Assignment \#1 - Solutions

Problem 1

Use the extended Euclidean algorithm to derive $P^{-1} \bmod Q$ where $P=23$ and $Q=89$.

i	x_{i}	y_{i}	a_{i}	b_{i}	q_{i}
1	1	0	89	23	
2	0	1	23	20	3
3	1	-3	20	3	1
4	-1	4	3	2	6
5	7	-27	2	1	1
6	-8	31	1	0	2
7	23	-89			
$P^{-1} \bmod Q=$					

Problem 2

- $z_{1}=m^{3} \bmod N_{1}, z_{2}=m^{3} \bmod N_{2}$, and $z_{3}=m^{3} \bmod N_{3}$. Assume N_{1}, N_{2}, and N_{3} have no common factors.
(If not, take a GCD, factor one of the N_{i}, and decrypt m.)

Use the Chinese Remainder Algorithm to find z such that $z \bmod N_{1}=z_{1}$ and $z \bmod N_{2}=z_{2}$.
Use CRA again to find Z such that $Z \bmod N_{1} N_{2}=z$ and $Z \bmod N_{3}=z_{3}$.

This $Z \equiv m^{3}\left(\bmod N_{1} N_{2} N_{3}\right)$. But $m^{3}<N_{1} N_{2} N_{3}$, so $m=\sqrt[3]{Z}$.

Problem 3

Get public modulus N and exponent e from device.
Take message m, compute encryption $z=m^{e} \bmod N$, give z to device and receive back incorrect decryption m^{\prime}.

By assumption, $m \equiv m^{\prime}(\bmod P)$, but $m \not \equiv m^{\prime}(\bmod Q)$. Compute GCD $\left(m-m^{\prime}, N\right)$.

Since $m-m^{\prime} \equiv 0(\bmod P), m-m^{\prime}$ is a multiple of P. Since $m-m^{\prime} \not \equiv 0(\bmod Q), m-m^{\prime}$ is not a multiple of Q. Hence $\operatorname{GCD}\left(m-m^{\prime}, N\right)=P . Q=N / P$.

Problem 4

Bob sends to Alice:

[E_{A} (Bob's order), E_{A} (Bob's credit card)]

You to Alice:
[E_{A} (Your order), E_{A} (Bob's credit card)]

Problem 5

- $A=Y^{a} \bmod N, B=Y^{b} \bmod N$, and $C=Y^{c} \bmod N$.

Trick Question!!!
$Y^{a b c} \bmod N$ would be a lovely key - if they could compute it; but they can't without revealing a, b, or c.

One answer: Alice picks a random key K, and computes joint keys $Y^{a b} \bmod N$ and $Y^{a c} \bmod N$ to send K to each of Bob and Carol. Bob and Carol can use their joint key to confirm that they received the same K from Alice.

