Assignment \#2 - Solutions

Problem 1

$x \bmod 7= \pm 1$ and $x \bmod 11= \pm 1$

(Note: $x \bmod N=-1$ is shorthand for $x \bmod N=N-1$.)

$$
11^{-1} \bmod 7=2 \quad 7^{-1} \bmod 11=8
$$

Four solutions

$$
\begin{aligned}
& x=[(+1) \times 11 \times 2+(+1) \times 7 \times 8] \bmod 77=[+22+56] \bmod 77=+78 \bmod 77=1 \\
& x=[(+1) \times 11 \times 2+(-1) \times 7 \times 8] \bmod 77=[+22-56] \bmod 77=-34 \bmod 77=43 \\
& x=[(-1) \times 11 \times 2+(+1) \times 7 \times 8] \bmod 77=[-22+56] \bmod 77=+34 \bmod 77=34 \\
& x=[(-1) \times 11 \times 2+(-1) \times 7 \times 8] \bmod 77=[-22-56] \bmod 77=-78 \bmod 77=76
\end{aligned}
$$

Problem 2

- Given $N=p q$, select a random y, compute $z=y^{2} \bmod N$, and input z and N to the black box to produce output x.
- If $x \pm y \bmod N=0$, repeat above.
- Otherwise, compute $\operatorname{gcd}(x-y, N)$ to produce a nontrivial factor of N.

Problem 2 - Bonus

- Remove all powers of 2 from $N=2^{m} N^{\prime}$.
- Repeatedly use black box to split N^{\prime} into prime powers $P=p^{k}$.
- For each non-prime prime power, try each of $i=2,3, \ldots, \log _{2} P$ until an i is found such that the $i^{\text {th }}$ root of P is prime.

Problem 3

Use Fermat's Little Theorem and induction on k to prove that

$$
x^{k(p-1)+1} \bmod p=x \bmod p
$$

for all primes p and $k \geq 0$.

Problem 3 (cont.)

By induction on k...
Base case $k=0$:

$$
x^{k(p-1)+1} \bmod p=x^{0+1} \bmod p=x \bmod p
$$

Base case $k=1$:

$$
\begin{aligned}
& x^{k(p-1)+1} \bmod p=x^{(p-1)+1} \bmod p \\
& =x^{p} \bmod p=x \bmod p \\
& \quad(\text { by Fermat's Little Theorem) }
\end{aligned}
$$

Problem 3 (cont.)

Inductive step:

Assume that $x^{k(p-1)+1} \bmod p=x \bmod p$.

Prove that $x^{(k+1)(p-1)+1} \bmod p=x \bmod p$.

Problem 3 (cont.)

$$
\begin{aligned}
& x^{(k+1)(p-1)+1} \bmod p \\
& =x^{k(p-1)+(p-1)+1} \bmod p \\
& =x^{k(p-1)+1+(p-1)} \bmod p \\
& =x^{k(p-1)+1} x^{(p-1)} \bmod p \\
& =x \cdot x^{(p-1)} \bmod p \text { (by inductive hypothesis) } \\
& =x^{p} \bmod p \\
& =x \bmod p \text { (by Fermat's Little Theorem) }
\end{aligned}
$$

Problem 4

Show that for distinct primes p and q,
$x \bmod p=y \bmod p$
$x \bmod q=y \bmod q$
together imply that

$$
x \bmod p q=y \bmod p q .
$$

Problem 4

$x \bmod p=y \bmod p$
$\Rightarrow(x \bmod p)-(y \bmod p)=0$
$\Rightarrow(x-y)$ is a multiple of p.

Similarly $x \bmod q=y \bmod q$
$\Rightarrow(x-y)$ is a multiple of q.

Problem 4

Therefore, $(x-y)$ is a multiple of $p q$

$$
\begin{aligned}
& \Rightarrow(x-y) \bmod p q=0 \\
& \Rightarrow(x \bmod p q)-(y \bmod p q)=0 \\
& \Rightarrow x \bmod p q=y \bmod p q
\end{aligned}
$$

Problem 5

Put problems 3 and 4 together to prove that

$$
x^{K(p-1)(q-1)+1} \bmod p q=x \bmod p q
$$

For $K \geq 0$ and distinct primes p and q.

Problem 5 (cont.)

$$
\text { Let } k_{1}=K(q-1) \text { and } k_{2}=K(p-1)
$$

$$
x^{K(p-1)(q-1)+1} \bmod p=x^{k_{1}(p-1)} \bmod p=x \bmod p
$$

$$
x^{K(p-1)(q-1)+1} \bmod q=x^{k_{2}(q-1)} \bmod q=x \bmod q
$$

By Problem \#1, and then by Problem \#2

$$
x^{K(p-1)(q-1)+1} \bmod p q=x \bmod p
$$

