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Problem 1 
 Let b = 𝑛

𝑚
 be the number of blocks. 

 Plaintext 𝑃0, 𝑃1, … , 𝑃𝑏, ciphertext 𝐶0, 𝐶1, … , 𝐶𝑏. 

 We care about 𝐶𝑏−1, 𝐶𝑏 , 𝑃𝑏−1 and 𝑃𝑏 . 

 We know 𝑘, the number of bits removed from the 
penultimate block, since 𝑘 = 𝑚 − (𝑛 mod 𝑚). 

 Recall that for CBC decryption, we have plaintext block  

  𝑃𝑖 = Decrypt(𝐾, 𝐶𝑖) ⨂ 𝐶𝑖−𝑖 
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Problem 1 
  𝑃𝑖 = Decrypt(𝐾, 𝐶𝑖) ⨂ 𝐶𝑖−𝑖 

1. Compute 𝑋𝑏 = Decrypt(𝐾, 𝐶𝑏) (intermediate value of final 
block) 

2. We also know 𝑋𝑏 = 𝑃𝑏 𝑋𝑂𝑅 𝐶𝑏−1  
if we have all the bits in 𝐶𝑏 . 

3. Finally, we know the last 𝑘 bits of 𝑃𝑏 are 0 (pad). 

4. So for each of the padding bits 𝑃𝑏,𝑚−𝑘+1, … , 𝑃𝑏,𝑚  

we have 𝑋𝑏,𝑖 = 𝑃𝑏,𝑖 XOR 𝐶𝑏−1,𝑖 for 𝑖 = 𝑚 − 𝑘 + 1, … , 𝑚 

5. Since 𝑃𝑏,𝑖 = 0, then 𝑋𝑏,𝑖 = 𝐶𝑏−1,𝑖 
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Problem 1: Ciphertext Stealing 

Inverse 
Cipher 

Inverse 
Cipher 

Inverse 
Cipher 

Inverse 
Cipher 

Plaintext 

Ciphertext 

IV 

110101 

110101 

00…0 



Problem 2 
 Decrypt a 𝑘-block segment in the middle of a long CBC-

encrypted ciphertext. 

 What is the minimum number of blocks of ciphertext that 
need to be decrypted?  

 Which blocks do you need to decrypt and how will you 
decrypt them?  
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Problem 2 

 In CBC decryption, we have plaintext block  

  𝑃𝑖 = Decrypt(𝐾, 𝐶𝑖) ⨂ 𝐶𝑖−𝑖 

 NOTE: Boundary case "𝐶−1" = IV. 

 Each plaintext block we want requires one decryption of 
the corresponding plaintext plus one XOR. 

 So the minimum number of ciphertext blocks to be 
decrypted is 𝑘. 

 If you want plaintext blocks 𝑃𝑖 , 𝑃𝑖+1, … , 𝑃𝑖+𝑘−1, then you 
need ciphertext blocks 𝐶𝑖−1, 𝐶𝑖 , 𝐶𝑖+1, … , 𝐶𝑖+𝑘−1. 

 If 𝑖 = 0, instead of 𝐶𝑖−1 you need the IV. 
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Problem 3 
 𝐻 is a Merkle-Damgård hash function w/ compression 

function 𝐹. Black box takes inputs 𝐼𝑉 and 𝑦 and outputs 
an 𝑥 such that 𝐹 𝐼𝑉, 𝑥 = 𝑦.   

 Show how by using the black box at most 2𝑘 times you 
can find a set of 2𝑘 messages that all have the same hash 
value when input into the full hash function 𝐻. 
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Problem 3 – Solution 1 

 Basic idea: find pairs of messages 𝑥𝑖 , 𝑥𝑖
′ satisfying 

𝐹 𝐼𝑉𝑖 , 𝑥𝑖 = 𝐹 𝐼𝑉𝑖 , 𝑥𝑖
′ = 𝑦𝑖, 𝑖 =  1, . . , 𝑘 

𝑦𝑖 = 𝐼𝑉𝑖+1  
𝐼𝑉1 = 𝐼𝑉 

 Start at the end. Choose a random target output value 𝑦𝑘 
and a random input value 𝑦𝑘−1 = 𝐼𝑉𝑘 .  Call the black box 
twice with 𝐼𝑉𝑘 , 𝑦𝑘 to generate 𝑥𝑘 , 𝑥𝑘

′ .   

 Now move back a block.  We have 𝑦𝑘−1, choose random 
𝐼𝑉𝑘−1 = 𝑦𝑘−2.  Run the box twice, get 𝑥𝑘−1, 𝑥𝑘−1

′ . 
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Problem 3 – Solution 1 
 We now have 4 two-block messages that hash to the 

same value when F is the compression function: 
𝑥𝑘−1𝑥𝑘 , 𝑥𝑘−1𝑥𝑘

′ , 𝑥𝑘−1
′ 𝑥𝑘 , 𝑥𝑘−1

′ 𝑥𝑘
′  

 Repeat this procedure 𝑘 times and you’ll have made 2𝑘 
calls to the black box to generate 𝑘 pairs 𝑥𝑖 , 𝑥𝑖

′. 

 To generate 2𝑘 messages that hash to the same value, 
make 𝑘-block messages where the 𝑖th block is either 𝑥𝑖 or 
𝑥𝑖

′.  Two choices per block, 𝑘 blocks == 2𝑘 . 
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Problem 3 – Solution 2 
 The “fixed point” solution 

 Choose a fixed value for 𝐼𝑉.  Now call the black box to 
find an 𝑥 such that 𝐹 𝐼𝑉, 𝑥 = 𝐼𝑉. 

 Concatenate 𝑥 as many times as you want, the hash will 
still be 𝐼𝑉.  So to get 2𝑘 messages: 

 𝑥, 𝑥𝑥, 𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥, … , 𝑥𝑥𝑥 … 𝑥𝑥𝑥 (2𝑘 total times) 
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Problem 4 
 𝐺(𝑥) = 𝐻(𝑥) ∥ 𝐻′(𝑥), 𝐻(𝑥) and 𝐻′(𝑥) are hash 

functions with 𝑛-bit outputs, so 𝐺(𝑥) has 2𝑛-bit outputs. 

 Normally, with a birthday attack we would expect to have 
to generate 22𝑛/2 = 2𝑛 messages to find a collision. 

 However, 𝐻(𝑥) is badly broken (as in Prob. 3) so assume 

we can generate 2𝑛/2 messages that all have the same 
hash value in 𝐻 𝑥 . 
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Problem 4 
 Now compute 𝐻′(𝑥) for each of the 2𝑛/2 that have the 

same hash value in 𝐻(𝑥). 

 By the birthday attack we expect to find a collision from 
those 2𝑛/2 messages. 
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Problem 4 
 Was it a good idea to construct 𝐺(𝑥) = 𝐻(𝑥) ∥ 𝐻′(𝑥)? 
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Problem 4 
 Was it a good idea to construct 𝐺(𝑥) = 𝐻(𝑥) ∥ 𝐻′(𝑥)? 

 

 Well, it depends… 
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Problem 4 
 Was it a good idea to construct 𝐺(𝑥) = 𝐻(𝑥) ∥ 𝐻′(𝑥)? 

 

 Well, it depends… 

 YES: At the cost of computing two hashes vs. one, you get 
resistance if one of 𝐻, 𝐻′ breaks. 
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Problem 4 
 Was it a good idea to construct 𝐺(𝑥) = 𝐻(𝑥) ∥ 𝐻′(𝑥)? 

 

 Well, it depends… 

 YES: At the cost of computing two hashes vs. one, you get 
resistance if one of 𝐻, 𝐻′ breaks, but… 

 NO: However, 𝐺(𝑥) doesn’t have the security margin 
you’d expect of a 2𝑛-bit hash function.  It’s only as strong 
as the better of its two components 
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Problem 5 

 Alice  Bob: 𝑚 = “please pay the bearer $1”, 𝐻(𝑘, 𝑚).   

 𝑚 is an exact multiple of 𝐻’𝑠 block size (so you don’t need 
to do any padding).   

 

 What can Bob do? 
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Problem 5 

 Note that 𝑘 is only an input to the first application of 𝐻′𝑠 
compression function (e.g. it’s the 𝐼𝑉 to the hash of the 
first block of 𝑚) 

 Bob can append data to 𝑚, create 𝑚′ = 𝑚 ∥ “,000,000”, 
and compute 𝐻 𝑘, 𝑚′  from 𝐻(𝑘, 𝑚). 
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