In the beginning, there was symmetric encryption.

If you had the key you could encrypt ...

If you had the key you could encrypt ...
Message: ATTACK AT DAWN
Key: +3 $\downarrow \downarrow \downarrow$
Ciphertext: DWWDFN DW GDZQ

If you had the key you could decrypt ...

If you had the key you could decrypt ...
Message: ATTACK AT DAWN
Key: +3

$\uparrow \uparrow \uparrow \uparrow$
Ciphertext: DWWDFN DW GDZQ
... and some people were happy.

Then, there was asymmetric encryption.

Some people encrypted ...

Some people encrypted ...

... others decrypted.

E-commerce ensued

E-commerce ensued ...
... and more people were happy.

The first and most used asymmetric cipher was RSA.

The first and most used asymmetric cipher was RSA.

$$
E(m)=m^{e}(\bmod n)
$$

Some people noticed the algebraic structure ...

Some people noticed the algebraic structure ...

$$
E\left(m_{1}\right)=m_{1}{ }^{e} \quad E\left(m_{2}\right)=m_{2}^{e}
$$

Some people noticed the algebraic structure ...

$$
E\left(m_{1}\right)=m_{1}{ }^{e} \quad E\left(m_{2}\right)=m_{2}^{e}
$$

Ergo ...

Some people noticed the algebraic structure ...

$$
E\left(m_{1}\right)=m_{1}{ }^{e} \quad E\left(m_{2}\right)=m_{2}^{e}
$$

Ergo ...

$$
E\left(m_{1}\right) \times E\left(m_{2}\right)
$$

Some people noticed the algebraic structure ...

$$
E\left(m_{1}\right)=m_{1}{ }^{e} \quad E\left(m_{2}\right)=m_{2}^{e}
$$

Ergo ...

$$
\begin{aligned}
E\left(m_{1}\right) & \times E\left(m_{2}\right) \\
& =m_{1}{ }^{e} \times m_{2}{ }^{e}
\end{aligned}
$$

Some people noticed the algebraic structure ...

$$
E\left(m_{1}\right)=m_{1}{ }^{e} \quad E\left(m_{2}\right)=m_{2}^{e}
$$

Ergo ...

$$
\begin{aligned}
E\left(m_{1}\right) & \times E\left(m_{2}\right) \\
& =m_{1}^{e} \times m_{2}^{e} \\
& =\left(m_{1} \times m_{2}\right)^{e}
\end{aligned}
$$

Some people noticed the algebraic structure ...

$$
E\left(m_{1}\right)=m_{1}{ }^{e} \quad E\left(m_{2}\right)=m_{2}^{e}
$$

Ergo ...

$$
\begin{aligned}
E\left(m_{1}\right) & \times E\left(m_{2}\right) \\
& =m_{1}^{e} \times m_{2}^{e} \\
& =\left(m_{1} \times m_{2}\right)^{e} \\
& =E\left(m_{1} \times m_{2}\right)
\end{aligned}
$$

They looked for interesting applications ...

They looked for interesting applications ...
... and they failed.

People mused ...

People mused ...
... if only RSA worked additively ...

People mused ...
... if only RSA worked additively ...
we could compute sums ...

People mused ...
... if only RSA worked additively ...
we could compute sums ...
and averages ...

People mused
... if only RSA worked additively ...
we could compute sums ...
and averages ...
and tally elections ...

I was one of those musing.

I was one of those musing.

An additive encryption homomorphism ...

I was one of those musing.

An additive encryption homomorphism ...

$$
E(m, r)=r^{e} c^{m}
$$

$E\left(m_{1}, r_{1}\right)=r_{1}{ }^{e} c^{m_{1}} \quad E\left(m_{2}, r_{2}\right)=r_{2}{ }^{e} c^{m_{2}}$
$E\left(m_{1}, r_{1}\right)=r_{1}{ }^{e} c^{m_{1}} \quad E\left(m_{2}, r_{2}\right)=r_{2}{ }^{e} c^{m_{2}}$
$E\left(m_{1}, r_{1}\right) \times E\left(m_{2}, r_{2}\right)$
$E\left(m_{1}, r_{1}\right)=r_{1}{ }^{e} c^{m_{1}} \quad E\left(m_{2}, r_{2}\right)=r_{2}{ }^{e} c^{m_{2}}$
$E\left(m_{1}, r_{1}\right) \times E\left(m_{2}, r_{2}\right)$

$$
=r_{1}{ }^{e} c^{m_{1}} \times r_{2}{ }^{e} c^{m_{2}}
$$

$E\left(m_{1}, r_{1}\right)=r_{1}{ }^{e} c^{m_{1}} \quad E\left(m_{2}, r_{2}\right)=r_{2}{ }^{e} c^{m_{2}}$
$E\left(m_{1}, r_{1}\right) \times E\left(m_{2}, r_{2}\right)$

$$
\begin{aligned}
& =r_{1}{ }^{e} c^{m_{1}} \times r_{2}{ }^{e} c^{m_{2}} \\
& =\left(r_{1} r_{2}\right)^{e} c^{m_{1}+m_{2}}
\end{aligned}
$$

$E\left(m_{1}, r_{1}\right)=r_{1}{ }^{e} c^{m_{1}} \quad E\left(m_{2}, r_{2}\right)=r_{2}{ }^{e} c^{m_{2}}$
$E\left(m_{1}, r_{1}\right) \times E\left(m_{2}, r_{2}\right)$

$$
\begin{aligned}
& =r_{1}{ }^{e} c^{m_{1}} \times r_{2}{ }^{e} c^{m_{2}} \\
& =\left(r_{1} r_{2}\right)^{e} c^{m_{1}+m_{2}} \\
& =E\left(m_{1}+m_{2}, r_{1} r_{2}\right)
\end{aligned}
$$

$$
E\left(m_{1}, r_{1}\right)=r_{1}{ }^{e} c^{m_{1}} \quad E\left(m_{2}, r_{2}\right)=r_{2}{ }^{e} c^{m_{2}}
$$

$E\left(m_{1}, r_{1}\right) \times E\left(m_{2}, r_{2}\right)$

$$
\begin{aligned}
& =r_{1}^{e} c^{m_{1}} \times r_{2}{ }^{e} c^{m_{2}} \\
& =\left(r_{1} r_{2}\right)^{e} c^{m_{1}+m_{2}} \\
& =E\left(m_{1}+m_{2}, r_{1} r_{2}\right)
\end{aligned}
$$

The product of encryptions of two messages is an encryption of the sum of the two messages.

I used this to build verifiable election systems ...

I used this to build verifiable election systems ...

... and I was really happy ...

I used this to build verifiable election systems ...

... and I was really happy ...

and few others cared.

What people really wanted was the ability to do arbitrary computing on encrypted data...

What people really wanted was the ability to do arbitrary computing on encrypted data...
... and this required the ability to compute both sums and products ...

What people really wanted was the ability to do arbitrary computing on encrypted data...
... and this required the ability to compute both sums and products ...
... on the same data set!

People tried to do this for years ...

People tried to do this for years ...
... and years ...

People tried to do this for years ...

... and years ...
... and years ...

People tried to do this for years ...
... and years ...
... and years ...
... with no success.

WHY does ADD AND MULTIPLY help?

WHY does ADD AND MULTIPLY help?

XOR (add mod 2)

0 XOR 0	0
1 XOR 0	1
0 XOR 1	1
1 XOR 1	0

AND (mult mod 2)

0 AND 0	0
1 AND 0	0
0 AND 1	0
1 AND 1	1

WHY does ADD AND MULTIPLY help?

... because $\{X O R, A N D\}$ is Turing-complete ...
(any function can be written as a combination of XOR and AND gates)

XOR (add mod 2)

0 XOR 0	0
1 XOR 0	1
0 XOR 1	1
1 XOR 1	0

AND (mult mod 2)

0 AND 0	0
1 AND 0	0
0 AND 1	0
1 AND 1	1

WHY does ADD AND MULTIPLY help?

... because $\{X O R, A N D\}$ is Turing-complete ...
(any function can be written as a combination of XOR and AND gates)

Example: Searching a database

WHY does ADD AND MULTIPLY help?

... because $\{X O R, A N D\}$ is Turing-complete ...
(any function can be written as a combination of XOR and AND gates)

Example: Searching a database

WHY does ADD AND MULTIPLY help?

... because $\{X O R, A N D\}$ is Turing-complete ...
... if you can compute XOR and AND on encrypted bits...
... you can compute ANY function on encrypted inputs...

This is A M A ZING!

Private bing Search

Private Cloud computing

This is AMAZING!

Private bing Search

Private Cloud computing

In general,
Delegate processing of data
without giving away access to it

People tried to compute both AND and XOR on encrypted bits ...

... for years ...

... and years ...
... with no success.

Well, actually, there were some partial answers

Fully homomorphic
Josh's
system

MANY add
MANY add
ZERO mult
MANY mult

Well, actually, there were some partial answers ...

Fully homomorphic

```
Josh's
system
Boneh,Goh \& Nissim
MANY add MANY add
ZERO mult
1 mult
```

MANY add
MANY mult
... and some bold attempts [Fellows-Koblitz] which were quickly broken ...

Fully homomorphic

Josh's
system
Boneh,Goh \& Nissim

MANY add MANY add
MANY add
ZERO mult
1 mult
MANY mult
... until, in October 2008 ...

... until, in October 2008 ...

... Craig Gentry came up with the first

How does it work?

What is the magic?

Gentry's scheme was complex ...

... it used advanced algebraic number theory ...

Some of us asked: can we make this really simple?

Some of us asked: can we make this really simple?

$$
\text { Polynomials? } \quad \begin{aligned}
& \left(x^{2}+6 x+1\right)+\left(x^{2}-6 x\right)=\left(2 x^{2}+1\right) \\
& \left(x^{2}+6 x+1\right) \times\left(x^{2}-6 x\right)=\left(x^{4}-35 x^{2}-6 x\right)
\end{aligned}
$$

Some of us asked: can we make this really simple?

Polynomials?

$$
\begin{aligned}
& \left(x^{2}+6 x+1\right)+\left(x^{2}-6 x\right)=\left(2 x^{2}+1\right) \\
& \left(x^{2}+6 x+1\right) \times\left(x^{2}-6 x\right)=\left(x^{4}-35 x^{2}-6 x\right)
\end{aligned}
$$

Matrices?

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)+\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right) \times\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
-1 & 3
\end{array}\right)
\end{aligned}
$$

Some of us asked: can we make this really simple?

Polynomials?

$$
\begin{aligned}
& \left(x^{2}+6 x+1\right)+\left(x^{2}-6 x\right)=\left(2 x^{2}+1\right) \\
& \left(x^{2}+6 x+1\right) \times\left(x^{2}-6 x\right)=\left(x^{4}-35 x^{2}-6 x\right)
\end{aligned}
$$

Matrices?

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)+\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right) \times\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
-1 & 3
\end{array}\right)
\end{aligned}
$$

How about integers?!? [Gentry, Halevi, van Dijk, v.]

$$
\begin{aligned}
& 2+3=5 \\
& 2 \times 3=6
\end{aligned}
$$

TODAY: Secret-key (Symmetric-key) Encryption

Secret key: large odd number p
$-3 p$
$-2 p$
-p
0
p
$2 p$
$3 p$

Secret key: large odd number p

To Encrypt a bit b:

- pick a (random) "large" multiple of p, say $q \cdot p$
$-2 p$
-p
0
$p \quad 2 p$
$3 p$

Secret key: large odd number p

To Encrypt a bit b:

- pick a (random) "large" multiple of p, say $q \cdot p$
- pick a (random) "small" number $\mathbf{2 \cdot r + b}$
(this is even if $b=0$, and odd if $b=1$)

Secret key: large odd number p

To Encrypt a bit b:

- pick a (random) "large" multiple of p, say $q \cdot p$
- pick a (random) "small" number $\mathbf{2 \cdot r + b}$
(this is even if $b=0$, and odd if $b=1$)
- Ciphertext $\mathbf{c}=\mathbf{q} \cdot \mathbf{p}+\mathbf{2} \cdot \mathbf{r} \mathbf{+ b}$

Secret key: large odd number p

To Encrypt a bit b:

- pick a (random) "large" multiple of p, say $q \cdot p$
- pick a (random) "small" number $\mathbf{2 \cdot r + b}$
(this is even if $b=0$, and odd if $b=1$)
- Ciphertext $\mathbf{c}=\mathbf{q} \cdot \mathbf{p}+\mathbf{2} \cdot \mathbf{r} \mathbf{+ b}$

To Decrypt a ciphertext c:

Taking $c \bmod p$ recovers the noise

How secure is this?

... if there were no noise (think $r=0$)
... and I give you two encryptions of $0\left(q_{1} p \& q_{2} p\right)$
... then you can recover the secret key p
$=G C D\left(q_{1} p, q_{2} p\right)$

How secure is this?

... but if there is noise
... the GCD attack doesn't work
... and neither does any attack (we believe)
... this is called the approximate GCD assumption

XORing two encrypted bits:

$$
\begin{aligned}
& -c_{1}=q_{1} \cdot p+\left(2 \cdot r_{1}+b_{1}\right) \\
& -c_{2}=q_{2} \cdot p+\left(2 \cdot r_{2}+b_{2}\right)
\end{aligned}
$$

the "noise" $=\mathbf{2} \cdot \mathbf{r}+\mathbf{b}$

$-3 p$	$-2 p$	$-p$	0	p	$2 p$

XORing two encrypted bits:

$$
\begin{aligned}
& -c_{1}=q_{1} \cdot p+\left(2 \cdot r_{1}+b_{1}\right) \\
& -c_{2}=q_{2} \cdot p+\left(2 \cdot r_{2}+b_{2}\right)
\end{aligned}
$$

$$
-c_{1}+c_{2}=p \cdot\left(q_{1}+q_{2}\right)+2 \cdot\left(r_{1}+r_{2}\right)+\left(b_{1}+b_{2}\right)
$$

the "noise" $=\mathbf{2} \cdot \mathbf{r}+\mathbf{b}$

$-3 p$	$-2 p$	$-p$	0	p	$2 p$

XORing two encrypted bits:

$$
\begin{aligned}
& -c_{1}=q_{1} \cdot p+\left(2 \cdot r_{1}+b_{1}\right) \\
& -c_{2}=q_{2} \cdot p+\left(2 \cdot r_{2}+b_{2}\right)
\end{aligned}
$$

$$
-c_{1}+c_{2}=p \cdot\left(q_{1}+q_{2}\right)+2 \cdot\left(r_{1}+r_{2}\right)+\left(b_{1}+b_{2}\right)
$$

Odd if $b_{1}=0, b_{2}=1$ (or)

$$
b_{1}=1, b_{2}=0
$$

Even if $b_{1}=0, b_{2}=0$ (or)

$$
b_{1}=1, b_{2}=1
$$

the "noise" = 2•r+b
$-2 p$
-p
0
p
$2 p$

XORing two encrypted bits:

$$
\begin{aligned}
& -c_{1}=q_{1} \cdot p+\left(2 \cdot r_{1}+b_{1}\right) \\
& -c_{2}=q_{2} \cdot p+\left(2 \cdot r_{2}+b_{2}\right) \\
& -c_{1}+c_{2}=p \cdot\left(q_{1}+q_{2}\right)+2 \cdot\left(r_{1}+r_{2}\right)+\left(b_{1}+b_{2}\right)
\end{aligned}
$$

$l s b=b_{1} \times O R b_{2}$
the "noise" $=\mathbf{2} \cdot \mathbf{r}+\mathbf{b}$

$-3 p$	$-2 p$	$-p$	0	p	$2 p$

ANDing two encrypted bits:

$$
\begin{aligned}
& -c_{1}=q_{1} \cdot p+\left(2 \cdot r_{1}+b_{1}\right) \\
& -c_{2}=q_{2} \cdot p+\left(2 \cdot r_{2}+b_{2}\right)
\end{aligned}
$$

$$
-c_{1} c_{2}=p \cdot\left(c_{2} \cdot q_{1}+c_{1} \cdot q_{2}-q_{1} \cdot q_{2}\right)+2 \cdot\left(r_{1} r_{2}+r_{1} b_{2}+r_{2} b_{1}\right)+b_{1} b_{2}
$$

ANDing two encrypted bits:

$$
\begin{aligned}
& -c_{1}=q_{1} \cdot p+\left(2 \cdot r_{1}+b_{1}\right) \\
& -c_{2}=q_{2} \cdot p+\left(2 \cdot r_{2}+b_{2}\right) \\
& -c_{1} c_{2}=p \cdot\left(c_{2} \cdot q_{1}+c_{1} \cdot q_{2}-q_{1} \cdot q_{2}\right)+2 \cdot\left(r_{1} r_{2}+r_{1} b_{2}+r_{2} b_{1}\right)+b_{1} b_{2}
\end{aligned}
$$

$I s b=b_{1}$ AND b_{2}
the "noise" $=\mathbf{2} \cdot \mathbf{r}+\mathbf{b}$
$\begin{array}{ll}-3 p & -2 p\end{array}$
-p
0
p
$2 p$

the noise grows!

the "noise" $=\mathbf{2} \cdot \mathbf{r}+\mathbf{b}$
$-2 p$
-p
0
p
2p
$3 p$

the noise grows!

$$
-c_{1}+c_{2}=p \cdot\left(q_{1}+q_{2}\right)+\underbrace{2 \cdot\left(r_{1}+r_{2}\right)+\left(b_{1}+b_{2}\right)}_{\text {noise }=2 * \text { (initial noise) }}
$$

the noise grows!

$$
-c_{1}+c_{2}=p \cdot\left(q_{1}+q_{2}\right)+\underbrace{2 \cdot\left(r_{1}+r_{2}\right)+\left(b_{1}+b_{2}\right)}_{\text {noise }=2 *(\text { initial noise) }}
$$

$-\mathbf{c}_{1} \mathbf{c}_{\mathbf{2}}=\mathbf{p} \cdot\left(c_{2} \cdot q_{1}+c_{1} \cdot q_{2}-q_{1} \cdot q_{2}\right)+\mathbf{2} \cdot\left(r_{1} r_{2}+r_{1} b_{2}+r_{2} b_{1}\right)+b_{1} b_{2}$
noise $=(\text { initial noise })^{2}$
the "noise" $=\mathbf{2} \cdot \mathbf{r}+\mathbf{b}$
$-2 p$
-p
0
p
$2 p$

the noise grows!

... so what's the problem?

the noise grows!

... so what's the problem?

the noise grows!

... so what's the problem?
If the |noise | > p/2, then ...
decryption will output an incorrect bit

So, what did we accomplish?

... we can do lots of additions and
... some multiplications
(= a "somewhat homomorphic" encryption)

So, what did we accomplish?

... we can do lots of additions and
... some multiplications
(= a "somewhat homomorphic" encryption)
... enough to do many useful tasks, e.g., database search, spam filtering etc.

So, what did we accomplish?

... we can do lots of additions and
... some multiplications
(= a "somewhat homomorphic" encryption)
... enough to do many useful tasks, e.g., database search, spam filtering etc.

But I promised much more ...
Josh's
system \quad Boneh, Goh \& Nissim

Fully homomorphic

MANY add MANY add
ZERO mult 1 mult
WE ARE HERE!
MANY add
MANY mult

Gentry's "bootstrapping theorem" ...

Gentry's "bootstrapping theorem" ...

... If you can go a (large) part of the way,
then you can go all the way.

Gentry's "bootstrapping theorem" ...

... If you can go a (large) part of the way,
then you can go all the way.
[HOW? WE'LL SEE IN A BIT]

[bootstrapping]

Fully homonorphic

MANY add
MANY mult

How efficient is all this?

... can I buy a homomorphic encryption software and start encrypting my data?

How efficient is all this?

... can I buy a homomorphic encryption software and start encrypting my data?
... well, not quite yet

How efficient is all this?

... can I buy a homomorphic encryption software and start encrypting my data?
... well, not quite yet
... encrypting a bit takes ~19s (!) with the current best implementation

How efficient is all this?

... can I buy a homomorphic encryption software and start encrypting my data?
... well, not quite yet
... encrypting a bit takes ~19s (!) with the current best implementation
... it takes 99 min to encrypt this sentence

How efficient is all this?

... can I buy a homomorphic encryption software and start encrypting my data?
... well, not quite yet
... encrypting a bit takes ${ }^{\sim} 19 s$ (!) with the current best implementation
... but we are improving rapidly...
... a number of new, more efficient schemes
... optimized implementation efforts
(in hardware and software)
... and a \$20M DARPA project to fund all this

... a number of new, more efficient schemes
... optimized implementation efforts
(in hardware and software)
... and a \$20M DARPA project to fund all this

So, watch out for new developments!

References:

[1] "Computing arbitrary functions of Encrypted Data", Craig Gentry, Communications of the ACM 53(3), 2010.
[2] "Fully Homomorphic Encryption from the Integers", Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan http://eprint.iacr.org/2009/616, Eurocrypt 2010.
[3] "Implementing Gentry's Fully Homomorphic Encryption", Craig Gentry and Shai Halevi https://researcher.ibm.com/researcher/files/us-shaih/fheimplementation.pdf, Eurocrypt 2011.

Gentry's "bootstrapping method" ...
... If you can go a (large) part of the way, then you can go all the way...

Gentry's "bootstrapping method" ...
... If you can go a (large) part of the way, then you can go all the way...

Problem: Add and Mult increase noise
(Add doubles, Mult squares the noise)

Gentry's "bootstrapping method" ...
... If you can go a (large) part of the way, then you can go all the way...

Problem: Add and Mult increase noise
(Add doubles, Mult squares the noise)
So, we want to do noise-reduction

Let's think...

... What is the best noise-reduction procedure?

Let's think...

... What is the best noise-reduction procedure?
... something that kills all noise

Let's think...

... What is the best noise-reduction procedure?
... something that kills all noise

... and recovers the message

Let's think...

... What is the best noise-reduction procedure?
... something that kills all noise

Decryption!

Let's think...

... What is the best noise-reduction procedure?
... something that kills all noise

... and recovers the message

Decryption!

Ctxt $=$ Enc(b) Secret key

Let's think...

... What is the best noise-reduction procedure?
... something that kills all noise

... and recovers the message

Decryption!

Let's think...

... What is the best noise-reduction procedure?
... something that kills all noise

Let's think...

... I want to reduce noise without letting you decrypt

KEY IDEA:

... I cannot release the secret key (lest everyone sees my data)
... but I can release Enc(secret key)

KEY IDEA:

... I cannot release the secret key (lest everyone sees my data)
... but I can release Enc(secret key)

KEY IDEA:

... I cannot release the secret key (lest everyone sees my data)
... but I can release Enc(secret key)

KEY IDEA:

... I cannot release the secret key (lest everyone sees my data) ... but I can release Enc(secret key)

KEY IDEA:

... I cannot release the secret key (lest everyone sees my data)
... but I can release Enc(secret key)

... Now, to reduce noise ...
... Homomorphically evaluate the decryption ckt!!!

KEY IDEA:

... I cannot release the secret key (lest everyone sees my data) ... but I can release Enc(secret key)

KEY IDEA:

... I cannot release the secret key (lest everyone sees my data)
... but I can release Enc(secret key)

KEY OBSERVATION:

... the input Enc(b) and output Enc(b) have different noise levels ...

KEY IDEA:

... I cannot release the secret key (lest everyone sees my data)
... but I can release Enc(secret key)

KEY OBSERVATION:

Regardless of the noise in the input Enc(b)... the noise level in the output Enc(b) is FIXED

KEY IDEA:

... I cannot release the secret key (lest everyone sees my data)
... but I can release Enc(secret key)

KEY OBSERVATION:

Regardless of the noise in the input Enc(b)... the noise level in the output Enc(b) is FIXED

KEY IDEA:

... I cannot release the secret key (lest everyone sees my data)
... but I can release Enc(secret key)

KEY OBSERVATION:

Regardless of the noise in the input Enc(b)... the noise level in the output Enc(b) is FIXED

Ctxt $=$ Enc(b) Enc(Secret key)

KEY IDEA:

... I cannot release the secret key (lest everyone sees my data)
... but I can release Enc(secret key)

KEY OBSERVATION:

Regardless of the noise in the input Enc(b)... the noise level in the output Enc(b) is FIXED

Ctxt $=$ Enc(b) Enc(Secret key)

Bottomline: whenever noise level increases beyond a limit ...
... use bootstrapping to reset it to a fixed level

Bootstrapping requires homomorphically evaluating the decryption circuit ...

Bootstrapping requires homomorphically evaluating the decryption circuit ...

noise $=0$

