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January 13, 2011 Practical Aspects of Modern Cryptography 

Public-Key History 

 1976  New Directions in Cryptography 

Whit Diffie and Marty Hellman 
 One-Way functions 

 Diffie-Hellman Key Exchange 

 1978  RSA paper 

Ron Rivest, Adi Shamir, and Len Adleman 
 RSA Encryption System 

 RSA Digital Signature Mechanism 

2 



January 13, 2011 Practical Aspects of Modern Cryptography 

The Fundamental Equation 

 

Z=YX mod N 
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Diffie-Hellman 

 

Z=YX mod N 
When X is unknown, the problem is known 

as the discrete logarithm and is generally 
believed to be hard to solve. 
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Diffie-Hellman Key Exchange 

Alice 

Randomly select a 
large integer a and 
send A  = Ya mod N. 

Compute the key       
K = Ba mod N. 

Bob 

Randomly select a 
large integer b and 
send B  = Yb mod N. 

Compute the key       
K = Ab mod N. 
 

Ba = Yba = Yab = Ab 
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One-Way Trap-Door Functions 

 

Z=YX mod N 
Recall that this equation is solvable for Y if 

the factorization of N is known, but is 
believed to be hard otherwise. 
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RSA Public-Key Cryptosystem 

Alice 
 Select two large 

random primes P & Q. 

 Publish the product 
N=PQ. 

 Use knowledge of P & 
Q to compute Y. 

Anyone 
 To send message Y to 

Alice, compute   
 Z=YX mod N. 

 Send Z and X to Alice. 
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Why Does RSA Work? 

Fact 
 

When 𝑁 = 𝑃𝑄 is the product of distinct primes, 

𝑌𝑋 mod 𝑁 = 𝑌  
whenever 

𝑋 mod (𝑃 − 1)(𝑄 − 1)  =  1 and 0 𝑌𝑁. 
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Fermat’s Little Theorem 

If 𝑝 is prime, 

    then 𝑥𝑝−1mod 𝑝 = 1 for all 0 < 𝑥 < 𝑝. 
 

Equivalently … 
 

If 𝑝 is prime, then 

𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝 

 for all integers 𝑥. 
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The Binomial Theorem 

𝑥 + 𝑦 𝑝 =  𝑛
𝑖
𝑥𝑖𝑦𝑝−𝑖

𝑝
𝑖=0  where 𝑝

𝑖
=

𝑝!

𝑖! 𝑝−𝑖 !
 

 

Proof of Fermat’s Little Theorem 
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The Binomial Theorem 

𝑥 + 𝑦 𝑝 =  𝑛
𝑖
𝑥𝑖𝑦𝑝−𝑖

𝑝
𝑖=0  where 𝑝

𝑖
=

𝑝!

𝑖! 𝑝−𝑖 !
 

 

If 𝑝 is prime, then 𝑝
𝑖
= 0 for 0 < 𝑖 < 𝑝. 

 
 

Proof of Fermat’s Little Theorem 
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The Binomial Theorem 

𝑥 + 𝑦 𝑝 =  𝑛
𝑖
𝑥𝑖𝑦𝑝−𝑖

𝑝
𝑖=0  where 𝑝

𝑖
=

𝑝!

𝑖! 𝑝−𝑖 !
 

 

If 𝑝 is prime, then 𝑝
𝑖
= 0 for 0 < 𝑖 < 𝑝. 

 

Thus, (𝑥 + 𝑦)𝑝 mod 𝑝 = (𝑥𝑝 + 𝑦𝑝) mod 𝑝. 
 

Proof of Fermat’s Little Theorem 
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Proof of Fermat’s Little Theorem 

𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 
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Proof of Fermat’s Little Theorem 

𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 
 

By induction on 𝑥… 
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Proof of Fermat’s Little Theorem 

𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 
 

By induction on 𝑥… 
 

Basis 
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Proof of Fermat’s Little Theorem 

𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 
 

By induction on 𝑥… 
 

Basis 

If 𝑥 = 0, then 𝑥𝑝 mod 𝑝 = 0 = 𝑥 mod 𝑝. 

16 



January 13, 2011 Practical Aspects of Modern Cryptography 

Proof of Fermat’s Little Theorem 

𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 
 

By induction on 𝑥… 
 

Basis 

If 𝑥 = 0, then 𝑥𝑝 mod 𝑝 = 0 = 𝑥 mod 𝑝. 

If 𝑥 = 1, then 𝑥𝑝 mod 𝑝 = 1 = 𝑥 mod 𝑝. 
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Proof of Fermat’s Little Theorem 

Inductive Step 
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Proof of Fermat’s Little Theorem 

Inductive Step 
 

Assume that 𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝. 
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Proof of Fermat’s Little Theorem 

Inductive Step 
 

Assume that 𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝. 

Then (𝑥 + 1)𝑝 mod 𝑝 = (𝑥𝑝 + 1𝑝) mod 𝑝 

    (by the binomial theorem) 
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Proof of Fermat’s Little Theorem 

Inductive Step 
 

Assume that 𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝. 

Then (𝑥 + 1)𝑝 mod 𝑝 = (𝑥𝑝 + 1𝑝) mod 𝑝 

= (𝑥 + 1) mod 𝑝 (by inductive hypothesis). 
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Proof of Fermat’s Little Theorem 

Inductive Step 
 

Assume that 𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝. 

Then (𝑥 + 1)𝑝 mod 𝑝 = (𝑥𝑝 + 1𝑝) mod 𝑝 

= (𝑥 + 1) mod 𝑝 (by inductive hypothesis). 

Hence, 𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 for integers 𝑥 ≥ 0. 
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Proof of Fermat’s Little Theorem 

Inductive Step 
 

Assume that 𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝. 

Then (𝑥 + 1)𝑝 mod 𝑝 = (𝑥𝑝 + 1𝑝) mod 𝑝 

= (𝑥 + 1) mod 𝑝 (by inductive hypothesis). 

Hence, 𝑥𝑝 mod 𝑝 = 𝑥 mod 𝑝 for integers 𝑥 ≥ 0. 
 

Also true for negative 𝑥, since (−𝑥)𝑝 = (−1)𝑝𝑥𝑝. 
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Proof of RSA 
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Proof of RSA 

We have shown … 

𝑌𝑃mod 𝑃 = 𝑌 whenever 0 ≤ 𝑌 < 𝑃 

and 𝑃 is prime. 
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Proof of RSA 

We have shown … 

𝑌𝑃mod 𝑃 = 𝑌 whenever 0 ≤ 𝑌 < 𝑃 

and 𝑃 is prime. 

 

You will show … 

𝑌𝐾 𝑃−1 𝑄−1 +1 mod 𝑃𝑄 = 𝑌 when 0 ≤ 𝑌 < 𝑃𝑄 

𝑃 and 𝑄 are distinct primes and 𝐾 ≥ 0. 
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Corollary of Fermat 

𝑥𝑝 mod 𝑝 =  𝑥 mod 𝑝 
⇓ 

𝑥𝑘 𝑝−1 +1 mod 𝑝 =  𝑥 mod 𝑝 

For all prime 𝑝 and 𝑘 ≥ 0. 
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Finding Primes 
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Finding Primes 

Euclid’s proof of the infinity of primes 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 

 Let 𝑁 be the product of all of the primes. 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 

 Let 𝑁 be the product of all of the primes. 

 Consider 𝑁 + 1. 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 

 Let 𝑁 be the product of all of the primes. 

 Consider 𝑁 + 1.  Is 𝑁 + 1 prime or composite? 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 

 Let 𝑁 be the product of all of the primes. 

 Consider 𝑁 + 1.  Is 𝑁 + 1 prime or composite? 

 The prime factors of 𝑁 + 1 are not among the finite set of 
primes multiplied to form 𝑁. 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 

 Let 𝑁 be the product of all of the primes. 

 Consider 𝑁 + 1.  Is 𝑁 + 1 prime or composite? 

 The prime factors of 𝑁 + 1 are not among the finite set of 
primes multiplied to form 𝑁. 

 So 𝑁 must be a prime not in the set. 
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Finding Primes 

Euclid’s proof of the infinity of primes 
 Suppose that the set of all primes were finite. 

 Let 𝑁 be the product of all of the primes. 

 Consider 𝑁 + 1.  Is 𝑁 + 1 prime or composite? 

 The prime factors of 𝑁 + 1 are not among the finite set of 
primes multiplied to form 𝑁. 

 So 𝑁 must be a prime not in the set. 

 This contradicts the assumption that the set of all primes is 
finite. 
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The Prime Number Theorem 
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The Prime Number Theorem 
 

The number of primes less than 𝑁 is 
approximately 𝑁 (ln𝑁) . 
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The Prime Number Theorem 
 

The number of primes less than 𝑁 is 
approximately 𝑁 (ln𝑁) . 

 

Thus, approximately 1 out of every 𝑛 
randomly selected 𝑛-bit integers will 
be prime. 
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But How Do We Find Primes? 
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Testing Primality 
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Testing Primality 
 

Recall Fermat’s Little Theorem 

If 𝑝 is prime, then 𝑎𝑝−1 mod 𝑝 = 1 for 
all 𝑎 in the range 0 < 𝑎 < 𝑝. 
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Testing Primality 
 

Recall Fermat’s Little Theorem 

If 𝑝 is prime, then 𝑎𝑝−1 mod 𝑝 = 1 for 
all 𝑎 in the range 0 < 𝑎 < 𝑝. 

 

Fact 

For almost all composite 𝑝 and 𝑎 > 1, 

𝑎𝑝−1 mod 𝑝 ≠ 1. 
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The Miller-Rabin Primality Test 
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The Miller-Rabin Primality Test 

To test an integer 𝑁 for primality, write 𝑁–1 as              

𝑁–1 = 𝑚2𝑘 where 𝑚 is odd. 
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The Miller-Rabin Primality Test 

To test an integer 𝑁 for primality, write 𝑁–1 as              

𝑁–1 = 𝑚2𝑘 where 𝑚 is odd. 

Repeat several (many) times 
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The Miller-Rabin Primality Test 

To test an integer 𝑁 for primality, write 𝑁–1 as              

𝑁–1 = 𝑚2𝑘 where 𝑚 is odd. 

Repeat several (many) times 

 Select a random 𝑎 in 1 < 𝑎 < 𝑁–1 
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The Miller-Rabin Primality Test 

To test an integer 𝑁 for primality, write 𝑁–1 as              

𝑁–1 = 𝑚2𝑘 where 𝑚 is odd. 

Repeat several (many) times 

 Select a random 𝑎 in 1 < 𝑎 < 𝑁–1 

 Compute 𝑎𝑚, 𝑎2𝑚, 𝑎4𝑚, … , 𝑎(𝑁−1) 2  all mod 𝑁. 
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The Miller-Rabin Primality Test 

To test an integer 𝑁 for primality, write 𝑁–1 as              

𝑁–1 = 𝑚2𝑘 where 𝑚 is odd. 

Repeat several (many) times 

 Select a random 𝑎 in 1 < 𝑎 < 𝑁–1 

 Compute 𝑎𝑚, 𝑎2𝑚, 𝑎4𝑚, … , 𝑎(𝑁−1) 2  all mod 𝑁. 

 If 𝑎𝑚 = ±1 or if some 𝑎2
𝑖𝑚 = −1, then 𝑁 is probably 

prime – continue. 
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The Miller-Rabin Primality Test 

To test an integer 𝑁 for primality, write 𝑁–1 as              

𝑁–1 = 𝑚2𝑘 where 𝑚 is odd. 

Repeat several (many) times 

 Select a random 𝑎 in 1 < 𝑎 < 𝑁–1 

 Compute 𝑎𝑚, 𝑎2𝑚, 𝑎4𝑚, … , 𝑎(𝑁−1) 2  all mod 𝑁. 

 If 𝑎𝑚 = ±1 or if some 𝑎2
𝑖𝑚 = −1, then 𝑁 is probably 

prime – continue. 

 Otherwise, 𝑁 is composite – stop. 
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2 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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Sieving for Primes 

Pick a random starting point 𝑁. 
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Sieving out multiples of 
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2 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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2 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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2 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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2 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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2 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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3 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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3 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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3 

Sieving for Primes 

Pick a random starting point N. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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3 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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3 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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5 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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5 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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5 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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5 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 
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5 

Sieving for Primes 

Pick a random starting point 𝑁. 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 

Sieving out multiples of 

Only a few “good” candidate primes will survive. 
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Reprise of RSA Set-Up 

 Use sieving to find large candidate primes. 
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Reprise of RSA Set-Up 

 Use sieving to find large candidate primes. 

 Use Miller-Rabin on candidate primes to find two 
almost certainly prime integers 𝑃 and 𝑄. 
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Reprise of RSA Set-Up 

 Use sieving to find large candidate primes. 

 Use Miller-Rabin on candidate primes to find two 
almost certainly prime integers 𝑃 and 𝑄. 

 Form public modulus 𝑁 = 𝑃𝑄. 
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Reprise of RSA Set-Up 

 Use sieving to find large candidate primes. 

 Use Miller-Rabin on candidate primes to find two 
almost certainly prime integers 𝑃 and 𝑄. 

 Form public modulus 𝑁 = 𝑃𝑄. 

 Select public exponent 𝑒 (usually 𝑒 = 65537). 
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Reprise of RSA Set-Up 

 Use sieving to find large candidate primes. 

 Use Miller-Rabin on candidate primes to find two 
almost certainly prime integers 𝑃 and 𝑄. 

 Form public modulus 𝑁 = 𝑃𝑄. 

 Select public exponent 𝑒 (usually 𝑒 = 65537). 

 Use extended Euclidean algorithm to compute private 
exponent 𝑑 = 𝑒−1mod (𝑃 − 1)(𝑄 − 1). 
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Reprise of RSA Set-Up 

 Use sieving to find large candidate primes. 

 Use Miller-Rabin on candidate primes to find two 
almost certainly prime integers 𝑃 and 𝑄. 

 Form public modulus 𝑁 = 𝑃𝑄. 

 Select public exponent 𝑒 (usually 𝑒 = 65537). 

 Use extended Euclidean algorithm to compute private 
exponent 𝑑 = 𝑒−1mod (𝑃 − 1)(𝑄 − 1). 

 Publish public key 𝑁 (and 𝑒). 
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Reprise of RSA Encryption 

January 13, 2011 Practical Aspects of Modern Cryptography 75 



Reprise of RSA Encryption 

 Use public key to encrypt message 0 ≤ 𝑚 < 𝑁 as 
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Reprise of RSA Encryption 

 Use public key to encrypt message 0 ≤ 𝑚 < 𝑁 as 

𝐸 𝑚 = 𝑚𝑒mod 𝑁. 
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Reprise of RSA Encryption 

 Use public key to encrypt message 0 ≤ 𝑚 < 𝑁 as 

𝐸 𝑚 = 𝑚𝑒mod 𝑁. 

 

 Use private decryption exponent 𝑑 to decrypt 
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Reprise of RSA Encryption 

 Use public key to encrypt message 0 ≤ 𝑚 < 𝑁 as 

𝐸 𝑚 = 𝑚𝑒mod 𝑁. 

 

 Use private decryption exponent 𝑑 to decrypt 

𝐷 𝐸 𝑚 = (𝑚𝑒  mod 𝑁)𝑑  mod 𝑁 
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Reprise of RSA Encryption 

 Use public key to encrypt message 0 ≤ 𝑚 < 𝑁 as 

𝐸 𝑚 = 𝑚𝑒mod 𝑁. 

 

 Use private decryption exponent 𝑑 to decrypt 

𝐷 𝐸 𝑚 = (𝑚𝑒  mod 𝑁)𝑑  mod 𝑁 

= 𝑚𝑒𝑑  mod 𝑁 
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Reprise of RSA Encryption 

 Use public key to encrypt message 0 ≤ 𝑚 < 𝑁 as 

𝐸 𝑚 = 𝑚𝑒mod 𝑁. 

 

 Use private decryption exponent 𝑑 to decrypt 

𝐷 𝐸 𝑚 = (𝑚𝑒  mod 𝑁)𝑑  mod 𝑁 

= 𝑚𝑒𝑑  mod 𝑁 
= 𝑚 
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Reprise of RSA Signatures 
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Reprise of RSA Signatures 

 Use private decryption exponent 𝑑 to sign message 
0 ≤ 𝑚 < 𝑁 as 
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Reprise of RSA Signatures 

 Use private decryption exponent 𝑑 to sign message 
0 ≤ 𝑚 < 𝑁 as 

𝐷 𝑚 = 𝑚𝑑  mod 𝑁. 
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Reprise of RSA Signatures 

 Use private decryption exponent 𝑑 to sign message 
0 ≤ 𝑚 < 𝑁 as 

𝐷 𝑚 = 𝑚𝑑  mod 𝑁. 

 

 Verify signature by using public key to compute 
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Reprise of RSA Signatures 

 Use private decryption exponent 𝑑 to sign message 
0 ≤ 𝑚 < 𝑁 as 

𝐷 𝑚 = 𝑚𝑑  mod 𝑁. 

 

 Verify signature by using public key to compute 

𝐸 𝐷 𝑚 = (𝑚𝑑  mod 𝑁)𝑒 mod 𝑁 
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Reprise of RSA Signatures 

 Use private decryption exponent 𝑑 to sign message 
0 ≤ 𝑚 < 𝑁 as 

𝐷 𝑚 = 𝑚𝑑  mod 𝑁. 

 

 Verify signature by using public key to compute 

𝐸 𝐷 𝑚 = (𝑚𝑑  mod 𝑁)𝑒 mod 𝑁 

= 𝑚𝑑𝑒  mod 𝑁 
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Reprise of RSA Signatures 

 Use private decryption exponent 𝑑 to sign message 
0 ≤ 𝑚 < 𝑁 as 

𝐷 𝑚 = 𝑚𝑑  mod 𝑁. 

 

 Verify signature by using public key to compute 

𝐸 𝐷 𝑚 = (𝑚𝑑  mod 𝑁)𝑒 mod 𝑁 

= 𝑚𝑑𝑒  mod 𝑁 
= 𝑚 
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The Digital Signature Algorithm 
 

In 1991, the National Institute of 
Standards and Technology published a 
Digital Signature Standard that was 
intended as an option free of 
intellectual property constraints. 
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The Digital Signature Algorithm 

DSA uses the following parameters 

Prime 𝑝 – anywhere from 512 to 1024 bits 

Prime 𝑞 – 160 bits such that 𝑞 divides 𝑝 − 1 

 Integer ℎ in the range 1 < ℎ < 𝑝 − 1 

 Integer 𝑔 = ℎ(𝑝−1) 𝑞  mod 𝑝 

 Secret integer 𝑥 in the range 1 < 𝑥 < 𝑞 

 Integer 𝑦 = 𝑔𝑥 mod 𝑝 
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The Digital Signature Algorithm 

91 



January 13, 2011 Practical Aspects of Modern Cryptography 

The Digital Signature Algorithm 

To sign a 160-bit message 𝑀, 
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The Digital Signature Algorithm 

To sign a 160-bit message 𝑀, 

Generate a random integer 𝑘 with 0 < 𝑘 < 𝑞, 
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The Digital Signature Algorithm 

To sign a 160-bit message 𝑀, 

Generate a random integer 𝑘 with 0 < 𝑘 < 𝑞, 

Compute 𝑟 =  (𝑔𝑘 mod 𝑝) mod 𝑞, 

 

94 



January 13, 2011 Practical Aspects of Modern Cryptography 

The Digital Signature Algorithm 

To sign a 160-bit message 𝑀, 

Generate a random integer 𝑘 with 0 < 𝑘 < 𝑞, 

Compute 𝑟 =  (𝑔𝑘 mod 𝑝) mod 𝑞, 

Compute 𝑠 =  ((𝑀 + 𝑥𝑟)/𝑘) mod 𝑞. 
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The Digital Signature Algorithm 

To sign a 160-bit message 𝑀, 

Generate a random integer 𝑘 with 0 < 𝑘 < 𝑞, 

Compute 𝑟 =  (𝑔𝑘 mod 𝑝) mod 𝑞, 

Compute 𝑠 =  ((𝑀 + 𝑥𝑟)/𝑘) mod 𝑞. 

 

The pair (𝑟, 𝑠) is the signature on 𝑀. 
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The Digital Signature Algorithm 
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The Digital Signature Algorithm 

A signature (𝑟, 𝑠) on 𝑀 is verified as follows: 
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The Digital Signature Algorithm 

A signature (𝑟, 𝑠) on 𝑀 is verified as follows: 

Compute 𝑤 =  1/𝑠 𝑚𝑜𝑑 𝑞, 
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The Digital Signature Algorithm 

A signature (𝑟, 𝑠) on 𝑀 is verified as follows: 

Compute 𝑤 =  1/𝑠 𝑚𝑜𝑑 𝑞, 

Compute 𝑎 =  𝑤𝑀 𝑚𝑜𝑑 𝑞, 
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The Digital Signature Algorithm 

A signature (𝑟, 𝑠) on 𝑀 is verified as follows: 

Compute 𝑤 =  1/𝑠 𝑚𝑜𝑑 𝑞, 

Compute 𝑎 =  𝑤𝑀 𝑚𝑜𝑑 𝑞, 

Compute 𝑏 =  𝑤𝑟 𝑚𝑜𝑑 𝑞, 
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The Digital Signature Algorithm 

A signature (𝑟, 𝑠) on 𝑀 is verified as follows: 

Compute 𝑤 =  1/𝑠 𝑚𝑜𝑑 𝑞, 

Compute 𝑎 =  𝑤𝑀 𝑚𝑜𝑑 𝑞, 

Compute 𝑏 =  𝑤𝑟 𝑚𝑜𝑑 𝑞, 

Compute 𝑣 =  (𝑔𝑎𝑦𝑏 mod 𝑝) mod 𝑞. 
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The Digital Signature Algorithm 

A signature (𝑟, 𝑠) on 𝑀 is verified as follows: 

Compute 𝑤 =  1/𝑠 𝑚𝑜𝑑 𝑞, 

Compute 𝑎 =  𝑤𝑀 𝑚𝑜𝑑 𝑞, 

Compute 𝑏 =  𝑤𝑟 𝑚𝑜𝑑 𝑞, 

Compute 𝑣 =  (𝑔𝑎𝑦𝑏 mod 𝑝) mod 𝑞. 

 

Accept the signature only if 𝑣 =  𝑟. 
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Elliptic Curve Cryptosystems 
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Elliptic Curve Cryptosystems 

An elliptic curve 
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Elliptic Curve Cryptosystems 

An elliptic curve 
 

y2 = x3 + Ax + B 
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Elliptic Curves 

y2 = x3 + Ax + B 
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Elliptic Curves 

y   
 = x3 + Ax + B 
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Elliptic Curves 

y   
 = x3 + Ax + B 
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Elliptic Curves 

y2 = x3 + Ax + B 

x 

y 
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Elliptic Curves 

y2 = x3 + Ax + B 

x 
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Elliptic Curves 

y2 = x3 + Ax + B 

x 

y 

112 



January 13, 2011 Practical Aspects of Modern Cryptography 

Elliptic Curves 

y2 = x3 + Ax + B 
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Elliptic Curves 

y2 = x3 + Ax + B 
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Elliptic Curves 

y2 = x3 + Ax + B 
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Elliptic Curves 

y2 = x3 + Ax + B 
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Elliptic Curves 

y2 = x3 + Ax + B 

x 

y 
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y2 = x3 + Ax + B 

x 

y 

y = ax + b 

Elliptic Curves Intersecting Lines 
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Non-vertical Lines 

   y2 = x3 + Ax + B 

   y = ax + b 

 (ax + b)2 = x3 + Ax + B 

 x3 + Ax2 + Bx + C = 0 

Elliptic Curves Intersecting Lines 
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x3 + Ax2 + Bx + C = 0 

x 

y 

Elliptic Curves Intersecting Lines 
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x3 + Ax2 + Bx + C = 0 

x 

y 

Elliptic Curves Intersecting Lines 

3 solutions 
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Elliptic Curves Intersecting Lines 

x3 + Ax2 + Bx + C = 0 

x 

y 

1 solution 
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Elliptic Curves Intersecting Lines 

x3 + Ax2 + Bx + C = 0 

x 

y 

1 solution 
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Elliptic Curves Intersecting Lines 

x3 + Ax2 + Bx + C = 0 

x 

y 

2 solutions 
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Non-vertical Lines 

 

1 intersection point  (typical case) 

2 intersection points  (tangent case) 

3 intersection points  (typical case) 

Elliptic Curves Intersecting Lines 
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Vertical Lines 

   y2 = x3 + Ax + B 

   x = c 

 y2 = c3 + Ac + B 

 y2 = C  

Elliptic Curves Intersecting Lines 
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Vertical Lines 

 

0 intersection point  (typical case) 

1 intersection points  (tangent case) 

2 intersection points  (typical case) 

Elliptic Curves Intersecting Lines 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 

y = ax + b 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 

y = ax + b 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 

y = ax + b 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 

y = ax + b 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 

y = ax + b 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 

y = ax + b 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 

x = c 
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Elliptic Groups 

Add an “artificial” point 𝐼 to 
handle the vertical line case. 
 

This point 𝐼 also serves as the 
group identity value. 
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Elliptic Groups 

y2 = x3 + Ax + B 

x 

y 

x = c 
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Elliptic Groups 

(x1,y1)  (x2,y2) = (x3,y3) 

 

x3 = ((y2–y1)/(x2–x1))2 – x1 – x2 

y3 = -y1 + ((y2–y1)/(x2–x1)) (x1–x3) 

 

 when x1  x2 

141 



January 13, 2011 Practical Aspects of Modern Cryptography 

Elliptic Groups 

(x1,y1)  (x2,y2) = (x3,y3) 

 

x3 = ((3x1
2+A)/(2y1))2 – 2x1 

y3 = -y1 + ((3x1
2+A)/(2y1)) (x1–x3) 

 

 when x1 = x2 and y1 = y2  0 
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Elliptic Groups 

(x1,y1)  (x2,y2) = 𝐼 

 when x1= x2 but y1 y2 or y1= y2= 0 

 

(x1,y1)  𝐼 = (x1,y1) = 𝐼  (x1,y1) 

 

𝐼  𝐼 = 𝐼 
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Finite Elliptic Groups 
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Finite Elliptic Groups 

The equations use basic arithmetic 
operations (addition, subtraction, 
multiplication, and division) on real 
values. 
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Finite Elliptic Groups 

The equations use basic arithmetic 
operations (addition, subtraction, 
multiplication, and division) on real 
values. 

But we know how to do modular 
operations, so we can do the same 
computations modulo a prime 𝑝. 
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The Elliptic Group 𝐸𝑝(𝐴, 𝐵) 

(x1,y1)  (x2,y2) = (x3,y3) 

 

x3 = ((y2–y1)/(x2–x1))2 – x1 – x2 

y3 = -y1 + ((y2–y1)/(x2–x1)) (x1–x3) 

 

 when x1  x2 
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The Elliptic Group 𝐸𝑝(𝐴, 𝐵) 

(x1,y1)  (x2,y2) = (x3,y3) 

 

x3 = ((y2–y1)/(x2–x1))2 – x1 – x2 mod p 

y3 = -y1 + ((y2–y1)/(x2–x1)) (x1–x3) mod p 

 

 when x1  x2 
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The Elliptic Group 𝐸𝑝(𝐴, 𝐵) 

(x1,y1)  (x2,y2) = (x3,y3) 

 

x3 = ((3x1
2+A)/(2y1))2 – 2x1 

y3 = -y1 + ((3x1
2+A)/(2y1)) (x1–x3) 

 

 when x1 = x2 and y1 = y2  0 
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The Elliptic Group 𝐸𝑝(𝐴, 𝐵) 

(x1,y1)  (x2,y2) = (x3,y3) 

 

x3 = ((3x1
2+A)/(2y1))2 – 2x1 mod p 

y3 = -y1 + ((3x1
2+A)/(2y1)) (x1–x3) mod p 

 

 when x1 = x2 and y1 = y2  0 
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The Elliptic Group 𝐸𝑝(𝐴, 𝐵) 

(x1,y1)  (x2,y2) = 𝐼 

 when x1= x2 but y1 y2 or y1= y2= 0 

 

(x1,y1)  𝐼 = (x1,y1) = 𝐼  (x1,y1) 

 

𝐼  𝐼 = 𝐼 
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The Fundamental Equation 

 

Z=YX mod N 
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The Fundamental Equation 

 

Z=YX in Ep(A,B) 

153 



January 13, 2011 Practical Aspects of Modern Cryptography 

The Fundamental Equation 

 

Z=YX in Ep(A,B)  
When Z is unknown, it can be efficiently 

computed by repeated squaring. 
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The Fundamental Equation 

 

Z=YX in Ep(A,B)  
When X is unknown, this version of the 

discrete logarithm is believed to be quite 
hard to solve. 
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The Fundamental Equation 

 

Z=YX in Ep(A,B) 
When Y is unknown, it can be efficiently 

computed by “sophisticated” means. 
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Diffie-Hellman Key Exchange 

Alice 

Randomly select a 
large integer a and 
send A  = Ya mod N. 

Compute the key       
K = Ba mod N. 

Bob 

Randomly select a 
large integer b and 
send B  = Yb mod N. 

Compute the key       
K = Ab mod N. 
 

Ba = Yba = Yab = Ab 
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Diffie-Hellman Key Exchange 

Alice 

Randomly select a 
large integer a and 
send A  = Ya in Ep. 

Compute the key       
K = Ba in Ep. 

Bob 

Randomly select a 
large integer b and 
send B  = Yb in Ep. 

Compute the key       
K = Ab in Ep. 
 

Ba = Yba = Yab = Ab 
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DSA on Elliptic Curves 
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DSA on Elliptic Curves 
 

Almost identical to DSA over the integers. 
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DSA on Elliptic Curves 
 

Almost identical to DSA over the integers. 

 

Replace operations mod p and q with 
operations in Ep and Eq. 

161 
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Why use Elliptic Curves? 
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Why use Elliptic Curves? 

 The best currently known algorithm for EC discrete 
logarithms would take about as long to find a 160-bit 
EC discrete log as the best currently known algorithm 
for integer discrete logarithms would take to find a 
1024-bit discrete log. 
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Why use Elliptic Curves? 

 The best currently known algorithm for EC discrete 
logarithms would take about as long to find a 160-bit 
EC discrete log as the best currently known algorithm 
for integer discrete logarithms would take to find a 
1024-bit discrete log. 

 160-bit EC algorithms are somewhat faster and use 
shorter keys than 1024-bit “traditional” algorithms. 
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Why not use Elliptic Curves? 
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Why not use Elliptic Curves? 

 EC discrete logarithms have been studied far less than 
integer discrete logarithms. 
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Why not use Elliptic Curves? 

 EC discrete logarithms have been studied far less than 
integer discrete logarithms. 

 Results have shown that a fundamental break in 
integer discrete logs would also yield a fundamental 
break in EC discrete logs, although the reverse may 
not be true. 
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Why not use Elliptic Curves? 

 EC discrete logarithms have been studied far less than 
integer discrete logarithms. 

 Results have shown that a fundamental break in 
integer discrete logs would also yield a fundamental 
break in EC discrete logs, although the reverse may 
not be true. 

 Basic EC operations are more cumbersome than 
integer operations, so EC is only faster if the keys are 
much smaller. 
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Symmetric 

 Cryptography 
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The Practical Side 

For efficiency, one generally uses RSA (or 
another public-key algorithm) to transmit a 
private (symmetric) key. 

The private session key is used to encrypt and 
authenticate any subsequent data. 

 

Digital signatures are only used to sign a digest 
of the message. 
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One-Way Hash Functions 

Generally, a one-way hash function is a 
function H : {0,1}*  {0,1}k (typically k is 
128, 160, 256, 384, or 512) such that 
given an input value x, one cannot find a 
value x  x such H(x) = H(x ). 
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One-Way Hash Functions 

There are many measures for one-way 
hashes. 

  

Non-invertability:  given y, it’s difficult to 
find any x such that H(x) = y. 
 

Collision-intractability:  one cannot find a 
pair of values x  x such that H(x) = H(x ). 
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One-Way Hash Functions 

When using a stream cipher, a hash of the 
message can be appended to ensure 
integrity.  [Message Authentication Code] 

 

When forming a digital signature, the 
signature need only be applied to a hash 
of the message.  [Message Digest] 
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A Cryptographic Hash:  SHA-1 

Compression 
Function 

160-bit Output 

512-bit Input (IV) 
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A Cryptographic Hash:  SHA-1 
160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

No Change 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

Rotate 30 bits 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

No Change 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

No Change 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

? 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

Take the rightmost word. 

Add in the leftmost word rotated 5 bits. 

Add in a round-dependent function f of 
the middle three words. 
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A Cryptographic Hash:  SHA-1 

f 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

Depending on the round, the “non-linear” 
function f is one of the following. 

 

  f(X,Y,Z) = (XY)  ((X)Z) 

  f(X,Y,Z) = (XY)  (XZ)  (YZ) 

  f(X,Y,Z) = X  Y  Z 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

 Take the rightmost word. 

Add in the leftmost word rotated 5 bits. 

Add in a round-dependent function f of the 
middle three words. 

Add in a round-dependent constant. 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

 Take the rightmost word. 

Add in the leftmost word rotated 5 bits. 

Add in a round-dependent function f of the 
middle three words. 

Add in a round-dependent constant. 

Add in a portion of the 512-bit message. 
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A Cryptographic Hash:  SHA-1 
160-bit 512-bit 

One of 80 rounds 
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Symmetric Ciphers 

Private-key (symmetric) ciphers are 
usually divided into two classes. 

 

Stream ciphers 
 

Block ciphers 
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Symmetric Ciphers 

Private-key (symmetric) ciphers are 
usually divided into two classes. 

 

Stream ciphers 
 

Block ciphers 
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Stream Ciphers 

Use the key as a seed to a pseudo-random 
number-generator. 

 Take the stream of output bits from the PRNG 
and XOR it with the plaintext to form the 
ciphertext. 
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Stream Cipher Encryption 

Plaintext: 

PRNG(seed): 

Ciphertext: 
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Stream Cipher Decryption 

Plaintext: 

PRNG(seed): 

Ciphertext: 
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A PRNG:  Alleged RC4 

Initialization 

 S[0..255] = 0,1,…,255 

 K[0..255] = Key,Key,Key,… 

 for i = 0 to 255 

  j = (j + S[i] + K[i]) mod 256 

  swap S[i] and S[j] 
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A PRNG:  Alleged RC4 

Iteration 

 i = (i + 1) mod 256 

 j = (j + S[i]) mod 256 

 swap S[i] and S[j] 

 t = (S[i] + S[j]) mod 256 

 Output S[t] 
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Stream Cipher Integrity 

 It is easy for an adversary (even one who can’t 
decrypt the ciphertext) to alter the plaintext in 
a known way. 

Bob to Bob’s Bank:                                            
Please transfer $0,000,002.00 to the account 
of my good friend Alice. 
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Stream Cipher Integrity 

 It is easy for an adversary (even one who can’t 
decrypt the ciphertext) to alter the plaintext in 
a known way. 

Bob to Bob’s Bank:                                            
Please transfer $1,000,002.00 to the account 
of my good friend Alice. 

 This can be protected against by the careful 
addition of appropriate redundancy. 
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Symmetric Ciphers 

Private-key (symmetric) ciphers are 
usually divided into two classes. 

 

Stream ciphers 
 

Block ciphers 
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Block Ciphers 

Block 
Cipher 

Plaintext Data Ciphertext 

Key 
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Block Ciphers 

Block 
Cipher 

Plaintext Data Ciphertext 

Key 

Usually 16 bytes. 
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Block Cipher Modes 

Electronic Code Book (ECB) Encryption: 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 
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Block Cipher Modes 

Electronic Code Book (ECB) Decryption: 

Inverse 
Cipher 

Inverse 
Cipher 

Inverse 
Cipher 

Inverse 
Cipher 

Plaintext 

Ciphertext 

202 



January 13, 2011 Practical Aspects of Modern Cryptography 

Block Cipher Modes 

Electronic Code Book (ECB) Encryption: 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 
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Block Cipher Modes 

Cipher Block Chaining (CBC) Encryption: 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 

IV 
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Block Cipher Modes 

Cipher Block Chaining (CBC) Decryption: 

Inverse 
Cipher 

Inverse 
Cipher 

Inverse 
Cipher 

Inverse 
Cipher 

Plaintext 

Ciphertext 

IV 
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Block Cipher Modes 

Cipher Block Chaining (CBC) Encryption: 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 

IV 
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How to Build a Block Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 

Key 
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Feistel Ciphers 

Ugly 
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Feistel Ciphers 

Ugly 
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Feistel Ciphers 

Ugly 
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Ugly 

Feistel Ciphers 
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Feistel Ciphers 

Ugly 

Ugly 
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Feistel Ciphers 

 Typically, most Feistel ciphers are iterated for 
about 16 rounds. 

Different “sub-keys” are used for each round. 

 

 Even a weak round function can yield a strong 
Feistel cipher if iterated sufficiently. 
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Data Encryption Standard (DES) 

Block 
Cipher 

64-bit Plaintext 

64-bit Ciphertext 

56-bit Key 
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Data Encryption Standard (DES) 

16 Feistel 
Rounds 

64-bit Plaintext 

56-bit Key 

64-bit Ciphertext 
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Data Encryption Standard (DES) 

16 Feistel 
Rounds 

64-bit Plaintext 

56-bit Key 

64-bit Ciphertext 
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DES Round 

Ugly 
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Simplified DES Round Function 

Sub-key 

4-bit substitutions 

32-bit permutation 

Ugly 
32 bits 

218 



January 13, 2011 Practical Aspects of Modern Cryptography 

Actual DES Round Function 

Sub-key 

6/4-bit substitutions 

32-bit permutation 

Ugly 
32 bits 

48 bits 
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Cryptographic Tools 

One-Way Trapdoor Functions 

Public-Key Encryption Schemes 

One-Way Functions 

One-Way Hash Functions 

Pseudo-Random Number-Generators 

Secret-Key Encryption Schemes 

Digital Signature Schemes 
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