes 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 

 Let 𝑁 be the product of all of the primes. 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 

 Let 𝑁 be the product of all of the primes. 

 Consider 𝑁 + 1. 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 

 Let 𝑁 be the product of all of the primes. 

 Consider 𝑁 + 1.  Is 𝑁 + 1 prime or composite? 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 

 Let 𝑁 be the product of all of the primes. 

 Consider 𝑁 + 1.  Is 𝑁 + 1 prime or composite? 

 The prime factors of 𝑁 + 1 are not among the finite set of 
primes multiplied to form 𝑁. 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 

 Let 𝑁 be the product of all of the primes. 

 Consider 𝑁 + 1.  Is 𝑁 + 1 prime or composite? 

 The prime factors of 𝑁 + 1 are not among the finite set of 
primes multiplied to form 𝑁. 

 So 𝑁 must be a prime not in the set. 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 

 Let 𝑁 be the product of all of the primes. 

 Consider 𝑁 + 1.  Is 𝑁 + 1 prime or composite? 

 The prime factors of 𝑁 + 1 are not among the finite set of 
primes multiplied to form 𝑁. 

 So 𝑁 must be a prime not in the set. 

 This contradicts the assumption that the set of all primes is 
finite. 
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The Prime Number Theorem 

37 



January 13, 2011 Practical Aspects of Modern Cryptography 

The Prime Number Theorem 
 

The number of primes less than 𝑁 is 
approximately 𝑁 (ln𝑁) . 

 

38 



January 13, 2011 Practical Aspects of Modern Cryptography 

The Prime Number Theorem 
 

The number of primes less than 𝑁 is 
approximately 𝑁 (ln𝑁) . 

 

Thus, approximately 1 out of every 𝑛 
randomly selected 𝑛-bit integers will 
be prime. 
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But How Do We Find Primes? 
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Testing Primality 
 

Recall Fermat’s Little Theorem 

If 𝑝 is prime, then 𝑎𝑝−1 mod 𝑝 = 1 for 
all 𝑎 in the range 0 < 𝑎 < 𝑝. 

42 



January 13, 2011 Practical Aspects of Modern Cryptography 

Testing Primality 
 

Recall Fermat’s Little Theorem 

If 𝑝 is prime, then 𝑎𝑝−1 mod 𝑝 = 1 for 
all 𝑎 in the range 0 < 𝑎 < 𝑝. 

 

Fact 

For almost all composite 𝑝 and 𝑎 > 1, 

𝑎𝑝−1 mod 𝑝 ≠ 1. 
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The Miller-Rabin Primality Test 
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The Miller-Rabin Primality Test 

To test an integer 𝑁 for primality, write 𝑁–1 as              

𝑁–1 = 𝑚2𝑘 where 𝑚 is odd. 
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The Miller-Rabin Primality Test 

To test an integer 𝑁 for primality, write 𝑁–1 as              

𝑁–1 = 𝑚2𝑘 where 𝑚 is odd. 

Repeat several (many) times 
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The Miller-Rabin Primality Test 

To test an integer 𝑁 for primality, write 𝑁–1 as              

𝑁–1 = 𝑚2𝑘 where 𝑚 is odd. 

Repeat several (many) times 

 Select a random 𝑎 in 1 < 𝑎 < 𝑁–1 
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The Miller-Rabin Primality Test 

To test an integer 𝑁 for primality, write 𝑁–1 as              

𝑁–1 = 𝑚2𝑘 where 𝑚 is odd. 

Repeat several (many) times 

 Select a random 𝑎 in 1 < 𝑎 < 𝑁–1 

 Compute 𝑎𝑚, 𝑎2𝑚, 𝑎4𝑚, … , 𝑎(𝑁−1) 2  all mod 𝑁. 
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The Miller-Rabin Primality Test 

To test an integer 𝑁 for primality, write 𝑁–1 as              

𝑁–1 = 𝑚2𝑘 where 𝑚 is odd. 

Repeat several (many) times 

 Select a random 𝑎 in 1 < 𝑎 < 𝑁–1 

 Compute 𝑎𝑚, 𝑎2𝑚, 𝑎4𝑚, … , 𝑎(𝑁−1) 2  all mod 𝑁. 

 If 𝑎𝑚 = ±1 or if some 𝑎2
𝑖𝑚 = −1, then 𝑁 is probably 

prime – continue. 
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The Miller-Rabin Primality Test 

To test an integer 𝑁 for primality, write 𝑁–1 as              

𝑁–1 = 𝑚2𝑘 where 𝑚 is odd. 

Repeat several (many) times 

 Select a random 𝑎 in 1 < 𝑎 < 𝑁–1 

 Compute 𝑎𝑚, 𝑎2𝑚, 𝑎4𝑚, … , 𝑎(𝑁−1) 2  all mod 𝑁. 

 If 𝑎𝑚 = ±1 or if some 𝑎2
𝑖𝑚 = −1, then 𝑁 is probably 

prime – continue. 

 Otherwise, 𝑁 is composite – stop. 
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2 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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Sieving for Primes 
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Sieving out multiples of 
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2 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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2 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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2 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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2 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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2 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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3 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 

58 



January 13, 2011 Practical Aspects of Modern Cryptography 

3 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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3 

Sieving for Primes 

Pick a random starting point N. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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3 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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3 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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5 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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5 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 

64 



January 13, 2011 Practical Aspects of Modern Cryptography 

5 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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5 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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5 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 

Only a few “good” candidate primes will survive. 
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Reprise of RSA Set-Up 

 Use sieving to find large candidate primes. 
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Reprise of RSA Set-Up 

 Use sieving to find large candidate primes. 

 Use Miller-Rabin on candidate primes to find two 
almost certainly prime integers 𝑃 and 𝑄. 
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Reprise of RSA Set-Up 

 Use sieving to find large candidate primes. 

 Use Miller-Rabin on candidate primes to find two 
almost certainly prime integers 𝑃 and 𝑄. 

 Form public modulus 𝑁 = 𝑃𝑄. 

January 13, 2011 Practical Aspects of Modern Cryptography 71 



Reprise of RSA Set-Up 

 Use sieving to find large candidate primes. 

 Use Miller-Rabin on candidate primes to find two 
almost certainly prime integers 𝑃 and 𝑄. 

 Form public modulus 𝑁 = 𝑃𝑄. 

 Select public exponent 𝑒 (usually 𝑒 = 65537). 
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Reprise of RSA Set-Up 

 Use sieving to find large candidate primes. 

 Use Miller-Rabin on candidate primes to find two 
almost certainly prime integers 𝑃 and 𝑄. 

 Form public modulus 𝑁 = 𝑃𝑄. 

 Select public exponent 𝑒 (usually 𝑒 = 65537). 

 Use extended Euclidean algorithm to compute private 
exponent 𝑑 = 𝑒−1mod (𝑃 − 1)(𝑄 − 1). 
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Reprise of RSA Set-Up 

 Use sieving to find large candidate primes. 

 Use Miller-Rabin on candidate primes to find two 
almost certainly prime integers 𝑃 and 𝑄. 

 Form public modulus 𝑁 = 𝑃𝑄. 

 Select public exponent 𝑒 (usually 𝑒 = 65537). 

 Use extended Euclidean algorithm to compute private 
exponent 𝑑 = 𝑒−1mod (𝑃 − 1)(𝑄 − 1). 

 Publish public key 𝑁 (and 𝑒). 
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Reprise of RSA Encryption 
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Reprise of RSA Encryption 

 Use public key to encrypt message 0 ≤ 𝑚 < 𝑁 as 

 

 

January 13, 2011 Practical Aspects of Modern Cryptography 76 



Reprise of RSA Encryption 

 Use public key to encrypt message 0 ≤ 𝑚 < 𝑁 as 

𝐸 𝑚 = 𝑚𝑒mod 𝑁. 
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Reprise of RSA Encryption 

 Use public key to encrypt message 0 ≤ 𝑚 < 𝑁 as 

𝐸 𝑚 = 𝑚𝑒mod 𝑁. 

 

 Use private decryption exponent 𝑑 to decrypt 
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Reprise of RSA Encryption 

 Use public key to encrypt message 0 ≤ 𝑚 < 𝑁 as 

𝐸 𝑚 = 𝑚𝑒mod 𝑁. 

 

 Use private decryption exponent 𝑑 to decrypt 

𝐷 𝐸 𝑚 = (𝑚𝑒  mod 𝑁)𝑑  mod 𝑁 
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Reprise of RSA Encryption 

 Use public key to encrypt message 0 ≤ 𝑚 < 𝑁 as 

𝐸 𝑚 = 𝑚𝑒mod 𝑁. 

 

 Use private decryption exponent 𝑑 to decrypt 

𝐷 𝐸 𝑚 = (𝑚𝑒  mod 𝑁)𝑑  mod 𝑁 

= 𝑚𝑒𝑑  mod 𝑁 
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Reprise of RSA Encryption 

 Use public key to encrypt message 0 ≤ 𝑚 < 𝑁 as 

𝐸 𝑚 = 𝑚𝑒mod 𝑁. 

 

 Use private decryption exponent 𝑑 to decrypt 

𝐷 𝐸 𝑚 = (𝑚𝑒  mod 𝑁)𝑑  mod 𝑁 

= 𝑚𝑒𝑑  mod 𝑁 
= 𝑚 
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Reprise of RSA Signatures 
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Reprise of RSA Signatures 

 Use private decryption exponent 𝑑 to sign message 
0 ≤ 𝑚 < 𝑁 as 
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Reprise of RSA Signatures 

 Use private decryption exponent 𝑑 to sign message 
0 ≤ 𝑚 < 𝑁 as 

𝐷 𝑚 = 𝑚𝑑  mod 𝑁. 
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Reprise of RSA Signatures 

 Use private decryption exponent 𝑑 to sign message 
0 ≤ 𝑚 < 𝑁 as 

𝐷 𝑚 = 𝑚𝑑  mod 𝑁. 

 

 Verify signature by using public key to compute 
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Reprise of RSA Signatures 

 Use private decryption exponent 𝑑 to sign message 
0 ≤ 𝑚 < 𝑁 as 

𝐷 𝑚 = 𝑚𝑑  mod 𝑁. 

 

 Verify signature by using public key to compute 

𝐸 𝐷 𝑚 = (𝑚𝑑  mod 𝑁)𝑒 mod 𝑁 
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Reprise of RSA Signatures 

 Use private decryption exponent 𝑑 to sign message 
0 ≤ 𝑚 < 𝑁 as 

𝐷 𝑚 = 𝑚𝑑  mod 𝑁. 

 

 Verify signature by using public key to compute 

𝐸 𝐷 𝑚 = (𝑚𝑑  mod 𝑁)𝑒 mod 𝑁 

= 𝑚𝑑𝑒  mod 𝑁 
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Reprise of RSA Signatures 

 Use private decryption exponent 𝑑 to sign message 
0 ≤ 𝑚 < 𝑁 as 

𝐷 𝑚 = 𝑚𝑑  mod 𝑁. 

 

 Verify signature by using public key to compute 

𝐸 𝐷 𝑚 = (𝑚𝑑  mod 𝑁)𝑒 mod 𝑁 

= 𝑚𝑑𝑒  mod 𝑁 
= 𝑚 
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The Digital Signature Algorithm 
 

In 1991, the National Institute of 
Standards and Technology published a 
Digital Signature Standard that was 
intended as an option free of 
intellectual property constraints. 
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The Digital Signature Algorithm 

DSA uses the following parameters 

Prime 𝑝 – anywhere from 512 to 1024 bits 

Prime 𝑞 – 160 bits such that 𝑞 divides 𝑝 − 1 

 Integer ℎ in the range 1 < ℎ < 𝑝 − 1 

 Integer 𝑔 = ℎ(𝑝−1) 𝑞  mod 𝑝 

 Secret integer 𝑥 in the range 1 < 𝑥 < 𝑞 

 Integer 𝑦 = 𝑔𝑥 mod 𝑝 
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The Digital Signature Algorithm 

91 



January 13, 2011 Practical Aspects of Modern Cryptography 

The Digital Signature Algorithm 

To sign a 160-bit message 𝑀, 
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The Digital Signature Algorithm 

To sign a 160-bit message 𝑀, 

Generate a random integer 𝑘 with 0 < 𝑘 < 𝑞, 
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The Digital Signature Algorithm 

To sign a 160-bit message 𝑀, 

Generate a random integer 𝑘 with 0 < 𝑘 < 𝑞, 

Compute 𝑟 =  (𝑔𝑘 mod 𝑝) mod 𝑞, 
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The Digital Signature Algorithm 

To sign a 160-bit message 𝑀, 

Generate a random integer 𝑘 with 0 < 𝑘 < 𝑞, 

Compute 𝑟 =  (𝑔𝑘 mod 𝑝) mod 𝑞, 

Compute 𝑠 =  ((𝑀 + 𝑥𝑟)/𝑘) mod 𝑞. 
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The Digital Signature Algorithm 

To sign a 160-bit message 𝑀, 

Generate a random integer 𝑘 with 0 < 𝑘 < 𝑞, 

Compute 𝑟 =  (𝑔𝑘 mod 𝑝) mod 𝑞, 

Compute 𝑠 =  ((𝑀 + 𝑥𝑟)/𝑘) mod 𝑞. 

 

The pair (𝑟, 𝑠) is the signature on 𝑀. 
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The Digital Signature Algorithm 
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The Digital Signature Algorithm 

A signature (𝑟, 𝑠) on 𝑀 is verified as follows: 
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The Digital Signature Algorithm 

A signature (𝑟, 𝑠) on 𝑀 is verified as follows: 

Compute 𝑤 =  1/𝑠 𝑚𝑜𝑑 𝑞, 
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The Digital Signature Algorithm 

A signature (𝑟, 𝑠) on 𝑀 is verified as follows: 

Compute 𝑤 =  1/𝑠 𝑚𝑜𝑑 𝑞, 

Compute 𝑎 =  𝑤𝑀 𝑚𝑜𝑑 𝑞, 
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The Digital Signature Algorithm 

A signature (𝑟, 𝑠) on 𝑀 is verified as follows: 

Compute 𝑤 =  1/𝑠 𝑚𝑜𝑑 𝑞, 

Compute 𝑎 =  𝑤𝑀 𝑚𝑜𝑑 𝑞, 

Compute 𝑏 =  𝑤𝑟 𝑚𝑜𝑑 𝑞, 
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The Digital Signature Algorithm 

A signature (𝑟, 𝑠) on 𝑀 is verified as follows: 

Compute 𝑤 =  1/𝑠 𝑚𝑜𝑑 𝑞, 

Compute 𝑎 =  𝑤𝑀 𝑚𝑜𝑑 𝑞, 

Compute 𝑏 =  𝑤𝑟 𝑚𝑜𝑑 𝑞, 

Compute 𝑣 =  (𝑔𝑎𝑦𝑏 mod 𝑝) mod 𝑞. 
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The Digital Signature Algorithm 

A signature (𝑟, 𝑠) on 𝑀 is verified as follows: 

Compute 𝑤 =  1/𝑠 𝑚𝑜𝑑 𝑞, 

Compute 𝑎 =  𝑤𝑀 𝑚𝑜𝑑 𝑞, 

Compute 𝑏 =  𝑤𝑟 𝑚𝑜𝑑 𝑞, 

Compute 𝑣 =  (𝑔𝑎𝑦𝑏 mod 𝑝) mod 𝑞. 

 

Accept the signature only if 𝑣 =  𝑟. 
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Elliptic Curve Cryptosystems 

An elliptic curve 
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Elliptic Curve Cryptosystems 

An elliptic curve 
 

y2 = x3 + Ax + B 
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Elliptic Curves 

y2 = x3 + Ax + B 
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Elliptic Curves 
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Elliptic Curves 
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Elliptic Curves 

y2 = x3 + Ax + B 

x 
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Elliptic Curves 

y2 = x3 + Ax + B 
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Elliptic Curves 
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Elliptic Curves 

y2 = x3 + Ax + B 

x 

y 

113 



January 13, 2011 Practical Aspects of Modern Cryptography 

Elliptic Curves 

y2 = x3 + Ax + B 

x 

y 

114 



January 13, 2011 Practical Aspects of Modern Cryptography 

Elliptic Curves 
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Elliptic Curves 
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Elliptic Curves 

y2 = x3 + Ax + B 
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y2 = x3 + Ax + B 

x 

y 

y = ax + b 

Elliptic Curves Intersecting Lines 
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Non-vertical Lines 

   y2 = x3 + Ax + B 

   y = ax + b 

 (ax + b)2 = x3 + Ax + B 

 x3 + Ax2 + Bx + C = 0 

Elliptic Curves Intersecting Lines 
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x3 + Ax2 + Bx + C = 0 

x 

y 

Elliptic Curves Intersecting Lines 
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x3 + Ax2 + Bx + C = 0 

x 

y 

Elliptic Curves Intersecting Lines 

3 solutions 
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Elliptic Curves Intersecting Lines 

x3 + Ax2 + Bx + C = 0 

x 

y 

1 solution 
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Elliptic Curves Intersecting Lines 

x3 + Ax2 + Bx + C = 0 

x 

y 

1 solution 
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Elliptic Curves Intersecting Lines 

x3 + Ax2 + Bx + C = 0 

x 

y 

2 solutions 
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Non-vertical Lines 

 

1 intersection point  (typical case) 

2 intersection points  (tangent case) 

3 intersection points  (typical case) 

Elliptic Curves Intersecting Lines 
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Vertical Lines 

   y2 = x3 + Ax + B 

   x = c 

 y2 = c3 + Ac + B 

 y2 = C  

Elliptic Curves Intersecting Lines 
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Vertical Lines 

 

0 intersection point  (typical case) 

1 intersection points  (tangent case) 

2 intersection points  (typical case) 

Elliptic Curves Intersecting Lines 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 

129 



January 13, 2011 Practical Aspects of Modern Cryptography 

Elliptic Groups 

y2 = x3 + Ax + B 
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y = ax + b 
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Elliptic Groups 

y2 = x3 + Ax + B 
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y = ax + b 
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Elliptic Groups 

y2 = x3 + Ax + B 
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y = ax + b 
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Elliptic Groups 
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Elliptic Groups 
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Elliptic Groups 

y2 = x3 + Ax + B 
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Elliptic Groups 

y2 = x3 + Ax + B 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 

137 



January 13, 2011 Practical Aspects of Modern Cryptography 

Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 

x = c 
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Elliptic Groups 

Add an “artificial” point 𝐼 to 
handle the vertical line case. 
 

This point 𝐼 also serves as the 
group identity value. 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 

x = c 
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Elliptic Groups 

(x1,y1)  (x2,y2) = (x3,y3) 

 

x3 = ((y2–y1)/(x2–x1))2 – x1 – x2 

y3 = -y1 + ((y2–y1)/(x2–x1)) (x1–x3) 

 

 when x1  x2 
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Elliptic Groups 

(x1,y1)  (x2,y2) = (x3,y3) 

 

x3 = ((3x1
2+A)/(2y1))2 – 2x1 

y3 = -y1 + ((3x1
2+A)/(2y1)) (x1–x3) 

 

 when x1 = x2 and y1 = y2  0 
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Elliptic Groups 

(x1,y1)  (x2,y2) = 𝐼 

 when x1= x2 but y1 y2 or y1= y2= 0 

 

(x1,y1)  𝐼 = (x1,y1) = 𝐼  (x1,y1) 

 

𝐼  𝐼 = 𝐼 
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Finite Elliptic Groups 

The equations use basic arithmetic 
operations (addition, subtraction, 
multiplication, and division) on real 
values. 
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Finite Elliptic Groups 

The equations use basic arithmetic 
operations (addition, subtraction, 
multiplication, and division) on real 
values. 

But we know how to do modular 
operations, so we can do the same 
computations modulo a prime 𝑝. 
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The Elliptic Group 𝐸𝑝(𝐴, 𝐵) 

(x1,y1)  (x2,y2) = (x3,y3) 

 

x3 = ((y2–y1)/(x2–x1))2 – x1 – x2 

y3 = -y1 + ((y2–y1)/(x2–x1)) (x1–x3) 

 

 when x1  x2 
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The Elliptic Group 𝐸𝑝(𝐴, 𝐵) 

(x1,y1)  (x2,y2) = (x3,y3) 

 

x3 = ((y2–y1)/(x2–x1))2 – x1 – x2 mod p 

y3 = -y1 + ((y2–y1)/(x2–x1)) (x1–x3) mod p 

 

 when x1  x2 
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The Elliptic Group 𝐸𝑝(𝐴, 𝐵) 

(x1,y1)  (x2,y2) = (x3,y3) 

 

x3 = ((3x1
2+A)/(2y1))2 – 2x1 

y3 = -y1 + ((3x1
2+A)/(2y1)) (x1–x3) 

 

 when x1 = x2 and y1 = y2  0 
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The Elliptic Group 𝐸𝑝(𝐴, 𝐵) 

(x1,y1)  (x2,y2) = (x3,y3) 

 

x3 = ((3x1
2+A)/(2y1))2 – 2x1 mod p 

y3 = -y1 + ((3x1
2+A)/(2y1)) (x1–x3) mod p 

 

 when x1 = x2 and y1 = y2  0 
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The Elliptic Group 𝐸𝑝(𝐴, 𝐵) 

(x1,y1)  (x2,y2) = 𝐼 

 when x1= x2 but y1 y2 or y1= y2= 0 

 

(x1,y1)  𝐼 = (x1,y1) = 𝐼  (x1,y1) 

 

𝐼  𝐼 = 𝐼 
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The Fundamental Equation 

 

Z=YX mod N 
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The Fundamental Equation 

 

Z=YX in Ep(A,B) 

153 



January 13, 2011 Practical Aspects of Modern Cryptography 

The Fundamental Equation 

 

Z=YX in Ep(A,B)  
When Z is unknown, it can be efficiently 

computed by repeated squaring. 
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The Fundamental Equation 

 

Z=YX in Ep(A,B)  
When X is unknown, this version of the 

discrete logarithm is believed to be quite 
hard to solve. 
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The Fundamental Equation 

 

Z=YX in Ep(A,B) 
When Y is unknown, it can be efficiently 

computed by “sophisticated” means. 
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Diffie-Hellman Key Exchange 

Alice 

Randomly select a 
large integer a and 
send A  = Ya mod N. 

Compute the key       
K = Ba mod N. 

Bob 

Randomly select a 
large integer b and 
send B  = Yb mod N. 

Compute the key       
K = Ab mod N. 
 

Ba = Yba = Yab = Ab 
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Diffie-Hellman Key Exchange 

Alice 

Randomly select a 
large integer a and 
send A  = Ya in Ep. 

Compute the key       
K = Ba in Ep. 

Bob 

Randomly select a 
large integer b and 
send B  = Yb in Ep. 

Compute the key       
K = Ab in Ep. 
 

Ba = Yba = Yab = Ab 
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DSA on Elliptic Curves 
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DSA on Elliptic Curves 
 

Almost identical to DSA over the integers. 
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DSA on Elliptic Curves 
 

Almost identical to DSA over the integers. 

 

Replace operations mod p and q with 
operations in Ep and Eq. 
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Why use Elliptic Curves? 

 The best currently known algorithm for EC discrete 
logarithms would take about as long to find a 160-bit 
EC discrete log as the best currently known algorithm 
for integer discrete logarithms would take to find a 
1024-bit discrete log. 
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Why use Elliptic Curves? 

 The best currently known algorithm for EC discrete 
logarithms would take about as long to find a 160-bit 
EC discrete log as the best currently known algorithm 
for integer discrete logarithms would take to find a 
1024-bit discrete log. 

 160-bit EC algorithms are somewhat faster and use 
shorter keys than 1024-bit “traditional” algorithms. 
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Why not use Elliptic Curves? 
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Why not use Elliptic Curves? 

 EC discrete logarithms have been studied far less than 
integer discrete logarithms. 
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Why not use Elliptic Curves? 

 EC discrete logarithms have been studied far less than 
integer discrete logarithms. 

 Results have shown that a fundamental break in 
integer discrete logs would also yield a fundamental 
break in EC discrete logs, although the reverse may 
not be true. 
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Why not use Elliptic Curves? 

 EC discrete logarithms have been studied far less than 
integer discrete logarithms. 

 Results have shown that a fundamental break in 
integer discrete logs would also yield a fundamental 
break in EC discrete logs, although the reverse may 
not be true. 

 Basic EC operations are more cumbersome than 
integer operations, so EC is only faster if the keys are 
much smaller. 

168 



Symmetric 

 Cryptography 
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The Practical Side 

For efficiency, one generally uses RSA (or 
another public-key algorithm) to transmit a 
private (symmetric) key. 

The private session key is used to encrypt and 
authenticate any subsequent data. 

 

Digital signatures are only used to sign a digest 
of the message. 
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One-Way Hash Functions 

Generally, a one-way hash function is a 
function H : {0,1}*  {0,1}k (typically k is 
128, 160, 256, 384, or 512) such that 
given an input value x, one cannot find a 
value x  x such H(x) = H(x ). 

171 



January 13, 2011 Practical Aspects of Modern Cryptography 

One-Way Hash Functions 

There are many measures for one-way 
hashes. 

  

Non-invertability:  given y, it’s difficult to 
find any x such that H(x) = y. 
 

Collision-intractability:  one cannot find a 
pair of values x  x such that H(x) = H(x ). 
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One-Way Hash Functions 

When using a stream cipher, a hash of the 
message can be appended to ensure 
integrity.  [Message Authentication Code] 

 

When forming a digital signature, the 
signature need only be applied to a hash 
of the message.  [Message Digest] 
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A Cryptographic Hash:  SHA-1 

Compression 
Function 

160-bit Output 

512-bit Input (IV) 
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A Cryptographic Hash:  SHA-1 
160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

No Change 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

Rotate 30 bits 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

No Change 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

No Change 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

? 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

Take the rightmost word. 

Add in the leftmost word rotated 5 bits. 

Add in a round-dependent function f of 
the middle three words. 
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A Cryptographic Hash:  SHA-1 

f 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

Depending on the round, the “non-linear” 
function f is one of the following. 

 

  f(X,Y,Z) = (XY)  ((X)Z) 

  f(X,Y,Z) = (XY)  (XZ)  (YZ) 

  f(X,Y,Z) = X  Y  Z 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

 Take the rightmost word. 

Add in the leftmost word rotated 5 bits. 

Add in a round-dependent function f of the 
middle three words. 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

 Take the rightmost word. 

Add in the leftmost word rotated 5 bits. 

Add in a round-dependent function f of the 
middle three words. 

Add in a round-dependent constant. 

185 



January 13, 2011 Practical Aspects of Modern Cryptography 

A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

 Take the rightmost word. 

Add in the leftmost word rotated 5 bits. 

Add in a round-dependent function f of the 
middle three words. 

Add in a round-dependent constant. 

Add in a portion of the 512-bit message. 
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A Cryptographic Hash:  SHA-1 
160-bit 512-bit 

One of 80 rounds 
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Symmetric Ciphers 

Private-key (symmetric) ciphers are 
usually divided into two classes. 

 

Stream ciphers 
 

Block ciphers 
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Symmetric Ciphers 

Private-key (symmetric) ciphers are 
usually divided into two classes. 

 

Stream ciphers 
 

Block ciphers 
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Stream Ciphers 

Use the key as a seed to a pseudo-random 
number-generator. 

 Take the stream of output bits from the PRNG 
and XOR it with the plaintext to form the 
ciphertext. 
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Stream Cipher Encryption 

Plaintext: 

PRNG(seed): 

Ciphertext: 
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Stream Cipher Decryption 

Plaintext: 

PRNG(seed): 

Ciphertext: 

192 



January 13, 2011 Practical Aspects of Modern Cryptography 

A PRNG:  Alleged RC4 

Initialization 

 S[0..255] = 0,1,…,255 

 K[0..255] = Key,Key,Key,… 

 for i = 0 to 255 

  j = (j + S[i] + K[i]) mod 256 

  swap S[i] and S[j] 
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A PRNG:  Alleged RC4 

Iteration 

 i = (i + 1) mod 256 

 j = (j + S[i]) mod 256 

 swap S[i] and S[j] 

 t = (S[i] + S[j]) mod 256 

 Output S[t] 
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Stream Cipher Integrity 

 It is easy for an adversary (even one who can’t 
decrypt the ciphertext) to alter the plaintext in 
a known way. 

Bob to Bob’s Bank:                                            
Please transfer $0,000,002.00 to the account 
of my good friend Alice. 
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Stream Cipher Integrity 

 It is easy for an adversary (even one who can’t 
decrypt the ciphertext) to alter the plaintext in 
a known way. 

Bob to Bob’s Bank:                                            
Please transfer $1,000,002.00 to the account 
of my good friend Alice. 

 This can be protected against by the careful 
addition of appropriate redundancy. 

 
197 



January 13, 2011 Practical Aspects of Modern Cryptography 

Symmetric Ciphers 

Private-key (symmetric) ciphers are 
usually divided into two classes. 

 

Stream ciphers 
 

Block ciphers 
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Block Ciphers 

Block 
Cipher 

Plaintext Data Ciphertext 

Key 
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Block Ciphers 

Block 
Cipher 

Plaintext Data Ciphertext 

Key 

Usually 16 bytes. 
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Block Cipher Modes 

Electronic Code Book (ECB) Encryption: 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 
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Block Cipher Modes 

Electronic Code Book (ECB) Decryption: 

Inverse 
Cipher 

Inverse 
Cipher 

Inverse 
Cipher 

Inverse 
Cipher 

Plaintext 

Ciphertext 
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Block Cipher Modes 

Electronic Code Book (ECB) Encryption: 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 
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Block Cipher Modes 

Cipher Block Chaining (CBC) Encryption: 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 

IV 
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Block Cipher Modes 

Cipher Block Chaining (CBC) Decryption: 

Inverse 
Cipher 

Inverse 
Cipher 

Inverse 
Cipher 

Inverse 
Cipher 

Plaintext 

Ciphertext 

IV 
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Block Cipher Modes 

Cipher Block Chaining (CBC) Encryption: 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 

IV 
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How to Build a Block Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 

Key 
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Feistel Ciphers 

Ugly 
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Feistel Ciphers 

Ugly 
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Feistel Ciphers 

Ugly 
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Ugly 

Feistel Ciphers 
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Feistel Ciphers 

Ugly 

Ugly 
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Feistel Ciphers 

 Typically, most Feistel ciphers are iterated for 
about 16 rounds. 

Different “sub-keys” are used for each round. 

 

 Even a weak round function can yield a strong 
Feistel cipher if iterated sufficiently. 
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Data Encryption Standard (DES) 

Block 
Cipher 

64-bit Plaintext 

64-bit Ciphertext 

56-bit Key 
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Data Encryption Standard (DES) 

16 Feistel 
Rounds 

64-bit Plaintext 

56-bit Key 

64-bit Ciphertext 
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Data Encryption Standard (DES) 

16 Feistel 
Rounds 

64-bit Plaintext 

56-bit Key 

64-bit Ciphertext 
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DES Round 

Ugly 
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Simplified DES Round Function 

Sub-key 

4-bit substitutions 

32-bit permutation 

Ugly 
32 bits 
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Actual DES Round Function 

Sub-key 

6/4-bit substitutions 

32-bit permutation 

Ugly 
32 bits 

48 bits 
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Cryptographic Tools 

One-Way Trapdoor Functions 

Public-Key Encryption Schemes 

One-Way Functions 

One-Way Hash Functions 

Pseudo-Random Number-Generators 

Secret-Key Encryption Schemes 

Digital Signature Schemes 
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