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The product of encryptions of two messages is 
an encryption of the sum of the two messages. 
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 … because {XOR,AND} is Turing-complete … 

 (any function can be written as a combination of XOR and AND gates) 

Example: Searching a database  

0 

1 

1 

0 

DB index 
I = i1i0 

answer= DBI  

i0 i1 

DB3 
DB2 DB0 DB1 



WHY does ADD AND MULTIPLY help? 

 … because {XOR,AND} is Turing-complete … 

  … if you can compute XOR and AND on encrypted bits… 

 
 … you can compute ANY function on encrypted inputs… 

 
E(x1) E(x2) E(x3) E(x4) 

E(x3 AND x4) E(x1 XOR x2) 

E(f(x1,x2,x3,x4)) 
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This is A M A Z I N G! 

Private              Search 

Private Cloud computing 

In general, 

Delegate processing of data 

without giving away access to it 



People tried to compute both AND and XOR on 
encrypted bits  … 
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Well, actually, there were some partial answers … 

Josh’s  

system 

MANY add 

ZERO mult 

Fully homomorphic 

MANY add 

MANY mult 



Josh’s  

system 

MANY add 

ZERO mult 

Fully homomorphic 

MANY add 

MANY mult 

MANY add 

     1    mult 

Boneh,Goh & Nissim 

Well, actually, there were some partial answers … 



… and some bold attempts *Fellows-Koblitz+ … 
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… which were quickly broken … 



… until, in October 2008 … 



… until, in October 2008 … 

… Craig Gentry came up with the first  

 fully homomorphic encryption scheme … 



How does it work? 

What is the magic? 
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Some of us asked: can we make this really simple? …  

Polynomials? 

Matrices? 

(𝑥2 + 6𝑥 + 1)  + 𝑥2 − 6𝑥 = (2𝑥2 + 1) 

(𝑥2 + 6𝑥 + 1)  X 𝑥2 − 6𝑥 = (𝑥4 − 35𝑥2 − 6𝑥) 

How about integers?!? 
2  +  3 = 5 

2  X  3 = 6 

1 0
1 2

 +  
−1 1
0 1

   = 
0 1
1 3

 

1 0
1 2

 𝑋 
−1 1
0 1

   = 
−1 1
−1 3

 

[Gentry, Halevi, van Dijk, V.] 
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Secret key: large odd number p 

To Encrypt a bit b: 
– pick a (random) “large” multiple of p, say q·p 

– pick a (random) “small” number 2·r+b 

– Ciphertext c = q·p+2·r+b 

0 p 2p 3p -3p -2p -p 

 (this is even if b=0, and odd if b=1) 

the “noise” =  2·r+b 

To Decrypt a ciphertext c: 
Taking c mod p recovers the noise  



How secure is this? 

… if there were no noise (think r=0) 

0 p 2p 3p -3p -2p -p 

the “noise” =  2·r+b 

… and I give you two encryptions of 0 (q1p & q2p) 

… then you can recover the secret key p 

= GCD(q1p, q2p) 
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… and neither does any attack (we believe)  

… this is called the approximate GCD assumption 
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0 p 2p 3p -3p -2p -p 

the “noise” =  2·r+b 

the noise grows! 

– c1+c2 = p·(q1 + q2) + 2·(r1+r2) + (b1+b2) 

noise= 2 * (initial noise) 

noise = (initial noise)2 

– c1c2 = p·(c2·q1+c1·q2-q1·q2) + 2·(r1r2+r1b2+r2b1) + b1b2 
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the noise grows! 

… so what’s the problem? 

20 

If the |noise| > p/2, then …  

decryption will output an incorrect bit  

 decryption wil 
recover noise’=3 
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Gentry’s “bootstrapping theorem” … 

WE ARE HERE! 

… If you can go a (large) part of the way, 

then you can go all the way. 

[bootstrapping] 

*HOW? WE’LL SEE IN A BIT+ 
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How efficient is all this? 

… can I buy a homomorphic encryption 
software and start encrypting my data? 

… well, not quite yet 

… encrypting a bit takes ~19s (!) with the 
current best implementation  

… but we are improving rapidly… 



… a number of new, more efficient schemes 

… optimized implementation efforts 

(in hardware and software) 

… and a $20M DARPA project to fund all this 



… a number of new, more efficient schemes 

… optimized implementation efforts 

(in hardware and software) 

… and a $20M DARPA project to fund all this 

So, watch out for new developments!  



[2] “Fully Homomorphic Encryption from the Integers”, 
Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan 
http://eprint.iacr.org/2009/616, Eurocrypt 2010. 

References: 

[1] “Computing arbitrary functions of Encrypted Data”, 
Craig Gentry, Communications of the ACM 53(3),  2010. 

*3+ “Implementing Gentry’s Fully Homomorphic Encryption”, 
Craig Gentry and Shai Halevi 
https://researcher.ibm.com/researcher/files/us-shaih/fhe-
implementation.pdf,  Eurocrypt 2011. 
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Let’s think… 

Secret key 

Decrypt 

b 

But I can’t 
give the 

secret key 
out for free! 

Ctxt = Enc(b) 

… I want to reduce noise without letting you decrypt  
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Decrypt 

Regardless of the noise in the input Enc(b)… 

Ctxt = Enc(b) 

KEY OBSERVATION: 

Enc(b) 

the noise level in the output Enc(b) is FIXED 



Bottomline: whenever noise level increases  
beyond a limit … 

noise=0 

noise=p/2 

… use bootstrapping to reset it to a fixed level 
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noise=0 

noise=p/2 

Bootstrapping requires homomorphically  
evaluating the decryption circuit … 

Thus, Gentry’s “bootstrapping theorem”: 

If an enc scheme can evaluate its own 
decryption circuit, then it can evaluate 
everything 


