

Problem 1

Block
Cipher

Block
Cipher

Block
Cipher

Block
Cipher

IV

January 27, 2011 Practical Aspects of Modern Cryptography 2

n bits k zero bits

removed

Inverse
Cipher

Inverse
Cipher

Inverse
Cipher

Inverse
Cipher

IV

January 27, 2011 Practical Aspects of Modern Cryptography 3

Problem 1

Missing bits

Problem 1
 Let b = 𝑛

𝑚
 be the number of blocks.

 Plaintext 𝑃0, 𝑃1, … , 𝑃𝑏, ciphertext 𝐶0, 𝐶1, … , 𝐶𝑏.

 We care about 𝐶𝑏−1, 𝐶𝑏 , 𝑃𝑏−1 and 𝑃𝑏 .

 We know 𝑘, the number of bits removed from the
penultimate block, since 𝑘 = 𝑚 − (𝑛 mod 𝑚).

 Recall that for CBC decryption, we have plaintext block

 𝑃𝑖 = Decrypt(𝐾, 𝐶𝑖) ⨂ 𝐶𝑖−𝑖

1/27/2011 Practical Aspects of Modern Cryptography

Problem 1
 𝑃𝑖 = Decrypt(𝐾, 𝐶𝑖) ⨂ 𝐶𝑖−𝑖

1. Compute 𝑋𝑏 = Decrypt(𝐾, 𝐶𝑏) (intermediate value of final
block)

2. We also know 𝑋𝑏 = 𝑃𝑏 𝑋𝑂𝑅 𝐶𝑏−1
if we have all the bits in 𝐶𝑏 .

3. Finally, we know the last 𝑘 bits of 𝑃𝑏 are 0 (pad).

4. So for each of the padding bits 𝑃𝑏,𝑚−𝑘+1, … , 𝑃𝑏,𝑚

we have 𝑋𝑏,𝑖 = 𝑃𝑏,𝑖 XOR 𝐶𝑏−1,𝑖 for 𝑖 = 𝑚 − 𝑘 + 1, … , 𝑚

5. Since 𝑃𝑏,𝑖 = 0, then 𝑋𝑏,𝑖 = 𝐶𝑏−1,𝑖

1/27/2011 Practical Aspects of Modern Cryptography

Problem 1: Ciphertext Stealing

Inverse
Cipher

Inverse
Cipher

Inverse
Cipher

Inverse
Cipher

Plaintext

Ciphertext

IV

110101

110101

00…0

Problem 2
 Decrypt a 𝑘-block segment in the middle of a long CBC-

encrypted ciphertext.

 What is the minimum number of blocks of ciphertext that
need to be decrypted?

 Which blocks do you need to decrypt and how will you
decrypt them?

1/27/2011 Practical Aspects of Modern Cryptography

Problem 2

 In CBC decryption, we have plaintext block

 𝑃𝑖 = Decrypt(𝐾, 𝐶𝑖) ⨂ 𝐶𝑖−𝑖

 NOTE: Boundary case "𝐶−1" = IV.

 Each plaintext block we want requires one decryption of
the corresponding plaintext plus one XOR.

 So the minimum number of ciphertext blocks to be
decrypted is 𝑘.

 If you want plaintext blocks 𝑃𝑖 , 𝑃𝑖+1, … , 𝑃𝑖+𝑘−1, then you
need ciphertext blocks 𝐶𝑖−1, 𝐶𝑖 , 𝐶𝑖+1, … , 𝐶𝑖+𝑘−1.

 If 𝑖 = 0, instead of 𝐶𝑖−1 you need the IV.

1/27/2011 Practical Aspects of Modern Cryptography

Problem 3
 𝐻 is a Merkle-Damgård hash function w/ compression

function 𝐹. Black box takes inputs 𝐼𝑉 and 𝑦 and outputs
an 𝑥 such that 𝐹 𝐼𝑉, 𝑥 = 𝑦.

 Show how by using the black box at most 2𝑘 times you
can find a set of 2𝑘 messages that all have the same hash
value when input into the full hash function 𝐻.

1/27/2011 Practical Aspects of Modern Cryptography

Problem 3 – Solution 1

 Basic idea: find pairs of messages 𝑥𝑖 , 𝑥𝑖
′ satisfying

𝐹 𝐼𝑉𝑖 , 𝑥𝑖 = 𝐹 𝐼𝑉𝑖 , 𝑥𝑖
′ = 𝑦𝑖, 𝑖 = 1, . . , 𝑘

𝑦𝑖 = 𝐼𝑉𝑖+1
𝐼𝑉1 = 𝐼𝑉

 Start at the end. Choose a random target output value 𝑦𝑘
and a random input value 𝑦𝑘−1 = 𝐼𝑉𝑘 . Call the black box
twice with 𝐼𝑉𝑘 , 𝑦𝑘 to generate 𝑥𝑘 , 𝑥𝑘

′ .

 Now move back a block. We have 𝑦𝑘−1, choose random
𝐼𝑉𝑘−1 = 𝑦𝑘−2. Run the box twice, get 𝑥𝑘−1, 𝑥𝑘−1

′ .

1/27/2011 Practical Aspects of Modern Cryptography

Problem 3 – Solution 1
 We now have 4 two-block messages that hash to the

same value when F is the compression function:
𝑥𝑘−1𝑥𝑘 , 𝑥𝑘−1𝑥𝑘

′ , 𝑥𝑘−1
′ 𝑥𝑘 , 𝑥𝑘−1

′ 𝑥𝑘
′

 Repeat this procedure 𝑘 times and you’ll have made 2𝑘
calls to the black box to generate 𝑘 pairs 𝑥𝑖 , 𝑥𝑖

′.

 To generate 2𝑘 messages that hash to the same value,
make 𝑘-block messages where the 𝑖th block is either 𝑥𝑖 or
𝑥𝑖

′. Two choices per block, 𝑘 blocks == 2𝑘 .

1/27/2011 Practical Aspects of Modern Cryptography

Problem 3 – Solution 2
 The “fixed point” solution

 Choose a fixed value for 𝐼𝑉. Now call the black box to
find an 𝑥 such that 𝐹 𝐼𝑉, 𝑥 = 𝐼𝑉.

 Concatenate 𝑥 as many times as you want, the hash will
still be 𝐼𝑉. So to get 2𝑘 messages:

 𝑥, 𝑥𝑥, 𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥, … , 𝑥𝑥𝑥 … 𝑥𝑥𝑥 (2𝑘 total times)

1/27/2011 Practical Aspects of Modern Cryptography

Problem 4
 𝐺(𝑥) = 𝐻(𝑥) ∥ 𝐻′(𝑥), 𝐻(𝑥) and 𝐻′(𝑥) are hash

functions with 𝑛-bit outputs, so 𝐺(𝑥) has 2𝑛-bit outputs.

 Normally, with a birthday attack we would expect to have
to generate 22𝑛/2 = 2𝑛 messages to find a collision.

 However, 𝐻(𝑥) is badly broken (as in Prob. 3) so assume

we can generate 2𝑛/2 messages that all have the same
hash value in 𝐻 𝑥 .

1/27/2011 Practical Aspects of Modern Cryptography

Problem 4
 Now compute 𝐻′(𝑥) for each of the 2𝑛/2 that have the

same hash value in 𝐻(𝑥).

 By the birthday attack we expect to find a collision from
those 2𝑛/2 messages.

1/27/2011 Practical Aspects of Modern Cryptography

Problem 4
 Was it a good idea to construct 𝐺(𝑥) = 𝐻(𝑥) ∥ 𝐻′(𝑥)?

1/27/2011 Practical Aspects of Modern Cryptography

Problem 4
 Was it a good idea to construct 𝐺(𝑥) = 𝐻(𝑥) ∥ 𝐻′(𝑥)?

 Well, it depends…

1/27/2011 Practical Aspects of Modern Cryptography

Problem 4
 Was it a good idea to construct 𝐺(𝑥) = 𝐻(𝑥) ∥ 𝐻′(𝑥)?

 Well, it depends…

 YES: At the cost of computing two hashes vs. one, you get
resistance if one of 𝐻, 𝐻′ breaks.

1/27/2011 Practical Aspects of Modern Cryptography

Problem 4
 Was it a good idea to construct 𝐺(𝑥) = 𝐻(𝑥) ∥ 𝐻′(𝑥)?

 Well, it depends…

 YES: At the cost of computing two hashes vs. one, you get
resistance if one of 𝐻, 𝐻′ breaks, but…

 NO: However, 𝐺(𝑥) doesn’t have the security margin
you’d expect of a 2𝑛-bit hash function. It’s only as strong
as the better of its two components

 1/27/2011 Practical Aspects of Modern Cryptography

Problem 5

 Alice Bob: 𝑚 = “please pay the bearer $1”, 𝐻(𝑘, 𝑚).

 𝑚 is an exact multiple of 𝐻’𝑠 block size (so you don’t need
to do any padding).

 What can Bob do?

1/27/2011 Practical Aspects of Modern Cryptography

Problem 5

 Note that 𝑘 is only an input to the first application of 𝐻′𝑠
compression function (e.g. it’s the 𝐼𝑉 to the hash of the
first block of 𝑚)

 Bob can append data to 𝑚, create 𝑚′ = 𝑚 ∥ “,000,000”,
and compute 𝐻 𝑘, 𝑚′ from 𝐻(𝑘, 𝑚).

1/27/2011 Practical Aspects of Modern Cryptography

