

In the beginning, there was symmetric
encryption.

If you had the key you could encrypt …

If you had the key you could encrypt …

 Message:

 Key: +3

 Ciphertext:

ATTACK AT DAWN

↓↓↓↓↓↓ ↓↓ ↓↓↓↓

DWWDFN DW GDZQ

If you had the key you could decrypt …

If you had the key you could decrypt …

 Message:

 Key: +3

 Ciphertext:

ATTACK AT DAWN

↑↑↑↑↑↑ ↑↑ ↑↑↑↑

DWWDFN DW GDZQ

… and some people were happy.

Then, there was asymmetric encryption.

Some people encrypted …

Some people encrypted …

… others decrypted.

E-commerce ensued …

E-commerce ensued …

… and more people were happy.

The first and most used asymmetric cipher was
RSA.

The first and most used asymmetric cipher was
RSA.

𝐸 𝑚 = 𝑚𝑒 (mod 𝑛)

Some people noticed the algebraic structure …

Some people noticed the algebraic structure …
𝐸 𝑚1 = 𝑚1

𝑒 𝐸 𝑚2 = 𝑚2
𝑒

Some people noticed the algebraic structure …
𝐸 𝑚1 = 𝑚1

𝑒 𝐸 𝑚2 = 𝑚2
𝑒

Ergo …

Some people noticed the algebraic structure …
𝐸 𝑚1 = 𝑚1

𝑒 𝐸 𝑚2 = 𝑚2
𝑒

Ergo …

 𝐸 𝑚1 × 𝐸 𝑚2

Some people noticed the algebraic structure …
𝐸 𝑚1 = 𝑚1

𝑒 𝐸 𝑚2 = 𝑚2
𝑒

Ergo …

 𝐸 𝑚1 × 𝐸 𝑚2

 = 𝑚1
𝑒 × 𝑚2

𝑒

Some people noticed the algebraic structure …
𝐸 𝑚1 = 𝑚1

𝑒 𝐸 𝑚2 = 𝑚2
𝑒

Ergo …

 𝐸 𝑚1 × 𝐸 𝑚2

 = 𝑚1
𝑒 × 𝑚2

𝑒

 = (𝑚1 × 𝑚2)𝑒

Some people noticed the algebraic structure …
𝐸 𝑚1 = 𝑚1

𝑒 𝐸 𝑚2 = 𝑚2
𝑒

Ergo …

 𝐸 𝑚1 × 𝐸 𝑚2

 = 𝑚1
𝑒 × 𝑚2

𝑒

 = (𝑚1 × 𝑚2)𝑒

 = 𝐸(𝑚1 × 𝑚2)

They looked for interesting applications …

They looked for interesting applications …

… and they failed.

People mused …

People mused …

… if only RSA worked additively …

People mused …

… if only RSA worked additively …

 we could compute sums …

People mused …

… if only RSA worked additively …

 we could compute sums …

 and averages …

People mused …

… if only RSA worked additively …

 we could compute sums …

 and averages …

 and tally elections …

I was one of those musing.

I was one of those musing.

An additive encryption homomorphism …

I was one of those musing.

An additive encryption homomorphism …

𝐸 𝑚, 𝑟 = 𝑟𝑒𝑐𝑚

𝐸 𝑚1, 𝑟1 = 𝑟1
𝑒𝑐𝑚1 𝐸 𝑚2, 𝑟2 = 𝑟2

𝑒𝑐𝑚2

𝐸 𝑚1, 𝑟1 = 𝑟1
𝑒𝑐𝑚1 𝐸 𝑚2, 𝑟2 = 𝑟2

𝑒𝑐𝑚2

𝐸 𝑚1, 𝑟1 × 𝐸 𝑚2, 𝑟2

𝐸 𝑚1, 𝑟1 = 𝑟1
𝑒𝑐𝑚1 𝐸 𝑚2, 𝑟2 = 𝑟2

𝑒𝑐𝑚2

𝐸 𝑚1, 𝑟1 × 𝐸 𝑚2, 𝑟2

 = 𝑟1
𝑒𝑐𝑚1 × 𝑟2

𝑒𝑐𝑚2

𝐸 𝑚1, 𝑟1 = 𝑟1
𝑒𝑐𝑚1 𝐸 𝑚2, 𝑟2 = 𝑟2

𝑒𝑐𝑚2

𝐸 𝑚1, 𝑟1 × 𝐸 𝑚2, 𝑟2

 = 𝑟1
𝑒𝑐𝑚1 × 𝑟2

𝑒𝑐𝑚2

 = (𝑟1𝑟2)𝑒𝑐𝑚1+𝑚2

𝐸 𝑚1, 𝑟1 = 𝑟1
𝑒𝑐𝑚1 𝐸 𝑚2, 𝑟2 = 𝑟2

𝑒𝑐𝑚2

𝐸 𝑚1, 𝑟1 × 𝐸 𝑚2, 𝑟2

 = 𝑟1
𝑒𝑐𝑚1 × 𝑟2

𝑒𝑐𝑚2

 = (𝑟1𝑟2)𝑒𝑐𝑚1+𝑚2

 = 𝐸(𝑚1 + 𝑚2, 𝑟1𝑟2)

𝐸 𝑚1, 𝑟1 = 𝑟1
𝑒𝑐𝑚1 𝐸 𝑚2, 𝑟2 = 𝑟2

𝑒𝑐𝑚2

𝐸 𝑚1, 𝑟1 × 𝐸 𝑚2, 𝑟2

 = 𝑟1
𝑒𝑐𝑚1 × 𝑟2

𝑒𝑐𝑚2

 = (𝑟1𝑟2)𝑒𝑐𝑚1+𝑚2

 = 𝐸(𝑚1 + 𝑚2, 𝑟1𝑟2)

The product of encryptions of two messages is
an encryption of the sum of the two messages.

I used this to build verifiable election systems …

I used this to build verifiable election systems …

 … and I was really happy …

I used this to build verifiable election systems …

 … and I was really happy …

and few others cared.

What people really wanted was the ability to do
arbitrary computing on encrypted data…

What people really wanted was the ability to do
arbitrary computing on encrypted data…

 … and this required the ability to compute

 both sums and products …

What people really wanted was the ability to do
arbitrary computing on encrypted data…

 … and this required the ability to compute

 both sums and products …

… on the same data set!

People tried to do this for years …

People tried to do this for years …

 … and years …

People tried to do this for years …

 … and years …

 … and years …

People tried to do this for years …

 … and years …

 … and years …

… with no success.

WHY does ADD AND MULTIPLY help?

WHY does ADD AND MULTIPLY help?

XOR (add mod 2)

0 XOR 0

 1 XOR 0

 0 XOR 1

 1 XOR 1

0

 1

 1

 0

AND (mult mod 2)

0 AND 0

 1 AND 0

 0 AND 1

 1 AND 1

0

 0

 0

 1

WHY does ADD AND MULTIPLY help?

XOR (add mod 2)

0 XOR 0

 1 XOR 0

 0 XOR 1

 1 XOR 1

0

 1

 1

 0

AND (mult mod 2)

0 AND 0

 1 AND 0

 0 AND 1

 1 AND 1

0

 0

 0

 1

 … because {XOR,AND} is Turing-complete …

 (any function can be written as a combination of XOR and AND gates)

WHY does ADD AND MULTIPLY help?

 … because {XOR,AND} is Turing-complete …

 (any function can be written as a combination of XOR and AND gates)

Example: Searching a database

0

1

1

0

DB index
I = i1i0

answer= DBI

WHY does ADD AND MULTIPLY help?

 … because {XOR,AND} is Turing-complete …

 (any function can be written as a combination of XOR and AND gates)

Example: Searching a database

0

1

1

0

DB index
I = i1i0

answer= DBI

i0 i1

DB3
DB2 DB0 DB1

WHY does ADD AND MULTIPLY help?

 … because {XOR,AND} is Turing-complete …

 … if you can compute XOR and AND on encrypted bits…

 … you can compute ANY function on encrypted inputs…

E(x1) E(x2) E(x3) E(x4)

E(x3 AND x4) E(x1 XOR x2)

E(f(x1,x2,x3,x4))

This is A M A Z I N G!

Private Search

Private Cloud computing

This is A M A Z I N G!

Private Search

Private Cloud computing

In general,

Delegate processing of data

without giving away access to it

People tried to compute both AND and XOR on
encrypted bits …

 … for years …

 … and years …

… with no success.

Well, actually, there were some partial answers …

Josh’s

system

MANY add

ZERO mult

Fully homomorphic

MANY add

MANY mult

Josh’s

system

MANY add

ZERO mult

Fully homomorphic

MANY add

MANY mult

MANY add

 1 mult

Boneh,Goh & Nissim

Well, actually, there were some partial answers …

… and some bold attempts *Fellows-Koblitz+ …

Josh’s

system

MANY add

ZERO mult

Fully homomorphic

MANY add

MANY mult

MANY add

 1 mult

Boneh,Goh & Nissim

… which were quickly broken …

… until, in October 2008 …

… until, in October 2008 …

… Craig Gentry came up with the first

 fully homomorphic encryption scheme …

How does it work?

What is the magic?

Gentry’s scheme was complex …

… it used advanced algebraic number theory …

Some of us asked: can we make this really simple? …

Some of us asked: can we make this really simple? …

Polynomials? (𝑥2 + 6𝑥 + 1) + 𝑥2 − 6𝑥 = (2𝑥2 + 1)

(𝑥2 + 6𝑥 + 1) X 𝑥2 − 6𝑥 = (𝑥4 − 35𝑥2 − 6𝑥)

Some of us asked: can we make this really simple? …

Polynomials?

Matrices?

(𝑥2 + 6𝑥 + 1) + 𝑥2 − 6𝑥 = (2𝑥2 + 1)

(𝑥2 + 6𝑥 + 1) X 𝑥2 − 6𝑥 = (𝑥4 − 35𝑥2 − 6𝑥)

1 0
1 2

 +
−1 1
0 1

 =
0 1
1 3

1 0
1 2

 𝑋
−1 1
0 1

 =
−1 1
−1 3

Some of us asked: can we make this really simple? …

Polynomials?

Matrices?

(𝑥2 + 6𝑥 + 1) + 𝑥2 − 6𝑥 = (2𝑥2 + 1)

(𝑥2 + 6𝑥 + 1) X 𝑥2 − 6𝑥 = (𝑥4 − 35𝑥2 − 6𝑥)

How about integers?!?
2 + 3 = 5

2 X 3 = 6

1 0
1 2

 +
−1 1
0 1

 =
0 1
1 3

1 0
1 2

 𝑋
−1 1
0 1

 =
−1 1
−1 3

[Gentry, Halevi, van Dijk, V.]

TODAY: Secret-key (Symmetric-key) Encryption

Secret key: large odd number p

0 p 2p 3p -3p -2p -p

Secret key: large odd number p

To Encrypt a bit b:
– pick a (random) “large” multiple of p, say q·p

0 p 2p 3p -3p -2p -p

Secret key: large odd number p

To Encrypt a bit b:
– pick a (random) “large” multiple of p, say q·p

– pick a (random) “small” number 2·r+b

0 p 2p 3p -3p -2p -p

 (this is even if b=0, and odd if b=1)

the “noise” = 2·r+b

Secret key: large odd number p

To Encrypt a bit b:
– pick a (random) “large” multiple of p, say q·p

– pick a (random) “small” number 2·r+b

– Ciphertext c = q·p+2·r+b

0 p 2p 3p -3p -2p -p

 (this is even if b=0, and odd if b=1)

the “noise” = 2·r+b

Secret key: large odd number p

To Encrypt a bit b:
– pick a (random) “large” multiple of p, say q·p

– pick a (random) “small” number 2·r+b

– Ciphertext c = q·p+2·r+b

0 p 2p 3p -3p -2p -p

 (this is even if b=0, and odd if b=1)

the “noise” = 2·r+b

To Decrypt a ciphertext c:
Taking c mod p recovers the noise

How secure is this?

… if there were no noise (think r=0)

0 p 2p 3p -3p -2p -p

the “noise” = 2·r+b

… and I give you two encryptions of 0 (q1p & q2p)

… then you can recover the secret key p

= GCD(q1p, q2p)

How secure is this?

… but if there is noise

0 p 2p 3p -3p -2p -p

the “noise” = 2·r+b

… the GCD attack doesn’t work

… and neither does any attack (we believe)

… this is called the approximate GCD assumption

XORing two encrypted bits:

0 p 2p 3p -3p -2p -p

the “noise” = 2·r+b

– c1 = q1·p + (2·r1 + b1)

– c2 = q2·p + (2·r2 + b2)

XORing two encrypted bits:

0 p 2p 3p -3p -2p -p

the “noise” = 2·r+b

– c1 = q1·p + (2·r1 + b1)

– c1+c2 = p·(q1 + q2) + 2·(r1+r2) + (b1+b2)

– c2 = q2·p + (2·r2 + b2)

XORing two encrypted bits:

0 p 2p 3p -3p -2p -p

the “noise” = 2·r+b

– c1 = q1·p + (2·r1 + b1)

– c1+c2 = p·(q1 + q2) + 2·(r1+r2) + (b1+b2)

Odd if b1=0, b2=1 (or)
 b1=1, b2=0
Even if b1=0, b2=0 (or)
 b1=1, b2=1

– c2 = q2·p + (2·r2 + b2)

XORing two encrypted bits:

0 p 2p 3p -3p -2p -p

the “noise” = 2·r+b

– c1 = q1·p + (2·r1 + b1)

– c1+c2 = p·(q1 + q2) + 2·(r1+r2) + (b1+b2)

lsb= b1 XOR b2

– c2 = q2·p + (2·r2 + b2)

ANDing two encrypted bits:

0 p 2p 3p -3p -2p -p

the “noise” = 2·r+b

– c1 = q1·p + (2·r1 + b1)

– c2 = q2·p + (2·r2 + b2)

– c1c2 = p·(c2·q1+c1·q2-q1·q2) + 2·(r1r2+r1b2+r2b1) + b1b2

ANDing two encrypted bits:

0 p 2p 3p -3p -2p -p

the “noise” = 2·r+b

– c1 = q1·p + (2·r1 + b1)

lsb= b1 AND b2

– c2 = q2·p + (2·r2 + b2)

– c1c2 = p·(c2·q1+c1·q2-q1·q2) + 2·(r1r2+r1b2+r2b1) + b1b2

0 p 2p 3p -3p -2p -p

the “noise” = 2·r+b

the noise grows!

0 p 2p 3p -3p -2p -p

the “noise” = 2·r+b

the noise grows!

– c1+c2 = p·(q1 + q2) + 2·(r1+r2) + (b1+b2)

noise= 2 * (initial noise)

0 p 2p 3p -3p -2p -p

the “noise” = 2·r+b

the noise grows!

– c1+c2 = p·(q1 + q2) + 2·(r1+r2) + (b1+b2)

noise= 2 * (initial noise)

noise = (initial noise)2

– c1c2 = p·(c2·q1+c1·q2-q1·q2) + 2·(r1r2+r1b2+r2b1) + b1b2

0 17 34 51 -51 -34 -17

 noise=14

the noise grows!

… so what’s the problem?

20

0 17 34 51 -51 -34 -17

 noise=14

the noise grows!

… so what’s the problem?

20

 decryption wil
recover noise’=3

0 17 34 51 -51 -34 -17

 noise=14

the noise grows!

… so what’s the problem?

20

If the |noise| > p/2, then …

decryption will output an incorrect bit

 decryption wil
recover noise’=3

So, what did we accomplish?

… we can do lots of additions and

… some multiplications
(= a “somewhat homomorphic” encryption)

So, what did we accomplish?

… we can do lots of additions and

… some multiplications

… enough to do many useful tasks, e.g.,
 database search, spam filtering etc.

(= a “somewhat homomorphic” encryption)

So, what did we accomplish?

… we can do lots of additions and

… some multiplications

… enough to do many useful tasks, e.g.,
 database search, spam filtering etc.

But I promised much more …

(= a “somewhat homomorphic” encryption)

Josh’s

system

MANY add

ZERO mult

Fully homomorphic

MANY add

MANY mult

MANY add

 1 mult

Boneh,Goh & Nissim

WE ARE HERE!

Josh’s

system

MANY add

ZERO mult

Fully homomorphic

MANY add

MANY mult

MANY add

 1 mult

Boneh,Goh & Nissim

Gentry’s “bootstrapping theorem” …

WE ARE HERE!

Josh’s

system

MANY add

ZERO mult

Fully homomorphic

MANY add

MANY mult

MANY add

 1 mult

Boneh,Goh & Nissim

Gentry’s “bootstrapping theorem” …

WE ARE HERE!

… If you can go a (large) part of the way,

then you can go all the way.

[bootstrapping]

Josh’s

system

MANY add

ZERO mult

Fully homomorphic

MANY add

MANY mult

MANY add

 1 mult

Boneh,Goh & Nissim

Gentry’s “bootstrapping theorem” …

WE ARE HERE!

… If you can go a (large) part of the way,

then you can go all the way.

[bootstrapping]

*HOW? WE’LL SEE IN A BIT+

How efficient is all this?

… can I buy a homomorphic encryption
software and start encrypting my data?

How efficient is all this?

… can I buy a homomorphic encryption
software and start encrypting my data?

… well, not quite yet

How efficient is all this?

… can I buy a homomorphic encryption
software and start encrypting my data?

… well, not quite yet

… encrypting a bit takes ~19s (!) with the
current best implementation

How efficient is all this?

… can I buy a homomorphic encryption
software and start encrypting my data?

… well, not quite yet

… encrypting a bit takes ~19s (!) with the
current best implementation

… it takes 99 min to encrypt this sentence

How efficient is all this?

… can I buy a homomorphic encryption
software and start encrypting my data?

… well, not quite yet

… encrypting a bit takes ~19s (!) with the
current best implementation

… but we are improving rapidly…

… a number of new, more efficient schemes

… optimized implementation efforts

(in hardware and software)

… and a $20M DARPA project to fund all this

… a number of new, more efficient schemes

… optimized implementation efforts

(in hardware and software)

… and a $20M DARPA project to fund all this

So, watch out for new developments!

[2] “Fully Homomorphic Encryption from the Integers”,
Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan
http://eprint.iacr.org/2009/616, Eurocrypt 2010.

References:

[1] “Computing arbitrary functions of Encrypted Data”,
Craig Gentry, Communications of the ACM 53(3), 2010.

*3+ “Implementing Gentry’s Fully Homomorphic Encryption”,
Craig Gentry and Shai Halevi
https://researcher.ibm.com/researcher/files/us-shaih/fhe-
implementation.pdf, Eurocrypt 2011.

Gentry’s “bootstrapping method” …

… If you can go a (large) part of the way,

then you can go all the way…

noise=0

noise=p/2

Gentry’s “bootstrapping method” …

… If you can go a (large) part of the way,

then you can go all the way…

noise=0

noise=p/2

Problem: Add and Mult increase noise

(Add doubles, Mult squares the noise)

Gentry’s “bootstrapping method” …

… If you can go a (large) part of the way,

then you can go all the way…

noise=0

noise=p/2

Problem: Add and Mult increase noise

(Add doubles, Mult squares the noise)

So, we want to do noise-reduction

noise=0

noise=p/2

Let’s think…

… What is the best noise-reduction procedure?

noise=0

noise=p/2

Let’s think…

… What is the best noise-reduction procedure?

… something that kills all noise

noise=0

noise=p/2

Let’s think…

… What is the best noise-reduction procedure?

… something that kills all noise

… and recovers the message

noise=0

noise=p/2

Let’s think…

… What is the best noise-reduction procedure?

… something that kills all noise

… and recovers the message

Decryption!

noise=0

noise=p/2

Let’s think…

… What is the best noise-reduction procedure?

… something that kills all noise

… and recovers the message

Decryption!

Ctxt = Enc(b) Secret key

Decrypt

b

noise=0

noise=p/2

Let’s think…

… What is the best noise-reduction procedure?

… something that kills all noise

… and recovers the message

Decryption!

Secret key

Decrypt

b Fn. that acts on ciphertext
and eliminates noise

Ctxt = Enc(b)

noise=0

noise=p/2

Let’s think…

… What is the best noise-reduction procedure?

… something that kills all noise

… and recovers the message

Decryption!

Secret key

Decrypt

b

Ctxt = Enc(b)

But I can’t
give the

secret key
out for free!

noise=0

noise=p/2

Let’s think…

Secret key

Decrypt

b

But I can’t
give the

secret key
out for free!

Ctxt = Enc(b)

… I want to reduce noise without letting you decrypt

noise=0

noise=p/2

KEY IDEA:

… I cannot release the secret key (lest everyone sees my data)

… but I can release Enc(secret key)

Secret key

Decrypt

b

Ctxt = Enc(b)

noise=0

noise=p/2

KEY IDEA:

… I cannot release the secret key (lest everyone sees my data)

… but I can release Enc(secret key)

… called “Circular Encryption”

Secret key

Decrypt

b

Ctxt = Enc(b)

noise=0

noise=p/2

KEY IDEA:

… I cannot release the secret key (lest everyone sees my data)

… but I can release Enc(secret key)

… called “Circular Encryption”

Decrypt

b

Ctxt = Enc(b) Enc(Secret key)

noise=0

noise=p/2

KEY IDEA:

… I cannot release the secret key (lest everyone sees my data)

… but I can release Enc(secret key)

Enc(Secret key)

Decrypt

b

… Homomorphically evaluate the decryption ckt!!!

Ctxt = Enc(b)

… Now, to reduce noise …

noise=0

noise=p/2

KEY IDEA:

… I cannot release the secret key (lest everyone sees my data)

… but I can release Enc(secret key)

Enc(Secret key)

Decrypt

… Homomorphically evaluate the decryption ckt!!!

Ctxt = Enc(b)

… Now, to reduce noise …

Enc(b)

noise=0

noise=p/2

KEY IDEA:

… I cannot release the secret key (lest everyone sees my data)

… but I can release Enc(secret key)

Enc(Secret key)

Decrypt

… Homomorphically evaluate the decryption ckt!!!

Ctxt = Enc(b)

… Now, to reduce noise …

Enc(b)

noise=0

noise=p/2

KEY IDEA:

… I cannot release the secret key (lest everyone sees my data)

… but I can release Enc(secret key)

Enc(Secret key)

Decrypt

… the input Enc(b) and output Enc(b) have
different noise levels …

Ctxt = Enc(b)

KEY OBSERVATION:

Enc(b)

noise=0

noise=p/2

KEY IDEA:

… I cannot release the secret key (lest everyone sees my data)

… but I can release Enc(secret key)

Enc(Secret key)

Decrypt

Regardless of the noise in the input Enc(b)…

Ctxt = Enc(b)

KEY OBSERVATION:

Enc(b)

the noise level in the output Enc(b) is FIXED

noise=0

noise=p/2

KEY IDEA:

… I cannot release the secret key (lest everyone sees my data)

… but I can release Enc(secret key)

Enc(Secret key)

Decrypt

Regardless of the noise in the input Enc(b)…

Ctxt = Enc(b)

KEY OBSERVATION:

Enc(b)

the noise level in the output Enc(b) is FIXED

noise=0

noise=p/2

KEY IDEA:

… I cannot release the secret key (lest everyone sees my data)

… but I can release Enc(secret key)

Enc(Secret key)

Decrypt

Regardless of the noise in the input Enc(b)…

Ctxt = Enc(b)

KEY OBSERVATION:

Enc(b)

the noise level in the output Enc(b) is FIXED

noise=0

noise=p/2

KEY IDEA:

… I cannot release the secret key (lest everyone sees my data)

… but I can release Enc(secret key)

Enc(Secret key)

Decrypt

Regardless of the noise in the input Enc(b)…

Ctxt = Enc(b)

KEY OBSERVATION:

Enc(b)

the noise level in the output Enc(b) is FIXED

Bottomline: whenever noise level increases
beyond a limit …

noise=0

noise=p/2

… use bootstrapping to reset it to a fixed level

noise=0

noise=p/2

Bootstrapping requires homomorphically
evaluating the decryption circuit …

noise=0

noise=p/2

Bootstrapping requires homomorphically
evaluating the decryption circuit …

Thus, Gentry’s “bootstrapping theorem”:

If an enc scheme can evaluate its own
decryption circuit, then it can evaluate
everything

