
Tom Roeder

eXtreme Computing Group

Microsoft Research

Joint work with Seny Kamara

 Cloud backup
◦ Users want to back up their data

◦ The cloud provides storage

 Privacy, integrity, and confidentiality
◦ But servers learn much about users this way

◦ Honest-but-curious server can read everything

◦ Malicious server can make arbitrary changes

 Naïve solution: store all data encrypted
◦ User keeps key and decrypts locally

◦ Problems: key management, search, cloud
computation

 SSE solves the search problem
◦ Encrypt an index
◦ User keeps key and generates search tokens
◦ Server can use tokens to search encrypted index

 Practical implementations need update
◦ Current impls do not have efficient update
◦ Either no supported update operations
◦ Or each word has size linear in all documents

 We provide two schemes with efficient update
1. Update (add or delete) per word/doc pair
2. Update (add or delete) per doc

 Introduction

 Dynamic SSE Protocols

 Security Proofs

 Implementation

 User has collection 𝑑1, 𝑑2, … , 𝑑𝑚 of documents
◦ 𝑑 is a document identifier
◦ Each document 𝑑 has set of unique words 𝑊𝑑
◦ Set of all unique words: 𝑤1, 𝑤2, … , 𝑤𝑛

 Goal: Produce an encrypted index with ops
◦ Search(𝑤): returns encrypted doc ids
◦ Add(𝑑, 𝑊𝑑): adds the doc id with word set
◦ Delete(𝑑): deletes the doc id and all words
◦ Expand(): expands the index

client server

 User has collection 𝑑1, 𝑑2, … , 𝑑𝑚 of documents
◦ 𝑑 is a document identifier
◦ Each document 𝑑 has set of unique words 𝑊𝑑
◦ Set of all unique words: 𝑤1, 𝑤2, … , 𝑤𝑛

 Goal: Produce an encrypted index with ops
◦ Search(𝑤): returns encrypted doc ids
◦ Add(𝑑, 𝑊𝑑): adds the doc id with word set
◦ Delete(𝑑): deletes the doc id and all words
◦ Expand(): expands the index

client server

enc
files

enc
index

tokens

 User has collection 𝑑1, 𝑑2, … , 𝑑𝑚 of documents
◦ 𝑑 is a document identifier
◦ Each document 𝑑 has set of unique words 𝑊𝑑
◦ Set of all unique words: 𝑤1, 𝑤2, … , 𝑤𝑛

 Goal: Produce an encrypted index with ops
◦ Search(𝑤): returns encrypted doc ids
◦ Add(𝑑, 𝑊𝑑): adds the doc id with word set
◦ Delete(𝑑): deletes the doc id and all words
◦ Expand(): expands the index

client server

enc
files

enc
index

tokens

response

 SSE scheme without update operations

 Main idea:
◦ Each word is mapped to a token (under PRF)

◦ Tokens map to an initial position in encrypted array

◦ Each position points to next element in list

 The large encrypted, randomized array hides
the document count for each word

 In original form, only secure against non-
adaptive adversaries

 Assume honest-but-curious server

index

list
entries

 index ∶ 𝑓𝑘𝑐
𝑤 → 𝑠𝑡𝑎𝑟𝑡 ⊕ 𝑓𝑘𝑏

(𝑤)

 list entry ∶ 𝐸𝑛𝑐𝑘𝑤
𝑛𝑒𝑥𝑡 , 𝐸𝑛𝑐𝑘𝑒

(𝑑)

 Given

◦ w, 𝑘𝑐, 𝑘𝑏, 𝑘𝑔. 𝑘𝑤 = 𝐾𝐷𝐹𝑘𝑔
(𝑤)

◦ construct token 𝑓𝑘𝑐
𝑤 , 𝑓𝑘𝑏

𝑤 , 𝑘𝑤

index

list
entries

 Given

◦ w, 𝑘𝑐, 𝑘𝑏, 𝑘𝑔. 𝑘𝑤 = 𝐾𝐷𝐹𝑘𝑔
(𝑤)

◦ construct token 𝑓𝑘𝑐
𝑤 , 𝑓𝑘𝑏

𝑤 , 𝑘𝑤

index

list
entries

𝑓𝑘𝑐
𝑤

 Given

◦ w, 𝑘𝑐, 𝑘𝑏, 𝑘𝑔. 𝑘𝑤 = 𝐾𝐷𝐹𝑘𝑔
(𝑤)

◦ construct token 𝑓𝑘𝑐
𝑤 , 𝑓𝑘𝑏

𝑤 , 𝑘𝑤

index

list
entries

𝑓𝑘𝑐
𝑤

𝑓𝑘𝑏
𝑤

⊕

 Given

◦ w, 𝑘𝑐, 𝑘𝑏, 𝑘𝑔. 𝑘𝑤 = 𝐾𝐷𝐹𝑘𝑔
(𝑤)

◦ construct token 𝑓𝑘𝑐
𝑤 , 𝑓𝑘𝑏

𝑤 , 𝑘𝑤

index

list
entries

𝑓𝑘𝑐
𝑤

𝑓𝑘𝑏
𝑤

⊕

𝐷𝑒𝑐𝑘𝑤

 Given

◦ w, 𝑘𝑐, 𝑘𝑏, 𝑘𝑔. 𝑘𝑤 = 𝐾𝐷𝐹𝑘𝑔
(𝑤)

◦ construct token 𝑓𝑘𝑐
𝑤 , 𝑓𝑘𝑏

𝑤 , 𝑘𝑤

index

list
entries

𝑓𝑘𝑐
𝑤

𝑓𝑘𝑏
𝑤

⊕

𝐷𝑒𝑐𝑘𝑤

𝐷𝑒𝑐𝑘𝑤

 Given

◦ w, 𝑘𝑐, 𝑘𝑏, 𝑘𝑔. 𝑘𝑤 = 𝐾𝐷𝐹𝑘𝑔
(𝑤)

◦ construct token 𝑓𝑘𝑐
𝑤 , 𝑓𝑘𝑏

𝑤 , 𝑘𝑤

index

list
entries

𝑓𝑘𝑐
𝑤

𝑓𝑘𝑏
𝑤

⊕

𝐷𝑒𝑐𝑘𝑤

𝐷𝑒𝑐𝑘𝑤

𝐷𝑒𝑐𝑘𝑤

 To delete an entry (𝑥), need
◦ Location of entry to delete
◦ Location of next (𝑛) and prev (𝑝) entries (if any)

 Use XOR encryption for list pointers

𝑝 𝑥 𝑛

𝑟, 〈𝑢, 𝑥〉 ⊕ 𝑓𝑘𝑤
𝑟 𝑟′, 〈𝑝, 𝑛〉 ⊕ 𝑓𝑘𝑤

𝑟′ 𝑟′′, 〈𝑥, 𝑣〉 ⊕ 𝑓𝑘𝑤
𝑟′′

𝑟′′, 〈𝑥, 𝑣〉 ⊕ 𝑓𝑘𝑤
𝑟′′ 𝑟, 〈𝑢, 𝑥〉 ⊕ 𝑓𝑘𝑤

𝑟

 To delete an entry (𝑥), need
◦ Location of entry to delete
◦ Location of next (𝑛) and prev (𝑝) entries (if any)

 Use XOR encryption for list pointers

𝑝 𝑥 𝑛

𝑟′, 〈𝑝, 𝑛〉 ⊕ 𝑓𝑘𝑤
𝑟′

⊕ 0, 𝑥 ⊕ 𝑛 ⊕ 𝑥 ⊕ 𝑝, 0

𝑟, 〈𝑢, 𝑛〉 ⊕ 𝑓𝑘𝑤
𝑟

 To delete an entry (𝑥), need
◦ Location of entry to delete
◦ Location of next (𝑛) and prev (𝑝) entries (if any)

 Use XOR encryption for list pointers

𝑝 𝑥 𝑛

𝑟′, 〈𝑝, 𝑛〉 ⊕ 𝑓𝑘𝑤
𝑟′ 𝑟′′, 〈𝑝, 𝑣〉 ⊕ 𝑓𝑘𝑤

𝑟′′

 To patch the data structure
◦ E.g., pulling a document out of a list

◦ And need a structure to index directly into the lists

 Add deletion index

◦ Index: 𝑓𝑘𝑐
𝑑 → 𝑠𝑡𝑎𝑟𝑡 ⊕ 𝑓𝑘𝑏

𝑑

◦ 𝑟, 𝑟′, 𝑟′′, 𝑛𝑑 , 𝑑𝑛𝑥 , 𝑑𝑝𝑥 ⊕ 𝑓𝑘𝑑
𝑟 , 𝑥, 𝑝, 𝑛 ⊕ 𝑓𝑘𝑑

𝑟′ ,
𝑓𝑘𝑐

𝑤 ⊕ 𝑓𝑘𝑑
(𝑟′′)

◦ list structure uses 𝑛𝑑 to point to next word for d

◦ 𝑑𝑛𝑥 and 𝑑𝑝𝑥 point to del index entries for 𝑛 and 𝑝

◦ 1-1 correspondence between list entries

index

list
entries

index

list
entries

del list entries

index

list
entries

del list entries

𝑥

𝑝

𝑛

index

list
entries

del list entries

𝑛𝑑

𝑥

𝑝

𝑛

index

list
entries

del list entries

𝑛𝑑

𝑥

𝑝

𝑛

𝑑𝑛𝑥 𝑑𝑝𝑥

 Add and delete must track unused space
◦ revealing unused would reveal word * doc

◦ user must keep track of freelist count

main del

main
index

 Add and delete must track unused space
◦ revealing unused would reveal word * doc

◦ user must keep track of freelist count

main del

main
index

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

 Add and delete must track unused space
◦ revealing unused would reveal word * doc

◦ user must keep track of freelist count

main del

main
index

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

 Add and delete must track unused space
◦ revealing unused would reveal word * doc

◦ user must keep track of freelist count

main del

main
index

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

 Add and delete must track unused space
◦ revealing unused would reveal word * doc

◦ user must keep track of freelist count

main del

main
index

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

𝑙𝑖−1, 𝑙𝑑𝑖 ⊕ 𝑓𝑘𝑓
(𝑖)

𝑙𝑖−2, 𝑙𝑑𝑖−1 ⊕ 𝑓𝑘𝑓
(𝑖 − 1)

 〈doc tokens〉, 〈freelist tokens〉, word count
◦ per word: 〈word tokens〉, 〈freelist mask〉, templates

main del

main
index

del
index

 〈doc tokens〉, 〈freelist tokens〉, word count
◦ per word: 〈word tokens〉, 〈freelist mask〉, templates

main del

main
index

del
index

𝑓𝑘𝑐
(𝑑)

 〈doc tokens〉, 〈freelist tokens〉, word count
◦ per word: 〈word tokens〉, 〈freelist mask〉, templates

main del

main
index

del
index

𝑓𝑘𝑐
(𝑑)

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

 〈doc tokens〉, 〈freelist tokens〉, word count
◦ per word: 〈word tokens〉, 〈freelist mask〉, templates

main del

main
index

del
index

𝑓𝑘𝑐
(𝑑)

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

 〈doc tokens〉, 〈freelist tokens〉, word count
◦ per word: 〈word tokens〉, 〈freelist mask〉, templates

main del

main
index

del
index

𝑓𝑘𝑐
(𝑑)

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

 〈doc tokens〉, 〈freelist tokens〉, word count
◦ per word: 〈word tokens〉, 〈freelist mask〉, templates

main del

main
index

del
index

𝑓𝑘𝑐
(𝑑)

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

 〈doc tokens〉, 〈freelist tokens〉, word count
◦ per word: 〈word tokens〉, 〈freelist mask〉, templates

main del

main
index

del
index

𝑓𝑘𝑐
(𝑑)

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

𝑓𝑘𝑐
(𝑤1)

 〈doc tokens〉, 〈freelist tokens〉, word count
◦ per word: 〈word tokens〉, 〈freelist mask〉, templates

main del

main
index

del
index

𝑓𝑘𝑐
(𝑑)

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

𝑓𝑘𝑐
(𝑤1)

patch

patch

 〈doc tokens〉, doc key, 〈freelist tokens〉, count
◦ per word: 〈freelist mask〉

main del

main
index

del
index

 〈doc tokens〉, doc key, 〈freelist tokens〉, count
◦ per word: 〈freelist mask〉

main del

main
index

del
index

𝑓𝑘𝑐
(𝑑)

 〈doc tokens〉, doc key, 〈freelist tokens〉, count
◦ per word: 〈freelist mask〉

main del

main
index

del
index

𝑓𝑘𝑐
(𝑤1) 𝑓𝑘𝑐

(𝑑)

 〈doc tokens〉, doc key, 〈freelist tokens〉, count
◦ per word: 〈freelist mask〉

main del

main
index

del
index

𝑓𝑘𝑐
(𝑤1) 𝑓𝑘𝑐

(𝑑)

 〈doc tokens〉, doc key, 〈freelist tokens〉, count
◦ per word: 〈freelist mask〉

main del

main
index

del
index

𝑓𝑘𝑐
(𝑤1) 𝑓𝑘𝑐

(𝑑)

patch
patch

patch
patch

 〈doc tokens〉, doc key, 〈freelist tokens〉, count
◦ per word: 〈freelist mask〉

main del

main
index

del
index

𝑓𝑘𝑐
(𝑤1) 𝑓𝑘𝑐

(𝑑)

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

 Index size is fixed at generation time
◦ So, add to free list for expansion

main del

main
index

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

 Index size is fixed at generation time
◦ So, add to free list for expansion

main del

main
index

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

 Index size is fixed at generation time
◦ So, add to free list for expansion

main del

main
index

𝑓𝑘𝑐
(𝑓𝑟𝑒𝑒𝑙𝑖𝑠𝑡)

 Deletion index uses doc/word pairs:
◦ No lists of words per doc

◦ 𝑓𝑘𝑐
𝑑, 𝑤 → 𝑟, 𝑟′, 𝑟′′, 𝑥, 𝑝, 𝑛 ⊕ 𝑓𝑘𝑑,𝑤

𝑟 , 𝑓𝑘𝑐
𝑑𝑝, 𝑤𝑝 ⊕

𝑓𝑘𝑑,𝑤
𝑟′ , 𝑓𝑘𝑐

𝑑𝑛, 𝑤𝑛 ⊕ 𝑓𝑘𝑑,𝑤
𝑟′′

 Algorithms similar
◦ Search identical

◦ Add puts new word on front of list

◦ Delete patches to pull word out of list

◦ Extension identical

 Word-Based Update
◦ Update token linear in number of word changes

◦ Hides number of unique words in document

◦ Uses less space for index

◦ But requires keeping track of diffs on disk

 Doc-Based Update
◦ Stateless for client (except freelist count)

◦ But reveals the unique words in old and new docs

 We currently use Doc-Based Update
◦ Cost of keeping diffs outweighs value of hiding

 Introduction

 Dynamic SSE Protocols

 Security Proofs

 Implementation

 Adaptive Simulatability
◦ Σ = (Gen, Index, TrapS, Search, Retrieve, TrapA,

Add, TrapD, Delete, ExtendIndex) is a dynamic SSE
scheme

𝐴

𝑆 SSE

RO

?

 Searchable Symmetric Encryption leaks info
◦ Query pattern: unique terms and result counts

◦ Access pattern: which documents are retrieved

 Our algorithm leaks a little more
◦ unique ID for words in added and deleted docs

 Update pattern: add to existing, pos of delete

◦ tail of the free list

◦ amount of index expansion

◦ when the index is full

 Index Generation and Expansion: random

 Search: given number of results
◦ If seen search (+ any updates), then repeat

◦ Otherwise, choose a random index entry

◦ Provide random unused location for first element

◦ Choose unused locations for other elements

◦ Program random oracle to “decrypt” list (𝑘𝑤)

𝑥

𝑟, 𝑟′, 𝑟′′

 Index Generation and Expansion: random

 Search: given number of results
◦ If seen search (+ any updates), then repeat

◦ Otherwise, choose a random index entry

◦ Provide random unused location for first element

◦ Choose unused locations for other elements

◦ Program random oracle to “decrypt” list (𝑘𝑤)

𝑥 𝑓𝑘𝑤
𝑟 = 𝑝, 𝑛 ⊕ 𝑟′

𝑟, 𝑟′, 𝑟′′

𝑟′ ⊕ 𝑓𝑘𝑤
𝑟 = 𝑟′ ⊕ 𝑝, 𝑛 ⊕ 𝑟′ = 〈𝑝, 𝑛〉

 Add: given unique IDs of added words
◦ Find random locations and setup freelist tokens

◦ Choose random index entry and get word tokens

◦ Set masks to XOR to chosen pattern

 Delete: given unique IDs of deleted words
◦ Choose deletion locations (from prev or random)

◦ Choose index entry to delete (from prev or random)

◦ Program random oracle to decrypt chosen pattern (𝑘𝑑)

 Introduction

 Dynamic SSE Protocols

 Security Proofs

 Implementation

 Prototype doc-based scheme in C++

 Intel Xeon x64 2.26 GHz with Win 2008 R2
◦ Zipf, Docs, Email datasets

◦ 500k to 1.5M doc/word pairs

 Results
◦ Generation (doc/word pair): 40 µs (c)

◦ Search (doc): 8 µs (s)

◦ Add (word): 35 µs (c), 2 µs (s)

◦ Delete (word): 3 µs (c), 24 µs (s)

 [CGKO06]
◦ Efficient search

◦ Provides an adaptive scheme in plain model

◦ Doesn’t provide any update properties

 [SLDH09]
◦ Efficient update via XOR encryption

◦ Uses padded lists: linear in number of docs

◦ Large storage cost: O(|w| |d|)

 Dynamic SSE algorithms

 Add and Delete use XOR encryption to modify
index

 Practical for real-world applications

 Can trade off leakage for server operations

