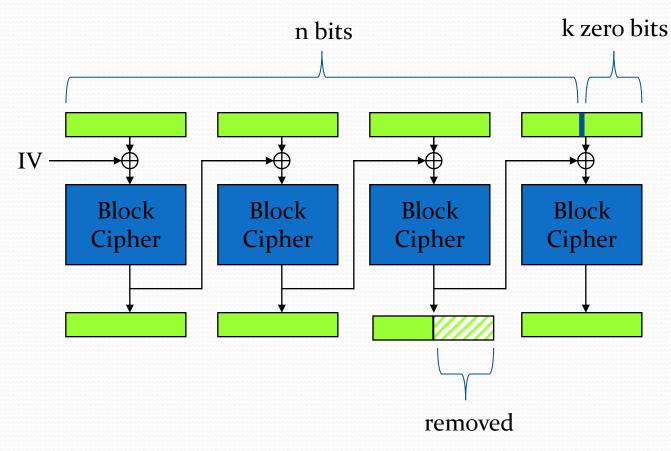
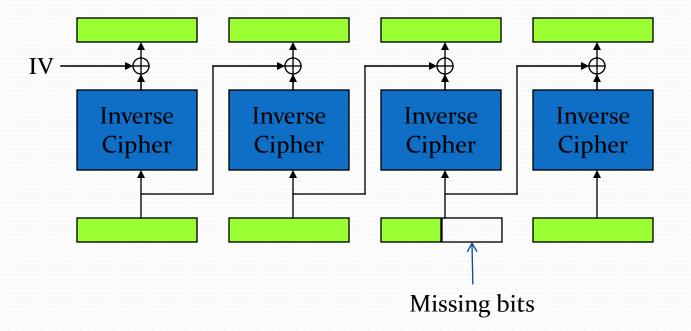
Assignment #3 – Solutions



Practical Aspects of Modern Cryptography

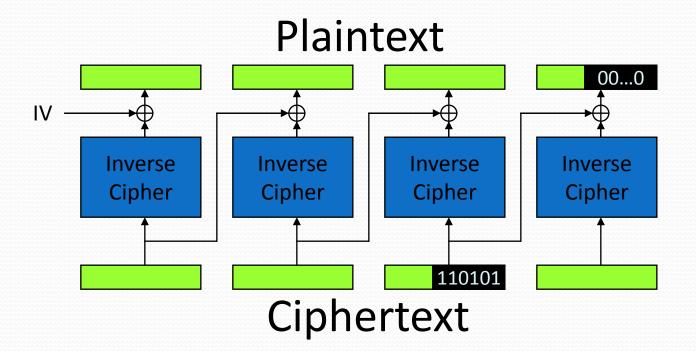


- Let $b = \left[\frac{n}{m}\right]$ be the number of blocks.
- Plaintext P_0, P_1, \dots, P_b , ciphertext C_0, C_1, \dots, C_b .
- We care about C_{b-1} , C_b , P_{b-1} and P_b .
- We know k, the number of bits removed from the penultimate block, since $k = m (n \mod m)$.
- Recall that for CBC decryption, we have plaintext block $P_i = \text{Decrypt}(K, C_i) \otimes C_{i-i}$

 $P_i = \text{Decrypt}(K, C_i) \otimes C_{i-i}$

- 1. Compute X_b = Decrypt(K, C_b) (intermediate value of final block)
- 2. We also know $X_b = P_b XOR C_{b-1}$ if we have all the bits in C_b .
- 3. Finally, we know the last k bits of P_b are 0 (pad).
- 4. So for each of the padding bits $P_{b,m-k+1}, \dots, P_{b,m}$ we have $X_{b,i} = P_{b,i}$ XOR $C_{b-1,i}$ for $i = m - k + 1, \dots, m$
- 5. Since $P_{b,i} = 0$, then $X_{b,i} = C_{b-1,i}$

Problem 1: Ciphertext Stealing



- Decrypt a k-block segment in the middle of a long CBCencrypted ciphertext.
 - What is the minimum number of blocks of ciphertext that need to be decrypted?
 - Which blocks do you need to decrypt and how will you decrypt them?

In CBC decryption, we have plaintext block

 $P_i = \text{Decrypt}(K, C_i) \otimes C_{i-i}$

- NOTE: Boundary case " C_{-1} " = IV.
- Each plaintext block we want requires one decryption of the corresponding plaintext plus one XOR.
- So the minimum number of ciphertext blocks to be decrypted is k.
- If you want plaintext blocks P_i, P_{i+1}, ..., P_{i+k-1}, then you need ciphertext blocks C_{i-1}, C_i, C_{i+1}, ..., C_{i+k-1}.
 - If i = 0, instead of C_{i-1} you need the IV.

- H is a Merkle-Damgård hash function w/ compression function F. Black box takes inputs IV and y and outputs an x such that F(IV, x) = y.
- Show how by using the black box at most 2k times you can find a set of 2^k messages that all have the same hash value when input into the full hash function H.

Problem 3 – Solution 1

- Basic idea: find pairs of messages x_i, x'_i satisfying $F(IV_i, x_i) = F(IV_i, x'_i) = y_i, i = 1, ..., k$ $y_i = IV_{i+1}$ $IV_1 = IV$
- Start at the end. Choose a random target output value y_k and a random input value $y_{k-1} = IV_k$. Call the black box twice with IV_k , y_k to generate x_k , x'_k .
- Now move back a block. We have y_{k-1} , choose random $IV_{k-1} = y_{k-2}$. Run the box twice, get x_{k-1}, x'_{k-1} .

Problem 3 – Solution 1

 We now have 4 two-block messages that hash to the same value when F is the compression function:

 $x_{k-1}x_k, x_{k-1}x'_k, x'_{k-1}x_k, x'_{k-1}x'_k$

- Repeat this procedure k times and you'll have made 2k calls to the black box to generate k pairs x_i, x'_i.
- To generate 2^k messages that hash to the same value, make k-block messages where the *i*th block is either x_i or x'_i. Two choices per block, k blocks == 2^k.

Problem 3 – Solution 2

- The "fixed point" solution
- Choose a fixed value for IV. Now call the black box to find an x such that F(IV, x) = IV.
- Concatenate x as many times as you want, the hash will still be IV. So to get 2^k messages:
- $x, xx, xxx, xxxx, \dots, xxx \dots xxx$ (2^k total times)

- G(x) = H(x) || H'(x), H(x) and H'(x) are hash functions with n-bit outputs, so G(x) has 2n-bit outputs.
- Normally, with a birthday attack we would expect to have to generate $2^{2n/2} = 2^n$ messages to find a collision.
- However, H(x) is badly broken (as in Prob. 3) so assume we can generate 2^{n/2} messages that all have the same hash value in H(x).

- Now compute H'(x) for each of the $2^{n/2}$ that have the same hash value in H(x).
- By the birthday attack we expect to find a collision from those 2^{n/2} messages.

• Was it a good idea to construct $G(x) = H(x) \parallel H'(x)$?

- Was it a good idea to construct $G(x) = H(x) \parallel H'(x)$?
- Well, it depends...

- Was it a good idea to construct $G(x) = H(x) \parallel H'(x)$?
- Well, it depends...
- YES: At the cost of computing two hashes vs. one, you get resistance if one of *H*, *H*['] breaks.

- Was it a good idea to construct $G(x) = H(x) \parallel H'(x)$?
- Well, it depends...
- YES: At the cost of computing two hashes vs. one, you get resistance if one of H, H' breaks, but...
- NO: However, G(x) doesn't have the security margin you'd expect of a 2n-bit hash function. It's only as strong as the better of its two components

- Alice \rightarrow Bob: m = "please pay the bearer \$1", H(k, m).
- *m* is an exact multiple of *H*'s block size (so you don't need to do any padding).
- What can Bob do?

- Note that k is only an input to the first application of H's compression function (e.g. it's the IV to the hash of the first block of m)
- Bob can **append** data to m, create $m' = m \parallel ",000,000"$, and compute H(k,m') from H(k,m).