Assignment #1 – Solutions

Use the extended Euclidean algorithm to derive $P^{-1} \mod Q$ where P = 23 and Q = 89.

i	<i>xi</i>	y _i	a _i	b _i	\boldsymbol{q}_{i}	
1	1	0	89	23		
2	0	1	23	20	3	
3	1	-3	20	3	1	
4	-1	4	3	2	6	
5	7	-27	2	1	1	
6	-8	31	1	0	2	
7	23	-89				
10 04						

$$P^{-1} \mod Q = 31$$

• $z_1 = m^3 \mod N_1$, $z_2 = m^3 \mod N_2$, and $z_3 = m^3 \mod N_3$. Assume N_1 , N_2 , and N_3 have no common factors. (If not, take a GCD, factor one of the N_i , and decrypt m.)

Use the Chinese Remainder Algorithm to find *z* such that $z \mod N_1 = z_1$ and $z \mod N_2 = z_2$. Use CRA again to find *Z* such that *Z* mod $N_1N_2 = z$ and *Z* mod $N_3 = z_3$.

This $Z \equiv m^3 \pmod{N_1 N_2 N_3}$. But $m^3 < N_1 N_2 N_3$, so $m = \sqrt[3]{Z}$.

Get public modulus N and exponent e from device.

Take message m, compute encryption $z = m^e \mod N$, give z to device and receive back incorrect decryption m'.

By assumption, $m \equiv m' \pmod{P}$, but $m \not\equiv m' \pmod{Q}$. Compute GCD(m - m', N).

Since $m - m' \equiv 0 \pmod{P}$, m - m' is a multiple of P. Since $m - m' \not\equiv 0 \pmod{Q}$, m - m' is not a multiple of Q.

Hence GCD(m - m', N) = P. Q = N/P.

Bob sends to Alice:

 $[E_A(Bob's order), E_A(Bob's credit card)]$

You to Alice:

 $[E_A$ (Your order), E_A (Bob's credit card)]

1/13/2011

• $A = Y^a \mod N$, $B = Y^b \mod N$, and $C = Y^c \mod N$. Trick Question!!!

 $Y^{abc} \mod N$ would be a lovely key – if they could compute it; but they can't without revealing a, b, or c.

One answer: Alice picks a random key K, and computes joint keys $Y^{ab} \mod N$ and $Y^{ac} \mod N$ to send K to each of Bob and Carol. Bob and Carol can use their joint key to confirm that they received the same K from Alice.