Assignment #2 – Solutions

 $x \mod 7 = \pm 1 \text{ and } x \mod 11 = \pm 1$ (Note: $x \mod N = -1$ is shorthand for $x \mod N = N - 1$.) $11^{-1} \mod 7 = 2$ Four solutions

 $x = [(+1) \times 11 \times 2 + (+1) \times 7 \times 8] \mod 77 = [+22 + 56] \mod 77 = +78 \mod 77 = 1$ $x = [(+1) \times 11 \times 2 + (-1) \times 7 \times 8] \mod 77 = [+22 - 56] \mod 77 = -34 \mod 77 = 43$ $x = [(-1) \times 11 \times 2 + (+1) \times 7 \times 8] \mod 77 = [-22 + 56] \mod 77 = +34 \mod 77 = 34$ $x = [(-1) \times 11 \times 2 + (-1) \times 7 \times 8] \mod 77 = [-22 - 56] \mod 77 = -78 \mod 77 = 76$

- Given N = pq, select a random y, compute z = y² mod N, and input z and N to the black box to produce output x.
- If $x \pm y \mod N = 0$, repeat above.
- Otherwise, compute gcd(x y, N) to produce a nontrivial factor of N.

Problem 2 – Bonus

- Remove all powers of 2 from $N = 2^m N'$.
- Repeatedly use black box to split N' into prime powers $P = p^k$.
- For each non-prime prime power, try each of *i* = 2,3, ..., log₂*P* until an *i* is found such that the *i*th root of *P* is prime.

Use Fermat's Little Theorem and induction on *k* to prove that

 $x^{k(p-1)+1} \bmod p = x \bmod p$

for all primes p and $k \ge 0$.

1/20/2011

Practical Aspects of Modern Cryptography

Problem 3 (cont.)

By induction on k ... Base case k = 0: $x^{k(p-1)+1} \mod p = x^{0+1} \mod p = x \mod p$ Base case k = 1: $x^{k(p-1)+1} \mod p = x^{(p-1)+1} \mod p$ $= x^p \mod p = x \mod p$ (by Fermat's Little Theorem)

Problem 3 (cont.)

Inductive step:

Assume that $x^{k(p-1)+1} \mod p = x \mod p$.

Prove that $x^{(k+1)(p-1)+1} \mod p = x \mod p$.

1/20/2011

Practical Aspects of Modern Cryptography

Problem 3 (cont.)

- $x^{(k+1)(p-1)+1} \text{mod } p$
 - $= x^{k(p-1)+(p-1)+1} \text{mod } p$
 - $= x^{k(p-1)+1+(p-1)} \text{mod } p$
 - $= x^{k(p-1)+1} x^{(p-1)} \mathrm{mod} \ p$
 - $= x \cdot x^{(p-1)} \mod p$ (by inductive hypothesis)
 - $= x^p \mod p$
 - $= x \mod p$ (by Fermat's Little Theorem)

Show that for distinct primes p and q, $x \mod p = y \mod p$ $x \mod q = y \mod q$ together imply that

 $x \mod pq = y \mod pq$.

- $x \mod p = y \mod p$
 - $\Rightarrow (x \mod p) (y \mod p) = 0$
 - \Rightarrow (x y) is a multiple of p.
- Similarly $x \mod q = y \mod q$
 - \Rightarrow (x y) is a multiple of q.

Therefore, (x - y) is a multiple of pq

$$\Rightarrow (x - y) \bmod pq = 0$$

$$\Rightarrow (x \mod pq) - (y \mod pq) = 0$$

 $\Rightarrow x \bmod pq = y \bmod pq.$

Put problems 3 and 4 together to prove that $x^{K(p-1)(q-1)+1} \mod pq = x \mod pq$ For $K \ge 0$ and distinct primes p and q. Problem 5 (cont.) Let $k_1 = K(q-1)$ and $k_2 = K(p-1)$. $x^{K(p-1)(q-1)+1} \mod p = x^{k_1(p-1)} \mod p = x \mod p$ and $x^{K(p-1)(q-1)+1} \mod q = x^{k_2(q-1)} \mod q = x \mod q$

By Problem #1, and then by Problem #2 $x^{K(p-1)(q-1)+1} \mod pq = x \mod p.$

1/20/2011

Practical Aspects of Modern Cryptography