

Problem 1

2/3/2011 Practical Aspects of Modern Cryptography

 Scenario: two companies, A & B, each running Kerberos-
based systems. Key Distribution Centers KDCA and KDCB

 A and B want to link their Kerberos networks together

 Have shared secret key KAB

 What modifications do we need to make to the standard
Kerberos protocol?

 The interesting case is when a client in one company
wants to access a server in another company.

 No change needed for intra-company communications.

Problem 1
 Let’s assume a client 𝐶𝐴 in A wants to communicate with a

service 𝑆𝐵 in B. So we want 𝐶𝐴 to end up with a ticket to
𝑆𝐵 .

 In order for 𝐶𝐴 to get a ticket to 𝑆𝐵, 𝐶𝐴 needs to talk to
𝑇𝐺𝑆𝐵 (because 𝑇𝐺𝑆𝐵 issues tickets to 𝑆𝐵).

 In order for 𝐶𝐴 to get a TGT to talk to 𝑇𝐺𝑆𝐵, 𝐶𝐴 needs to talk
to 𝐾𝐷𝐶𝐵 .

 But 𝐾𝐷𝐶𝐵 can’t authenticate 𝐶𝐴 directly, so we need to
modify the protocol so that 𝐶𝐴 can

1. Authenticate to 𝐾𝐷𝐶𝐴, and

2. Ask 𝐾𝐷𝐶𝐴 to request a TGT for 𝑇𝐺𝑆𝐵 from 𝐾𝐷𝐶𝐵 on 𝐶𝐴’s
behalf

2/3/2011 Practical Aspects of Modern Cryptography

Problem 1
Following the notation used in class:

 𝐶𝐴 authenticates to 𝐾𝐷𝐶𝐴:

 𝐶𝐴 −→ 𝐾𝐷𝐶𝐴: 𝐶𝐴, 𝑇𝐺𝑆𝐵 , 𝑁𝐶𝐴

 𝐾𝐷𝐶𝐴 forwards the request for a TGT for 𝑇𝐺𝑆𝐵 to 𝐾𝐷𝐶𝐵
using their shared secret 𝐾𝐴𝐵

 𝐾𝐷𝐶𝐴 −→ 𝐾𝐷𝐶𝐵: {𝐶𝐴, 𝑇𝐺𝑆𝐵 , 𝑁𝐾𝐷𝐶𝐴
+𝐾𝐴𝐵

 𝐾𝐷𝐶𝐵 decrypts the request from 𝐾𝐷𝐶𝐴and returns a ticket
for 𝐶𝐴 to talk to 𝑇𝐺𝑆𝐵.

𝐾𝐷𝐶𝐵 −→ 𝐾𝐷𝐶𝐴: 𝑇𝐶𝐴,𝑇𝐺𝑆𝐵
, *𝐾𝐶𝐴,𝑇𝐺𝑆𝐵

+𝐾𝐴𝐵

where 𝑇𝐶𝐴,𝑇𝐺𝑆𝐵
= 𝑇𝐺𝑆𝐵, {𝐶𝐴, C-addr, lifetime, 𝐾𝐶𝐴,𝑇𝐺𝑆𝐵

} 𝐾𝑇𝐺𝑆𝐵

2/3/2011 Practical Aspects of Modern Cryptography

Problem 1
 𝐾𝐷𝐶𝐴 can then decrypt and re-encrypt the session key:

 𝐾𝐷𝐶𝐴 −→ 𝐶𝐴: 𝑇𝐶𝐴,𝑇𝐺𝑆𝐵
, *𝐾𝐶𝐴,𝑇𝐺𝑆𝐵

+𝐾𝐶𝐴

 𝐶𝐴 now knows 𝐾𝐶𝐴,𝑇𝐺𝑆𝐵
and can use this session key along

with 𝑇𝐶𝐴,𝑇𝐺𝑆𝐵
to continue Phase 2 of Kerberos with 𝑇𝐺𝑆𝐵

directly.

2/3/2011 Practical Aspects of Modern Cryptography

Problem 2

2/3/2011 Practical Aspects of Modern Cryptography

 Relative costs of RSA and AES, given

 AES-128 encrypt/decrypt 1 block in time 𝑡

 AES-256 encrypt/decrypt 1 block in time 1.4𝑡.

 A single RSA encryption takes time 𝑎𝑛2.

 A single RSA decryption takes time 𝑏𝑛3.

 A single RSA key generation step takes time 𝑐𝑛4.

Problem 2a

2/3/2011 Practical Aspects of Modern Cryptography

 How many AES-128 encryption operations can you perform in
the time it takes to do a single RSA-1024 encryption?

 Time for a single RSA-1024 encryption: 𝑎 10242 = 𝑎 220

 Time for a single AES-128 encryption: 𝑡

220
𝑎

𝑡

Problem 2b

2/3/2011 Practical Aspects of Modern Cryptography

 How many AES-128 decryption operations can you perform in
the time it takes to do a single RSA-1024 decryption?

 Time for a single RSA-1024 decryption: 𝑏 10243 = 𝑏 230

 Time for a single AES-128 decryption: 𝑡

230
𝑏

𝑡

Problem 2c

2/3/2011 Practical Aspects of Modern Cryptography

 Moving from AES-128 to AES-256

 AES-256 encryptions per RSA-1024 encryption

220 𝑎

1.4𝑡
 = 748982.8571428…

𝑎

𝑡

Problem 2d

2/3/2011 Practical Aspects of Modern Cryptography

 Moving from AES-128 to AES-256, RSA-1024 to RSA-2048

 AES-256 decryptions per RSA-2048 decryption

 One RSA-2048 decryption: 𝑏𝑛3 = 211 3𝑏 = 233𝑏

 One AES-256 decryption: 1.4𝑡

233 𝑏

1.4𝑡
 = 6135667565.7142857…

𝑏

𝑡

Problem 2e (for AES-128/RSA-1024)

2/3/2011 Practical Aspects of Modern Cryptography

 220AES-128 encryptions = 1 RSA-1024 decryption.

 Using AES-128 and RSA-1024, sending 16MB of data requires:
 1 RSA keygen = 𝑐 1024 4 = 𝑐 240

 2 RSA encryptions = 2𝑎 1024 2 = 2𝑎220 = 𝑎221

 2 RSA decryptions = 2𝑏 1024 3 = 2𝑏230 = 𝑏231

 Total time on RSA operations: 221(𝑎 + 210𝑏 + 219𝑐)

 16MB of data = 1M (2^20) data blocks
 Need two* AES operations per block (1 encrypt, 1 decrypt)

 2 220AES operations = 2 ∗ (one RSA decryption)

 = 2 ∗ 𝑏230 = 231 𝑏

 *NOTE: Some students may have interpreted “If you send 16MB…”
as meaning “only count 1 AES encryption/block.” We had intended
for both the AES encrypt and decrypt to count, but we will accept
answers that only count 1 AES encryption/block so long as they are
internally consistent.

Problem 2e (AES-128/RSA-1024)

2/3/2011 Practical Aspects of Modern Cryptography

 Total time on RSA operations: 221(𝑎 + 210𝑏 + 219𝑐)

 Total time for AES operations: 231𝑏

 Total time for all operations: 221(𝑎 + 210𝑏 + 219𝑐) + 231𝑏

 = 221(𝑎 + 210𝑏 + 219𝑐)

 Fraction of overall time spent in RSA:

221(𝑎:210𝑏:219𝑐)
221(𝑎:211𝑏:219𝑐)

 =
 (𝑎:210𝑏:219𝑐)

 (𝑎:211𝑏:219𝑐)

Problem 2e (for AES-256/RSA-2048)

2/3/2011 Practical Aspects of Modern Cryptography

 220AES-128 encryptions = 1 RSA-1024 decryption.

 For RSA-2048:

 1 RSA keygen = 𝑐 2048 4 = 𝑐 244

 2 RSA encryptions = 2𝑎 2048 2 = 2𝑎222 = 𝑎223

 2 RSA decryptions = 2𝑏 2048 3 = 2𝑏233 = 𝑏234

 Total time on RSA operations: 223(𝑎 + 211𝑏 + 219𝑐)

 16MB of data = 1M (2^20) data blocks

 Need two AES-256 operations per block (1 encrypt, 1 decrypt)

 2 220AES-256 operations = 2 ∗ 1.4 ∗ (one RSA-1024 decryption)

 = 2 ∗ 1.4 ∗ 𝑏230

 = 1.4 𝑏 231

Problem 2e (AES-256/RSA-2048)

2/3/2011 Practical Aspects of Modern Cryptography

 Total time on RSA operations:223(𝑎 + 211𝑏 + 219𝑐)

 Total time for AES operations:1.4 𝑏 231

 Total time for all operations:

 223(𝑎 + 211𝑏 + 219𝑐) +1.4 𝑏 231

 = 223(𝑎 + 1.4𝑏28 + 211𝑏 + 219𝑐)

 Fraction of overall time spent in RSA:

223(𝑎:211𝑏:219𝑐)

223(𝑎:1.4𝑏28: 211𝑏:219𝑐)
 =

(𝑎:211𝑏:219𝑐)

 (𝑎:1.4𝑏28: 211𝑏:219𝑐)

Problem 3

2/3/2011 Practical Aspects of Modern Cryptography

 First, let’s look at MD5 vs. SHA-1

 MD5 has a 128-bit output, so with a birthday attack we
would expect to find a collision in 264 hash operations.

 SHA-1 has a 160-bit output, so 280 hash operations for a
collision via birthday attack.

280

264 = 216, so we need 16 Moore’s Law doublings

= 24 years

Problem 3

2/3/2011 Practical Aspects of Modern Cryptography

Now, RSA-768 vs RSA-1024. Let’s compute the formula for
𝑛 = 768 and 𝑛 = 1024.

𝑛 = 768:

 𝑒2∗768
1
3∗ log2 768

2
3
 = 7.794344... × 10^35

𝑛 = 1024:

 𝑒2∗ 1024
1
3∗ log2 1024

2
3
 = 4.328252... × 10^40

Ratio: approx 55530.67904…

Problem 3

2/3/2011 Practical Aspects of Modern Cryptography

Ratio: approx 55530.67904…

Now, log2 55530.67904… = 15.76

So we need 15.76 Moore’s Law doublings

 = 23.64 years

Bottom line: move from RSA-1024 to RSA-2048 first

Problem 4

2/3/2011 Practical Aspects of Modern Cryptography

 Alice and Bob live in different countries, exchange key 𝐾
face-to-face, want to exchange a sequence of messages in
the future.
 At any point in time, Alice’s computer can be seized, giving

an attacker all the information stored on her computer at
the time of seizure.

 Let 𝑚1, 𝑚2, 𝑚3, … be the sequence of messages Alice and
Bob exchange.

 How can we use 𝐾 to secure each 𝑚𝑖 , such that if Alice’s
computer is seized at time 𝑡, none of the 𝑚1, 𝑚2, … 𝑚𝑡;1
are compromised?

Problem 4

2/3/2011 Practical Aspects of Modern Cryptography

 At any point in time, we want Alice’s machine to contain
only information necessary for encrypting future
messages, and not anything that could be used to decrypt
past messages.

 So, some things that don’t work:
 Encrypt each 𝑚𝑖 with 𝐾 directly (would have to keep 𝐾

around, and when the computer is seized it exposes all
prior 𝑚𝑖).

 Encrypt each 𝑚𝑖 with 𝐾𝑖 = 𝐻(𝑖 ∥ 𝐾) where 𝐻 is a hash
function (would still have to keep 𝐾 around, and once
seized would reveal past messages.

Problem 4

2/3/2011 Practical Aspects of Modern Cryptography

 One possible approach:

 Let 𝐾0 = 𝐾.

 Let 𝐾𝑖 = 𝐻(𝐾𝑖;1)

 Store only the 𝐾𝑖 for the next message to send.

 Encrypt 𝑚𝑖 with 𝐾𝑖.

 Once 𝑚𝑖 is sent, compute 𝐾𝑖:1 and destroy 𝐾𝑖 .

 Other solutions are possible…

Problem 5

2/3/2011 Practical Aspects of Modern Cryptography

 Modifying SSL/TLS to support session restart

 Proposal: Whenever a session is established, the pre-
master secret is used to derive a session identifier that can
be retained by the client and server.

 This session identifier is then cached along w/ the original
pre-master secret, and the client can request restart by
sending the identifier along with the rest of the session
details (including the ciphersuite).

 How can an attacker exploit this protocol modification?

Problem 5

2/3/2011 Practical Aspects of Modern Cryptography

 An attacker can play man-in-the-middle between a client
requesting restart and the server

 The attacker can’t change the pre-master secret, but
because the client sends the session details to the server,
the adversary can change any of those details.

 In particular, the adversary can change the ciphersuite,
making it something easier

 This is called a downgrade attack – it causes the client
and server to use a ciphersuite that neither would
negotiate to absent interference from the adversary

