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Public Key vs. Symmetric Key 

 Recall from last time that in a public key cryptosystem, 
each participant has a key pair consisting of related keys 

 Alice (or anyone) encrypts to Bob using Bob’s public key 

 Bob decrypts with Bob’s private key 

 Public keys are public 

 They can be published in a directory, on a website, etc. 
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Public Key vs. Symmetric Key 

 In contrast, in a symmetric key system, the same key is 
used for encryption and decryption 
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Public Key vs. Symmetric Key 

 In contrast, in a symmetric key system, the same key is 
used for encryption and decryption 

 Such keys must be kept secret 

 Alice and Bob must both know the same secret key to use a 
symmetric cryptosystem with that key 

 Common pattern we will come back to later: 

 Use a public key cryptosystem to send/negotiate a 
randomly-generated secret key with the party to whom you 
wish to communicate 

 Then use that secret key with a symmetric key cryptosystem 
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Symmetric Ciphers 

Private-key (symmetric) ciphers are 
usually divided into two classes. 
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Block ciphers 
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Stream Ciphers 

 Examples of stream ciphers include RC4, A5/1, SEAL, etc. 
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Stream Ciphers 

 Examples of stream ciphers include RC4, A5/1, SEAL, etc. 

 Use the key as a seed to a pseudo-random number-
generator. 
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Stream Ciphers 

 Examples of stream ciphers include RC4, A5/1, SEAL, etc. 

 Use the key as a seed to a pseudo-random number-
generator. 

 Take the stream of output bits from the PRNG and XOR it 
with the plaintext to form the ciphertext. 
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Stream Cipher Encryption 

Plaintext: 

PRNG(seed): 

Ciphertext: 
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Stream Cipher Decryption 

Ciphertext: 

PRNG(seed): 

Plaintext: 
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Some Good Properties 

 Stream ciphers are typically very fast. 
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Some Good Properties 

 Stream ciphers are typically very fast. 

 Stream ciphers can be very simple. 

 The same function is used for encryption and decryption. 

January 20, 2011 Practical Aspects of Modern Cryptography 25 



January 20, 2011 Practical Aspects of Modern Cryptography 

A Sample PRNG:  “Alleged RC4” 

Initialization 

 S*0..255+ = 0,1,…,255 

 K[0..255] = Key,Key,Key,… 

 for i = 0 to 255 

  j = (j + S[i] + K[i]) mod 256 

  swap S[i] and S[j] 
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A Sample PRNG:  “Alleged RC4” 

Iteration 

 i = (i + 1) mod 256 

 j = (j + S[i]) mod 256 

 swap S[i] and S[j] 

 t = (S[i] + S[j]) mod 256 

 Output S[t] 
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Stream Cipher Security 

 If two plaintexts are ever encrypted with the same stream 
cipher and key 

C1 = K  P1 

C2 = K  P2 

an attacker can easily compute 

C1  C2 = P1  P2 

from which P1 and P2 can usually be teased 
apart easily. 
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Stream Cipher Encryption 

Plaintext: 

PRNG(seed): 

Ciphertext: 
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Stream Cipher Integrity 

 It is easy for an adversary (even one who can’t 
decrypt the ciphertext) to alter the plaintext in 
a known way. 

Bob to Bob’s Bank:                                            
Please transfer $0,000,002.00 to the account 
of my good friend Alice. 
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Stream Cipher Integrity 

 It is easy for an adversary (even one who can’t 
decrypt the ciphertext) to alter the plaintext in 
a known way. 

Bob to Bob’s Bank:                                            
Please transfer $1,000,002.00 to the account 
of my good friend Alice. 

 This can be protected against by the careful 
addition of appropriate redundancy. 
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Stream Ciphers are Fragile 

 They are broken by key re-use. 
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Stream Ciphers are Fragile 

 They are broken by key re-use. 

 They require integrity checking. 

 If you’re going to use a stream cipher 

 Seriously consider other options.  Make sure you 
understand the risks if you make a mistake in use 
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Symmetric Ciphers 

Private-key (symmetric) ciphers are 
usually divided into two classes. 

 

Stream ciphers 
 

Block ciphers 
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Block Ciphers 

 Why are they called “block” ciphers? 
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Block Ciphers 
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 This is called the “block size” and is a fundamental 
parameter of the cipher. 
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Block Ciphers 

 Why are they called “block” ciphers? 

 Because the cipher is defined as a function on a fixed-size 
block of data. 

 This is called the “block size” and is a fundamental 
parameter of the cipher. 

 Today 8- or 16-byte blocks are common, but other sizes are 
possible. 

 Question: What’s the “block size” of a stream cipher? 
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Block Ciphers -- Encryption 

Block 

Cipher 

Plaintext Data Ciphertext 

Key 

Usually 8 or 16 bytes 
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Block Ciphers -- Decryption 

Inverse 

Cipher 

Ciphertext Plaintext 

Key 
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Block Ciphers  

 Q: What do I do if I want to encrypt more that one block 
of data with a block cipher? 
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Block Ciphers  

 Q: What do I do if I want to encrypt more that one block 
of data with a block cipher? 

 

 Simple A: Divide the to-be-encrypted plaintext into block-
size chunks, and then apply the cipher to each block. 
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Block Ciphers  

 Q: What do I do if I want to encrypt more that one block 
of data with a block cipher? 

 

 Simple A: Divide the to-be-encrypted plaintext into block-
size chunks, and then apply the cipher to each block. 

 

 Real A: Divide the to-be-encrypted plaintext into block-
size chunks, and then apply the cipher to the sequence of 
blocks using a mode of operation. 
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Block Cipher Modes 
Electronic Code Book (ECB) Encryption: 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 
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Block Cipher Modes 
Electronic Code Book (ECB) Decryption: 

Inverse 
Cipher 

Inverse 
Cipher 

Inverse 
Cipher 

Inverse 
Cipher 

Plaintext 

Ciphertext 
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Block Cipher Modes 
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Block 
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Block 
Cipher 

Block 
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Why is ECB of Concern?  
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Why is ECB of Concern?  

ECB 
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Block Cipher Modes 

Cipher Block Chaining (CBC) Encryption: 

 

Incorporate an Initial Value (IV) which changes with each 
encryption. 

The IV can be 

 A counter 

 A random value 

 Openly known 
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Block Cipher Modes 

Cipher Block Chaining (CBC) Encryption: 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 

IV 
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Block Cipher Modes 

Cipher Block Chaining (CBC) Decryption: 
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Cipher 

Inverse 
Cipher 
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Cipher 
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Block Cipher Modes 

Cipher Block Chaining (CBC) Encryption: 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 

IV 
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Example Block Ciphers 
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DES 

3DES 

AES 

RC2, RC5, TwoFish, Serpent, etc. 
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DES 

3DES 

AES 
RC2, RC5, TwoFish, Serpent, etc. 
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How to Build a Block Cipher 

Block 
Cipher 

Plaintext 

Ciphertext 

Key  
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Feistel Ciphers 

Ugly 
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Feistel Ciphers 

Ugly 

Ugly 
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Feistel Ciphers 

 Typically, most Feistel ciphers are iterated for 
about 16 rounds. 

Different “sub-keys” are used for each round. 

 

 Even a weak round function can yield a strong 
Feistel cipher if iterated sufficiently. 
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Data Encryption Standard (DES) 

Block 
Cipher 

64-bit Plaintext 

64-bit Ciphertext 

56-bit Key 
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Data Encryption Standard (DES) 

16 Feistel 
Rounds 

64-bit Plaintext 

56-bit Key 

64-bit Ciphertext 
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Data Encryption Standard (DES) 

16 Feistel 
Rounds 

64-bit Plaintext 

56-bit Key 

64-bit Ciphertext 
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DES Round 

Ugly 
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Simplified DES Round Function 

Sub-key 

4-bit substitutions 

32-bit permutation 

Ugly 
32 bits 
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Actual DES Round Function 

Sub-key 

6/4-bit substitutions 

32-bit permutation 

Ugly 
32 bits 

48 bits 
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Advanced Encryption Standard 

 Open competition run by NIST to replace DES 

 128-bit block size 

 Key sizes of 128, 192, and 256 bits 

 

 15 ciphers were submitted 

 5 finalists were chosen 
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AES Finalists 

 

 MARS (IBM submission) 

 RC6 (RSA Labs submission) 

 Rijndael (Joan Daemen and Vincent Rijmen) 

 Serpent (Anderson, Biham, and Knudsen) 

 Twofish (Schneier, et. al.) 
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AES Finalists 

 

 MARS (IBM submission) 

 RC6 (RSA Labs submission) 

 Rijndael (Joan Daemen and Vincent Rijmen) 

 Serpent (Anderson, Biham, and Knudsen) 

 Twofish (Schneier, et. al.) 
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Rijndael 
k0,0 k0,1 k0,2 k0,3 k0,4 k0,5 k0,6 k0,7 

k1,0 k1,1 k1,2 k1,3 k1,4 k1,5 k1,6 k1,7 

k2,0 k2,1 k2,2 k2,3 k2,4 k2,5 k2,6 k2,7 

k3,0 k3,1 k3,2 k3,3 k3,4 k3,5 k3,6 k3,7 

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7 

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 
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16, 24, or 32 

 bytes of key 

16, 24, or 32 

 bytes of data 



Rijndael 

4 transformations per round 

ByteSub:  nonlinearity 

 ShiftRow:  inter-column diffusion 

MixColumn:  inter-byte diffusion 

Round key addition 
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Rijndael ByteSub 

a0,0 a0,1 a0,2 a0,3 

a1,0 a1,1 a1,2 a1,3 

a2,0 a2,1 a2,2 a2,3 

a3,0 a3,1 a3,2 a3,3 

b0,0 b0,1 b0,2 b0,3 

b1,0 b1,1 b1,2 b1,3 

b2,0 b2,1 b2,2 b2,3 

b3,0 b3,1 b3,2 b3,3 

A single 8-bit to 8-bit (invertible) S-box is 
applied to each byte. 
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Rijndael MixColumn 

An (invertible) linear transform is applied 
to each column. 
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a0,0 a0,1 a0,2 a0,3 

a1,0 a1,1 a1,2 a1,3 

a2,0 a2,1 a2,2 a2,3 

a3,0 a3,1 a3,2 a3,3 

b0,0 b0,1 b0,2 b0,3 

b1,0 b1,1 b1,2 b1,3 

b2,0 b2,1 b2,2 b2,3 

b3,0 b3,1 b3,2 b3,3 
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Rijndael ShiftRow 

a0,0 a0,1 a0,2 a0,3 

a1,0 a1,1 a1,2 a1,3 

a2,0 a2,1 a2,2 a2,3 

a3,0 a3,1 a3,2 a3,3 

a0,0 a0,1 a0,2 a0,3 

a1,3 a1,0 a1,1 a1,2 

a2,2 a2,3 a2,0 a2,1 

a3,1 a3,2 a3,3 a3,0 

A different cyclic shift is applied to each row. 
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Rijndael Round key addition 

a0,0 a0,1 a0,2 a0,3 

a1,0 a1,1 a1,2 a1,3 

a2,0 a2,1 a2,2 a2,3 

a3,0 a3,1 a3,2 a3,3 

b0,0 b0,1 b0,2 b0,3 

b1,0 b1,1 b1,2 b1,3 

b2,0 b2,1 b2,2 b2,3 

b3,0 b3,1 b3,2 b3,3 

The round key is XORed to complete the 
round. 
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k0,0 k0,1 k0,2 k0,3 

k1,0 k1,1 k1,2 k1,3 

k2,0 k2,1 k2,2 k2,3 

k3,0 k3,1 k3,2 k3,3 

= 
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Rijndael Key Schedule 

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 … 

Round key 0 Round key 1 Round key 2 … 

The key schedule is defined on 4-byte words by 
 

 ki = ki-4  ki-1 when i is not a multiple of 4 

 ki = ki-4  f(ki-1) when i is a multiple of 4 
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Agenda 

 Symmetric key ciphers 
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One-Way Hash Functions 

Generally, a one-way hash function is a 
function H : {0,1}*  {0,1}k such that 
given an input value x, one cannot find a 
value x  x such H(x) = H(x ). 
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One-Way Hash Functions 

Generally, a one-way hash function is a 
function H : {0,1}*  {0,1}k such that 
given an input value x, one cannot find a 
value x  x such H(x) = H(x ). 

 

Typically k is 128, 160, 256, 384, or 512 
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One-Way Hash Functions 

There are many properties of one-way hashes. 

  

 Non-invertability:  given y, it’s difficult to find any x such 
that H(x) = y. 
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One-Way Hash Functions 

There are many properties of one-way hashes. 

  

 Non-invertability:  given y, it’s difficult to find any x such 
that H(x) = y. 

 Second-preimage resistance:  given x, it’s difficult to find 
x  x such that H(x) = H(x ). 
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One-Way Hash Functions 

There are many properties of one-way hashes. 

  

 Non-invertability:  given y, it’s difficult to find any x such 
that H(x) = y. 

 Second-preimage resistance:  given x, it’s difficult to find 
x  x such that H(x) = H(x ). 

 Collision-intractability:  one cannot find a pair of values x 
 x such that H(x) = H(x ). 
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Some Important Uses of  
One-Way Hash Functions 

When using a stream cipher, a hash of the 
message can be appended to ensure 
integrity.  [Message Authentication Code] 
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Some Important Uses of  
One-Way Hash Functions 

When using a stream cipher, a hash of the 
message can be appended to ensure 
integrity.  [Message Authentication Code] 

 

When forming a digital signature, the 
signature need only be applied to a hash 
of the message.  [Message Digest] 

90 



What else are Hash Functions Good for? 

Hash functions are useful in lots of situations; here are 
some additional examples 
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What else are Hash Functions Good for? 

Hash functions are useful in lots of situations; here are 
some additional examples 

 Uniquely and securely identify bit streams like programs.  
Hash is strong name for program. 
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What else are Hash Functions Good for? 

Hash functions are useful in lots of situations; here are 
some additional examples 

 Uniquely and securely identify bit streams like programs.  
Hash is strong name for program. 

 Entropy mixing:  Since cryptographic hashes are random 
functions into fixed size blocks with the properties of 
random functions, they are often used to “mix” biased 
input to produce a “seed” for a pseudo-random number 
generator. 
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What else are Hash Functions Good for? 

Hash functions are useful in lots of situations; here are 
some additional examples 

 Uniquely and securely identify bit streams like programs.  
Hash is strong name for program. 

 Entropy mixing:  Since cryptographic hashes are random 
functions into fixed size blocks with the properties of 
random functions, they are often used to “mix” biased 
input to produce a “seed” for a pseudo-random number 
generator. 

 Password Protection: Store salted hash of password 
instead of password (Needham). 
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What else are Hash Functions Good for? 

Hash functions are useful in lots of situations; here are some 
additional examples 

 Uniquely and securely identify bit streams like programs.  Hash 
is strong name for program. 

 Entropy mixing:  Since cryptographic hashes are random 
functions into fixed size blocks with the properties of random 
functions, they are often used to “mix” biased input to 
produce a “seed” for a pseudo-random number generator. 

 Password Protection: Store salted hash of password instead of 
password (Needham). 

 Bit Commitment 
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Merkle-Damgård Construction 

Compression 
Function 

Smaller Output (e.g. 256 bits) 

Large Input (e.g. 512 bits) (IV) 
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A Cryptographic Hash:  SHA-1 

Compression 
Function 

160-bit Output 

512-bit Input (IV) 
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A Cryptographic Hash:  SHA-1 
160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

No Change 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

Rotate 30 bits 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

No Change 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

No Change 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

? 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

Take the rightmost word. 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

Take the rightmost word. 

Add in the leftmost word rotated 5 bits. 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

Take the rightmost word. 

Add in the leftmost word rotated 5 bits. 

Add in a round-dependent function f of 
the middle three words. 
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A Cryptographic Hash:  SHA-1 

f 

160-bit 512-bit 

One of 80 rounds 
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A Cryptographic Hash:  SHA-1 

Depending on the round, the “non-linear” 
function f is one of the following. 

 

  f(X,Y,Z) = (XY)  ((X)Z) 

  f(X,Y,Z) = (XY)  (XZ)  (YZ) 

  f(X,Y,Z) = X  Y  Z 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

 Take the rightmost word. 

Add in the leftmost word rotated 5 bits. 

Add in a round-dependent function f of the 
middle three words. 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

 Take the rightmost word. 

Add in the leftmost word rotated 5 bits. 

Add in a round-dependent function f of the 
middle three words. 

Add in a round-dependent constant. 
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A Cryptographic Hash:  SHA-1 

What’s in the final 32-bit transform? 

 Take the rightmost word. 

Add in the leftmost word rotated 5 bits. 

Add in a round-dependent function f of the 
middle three words. 

Add in a round-dependent constant. 

Add in a portion of the 512-bit message. 
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A Cryptographic Hash:  SHA-1 

Picture from Wikipedia 
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http://upload.wikimedia.org/wikipedia/en/d/d5/SHA-1.png
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A Cryptographic Hash:  SHA-1 
160-bit 512-bit 

One of 80 rounds 
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From SHA-1 to SHA-2 

 Quick history: in 1993, NIST published SHA (Secure Hash 
Algorithm) as part of FIPS 180, Secure Hash Standard. 
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From SHA-1 to SHA-2 

 Quick history: in 1993, NIST published SHA (Secure Hash 
Algorithm) as part of FIPS 180, Secure Hash Standard. 

 Designed by NSA 

 Withdrawn in 1995 and replaced with SHA-1 

 One modification: single bitwise rotation added 

 In 2001, NIST revises FIPS 180 and adds SHA-2 

 Also designed by NSA 

 Originally 3 variants: SHA-256, SHA-384, SHA-512 

 SHA-224 added later 
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Merkle-Damgård Construction 

Compression 
Function 

Smaller Output (e.g. 256 bits) 

Large Input (e.g. 512 bits) (IV) 
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A Cryptographic Hash:  SHA-2 
Prior State 

256 or 512 bits 

One of 64 rounds 
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A Cryptographic Hash:  SHA-2 
Prior State 

256 or 512 bits 

One of 64 rounds 
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A 

New Message Bits 
256 or 512 bits 

B C D E F G H 

A’ B’ C’ D’ E’ F’ G’ H’ 

No Change 

B’ = A 
C’ = B 
D’ = C 
F’ = E 
G’ = F 
H’ = G 
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A Cryptographic Hash:  SHA-2 
Prior State 

256 or 512 bits 

One of 64 rounds 
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A 

New Message Bits 
256 or 512 bits 

B C D E F G H 

A’ B’ C’ D’ E’ F’ G’ H’ 

What about the last 2? 
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A Cryptographic Hash:  SHA-2 

Picture from Wikipedia 
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From SHA-2 to SHA-3 

 In 2007, NIST announced that it would hold an open 
competition to pick a new “SHA-3” hash function 
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From SHA-2 to SHA-3 

 In 2007, NIST announced that it would hold an open 
competition to pick a new “SHA-3” hash function 

 Similar to the competition held to pick AES. 

 Submissions were due 31 October 2008 

 51 submissions accepted by NIST for Round One 

 14 submissions advanced to Round 2 

 5 finalists (announced December 10, 2010) 

 SHA-3 expected to be formally selected in 2012 
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The SHA-3 Finalists 

BLAKE 

Grøstl (Knudsen et al.) 

 JH 

Keccak (Keccak team, Daemen et al.) 

 Skein (Schneier et al.) 
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State of the Art for Hashes 

 

 Collisions have been demonstrated for MD4 and MD5 ! 

 

 The first SHA-1 collisions are likely to be found soon. 
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Integrity Checking 

 

 Desirable for block ciphers 

 

 Essential for stream ciphers 
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One-Way Hash Functions 

 The idea of a checksum is great, but it is designed to 
prevent accidental changes in a message. 

 For cryptographic integrity, we need an integrity check 
that is resilient against a smart and determined adversary. 
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Message Authentication Codes 

A Message Authentication Code (MAC) is often constructed 
with a keyed hash. 

If one hashes a secret key together with the correct 
message, an attacker who doesn’t know the key will be 
unable to change the message without detection. 

 

But how? 
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Cipher Integrity 

 Original plaintext P. 

 Encryption key K1. 

 MAC key K2. 

 Ciphertext C=EK1
(P). 

 MAC M=HK2
(P) or M=HK2

(C). 
 

 Transmit (C,M). 
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Message Authentication Codes 
MAC key K, plaintext P, ciphertext C=E(P). 

 

MAC=H(K,P)?   MAC=H(P,K)? 

MAC=H(K,C)?   MAC=H(C,K)? 

 

There are weaknesses with all of the above. 

 

HMAC = H(K,H(K,P)) 
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Crypto Hygiene 

Do I really need to use different keys for encryption and 
integrity? 

 
 

It’s always a good idea to use separate keys for separate 
functions, but the keys can be derived from the same 
master. 

K1=H(“Key1”,K)     K2=H(“Key2”,K) 
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Message Digests 
A message digest is a short “unforgeable” fingerprint of a 

long message. 

 

A simple hash can serve as a message digest. 
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