Assignment #4 – Solutions

- Scenario: two companies, A & B, each running Kerberosbased systems. Key Distribution Centers KDC_A and KDC_B
- A and B want to link their Kerberos networks together
 - Have shared secret key K_{AB}
- What modifications do we need to make to the standard Kerberos protocol?
- The interesting case is when a client in one company wants to access a server in another company.
 - No change needed for intra-company communications.

- Let's assume a client C_A in A wants to communicate with a service S_B in B. So we want C_A to end up with a ticket to S_B.
- In order for C_A to get a ticket to S_B , C_A needs to talk to TGS_B (because TGS_B issues tickets to S_B).
- In order for C_A to get a TGT to talk to TGS_B , C_A needs to talk to KDC_B .
- But KDC_B can't authenticate C_A directly, so we need to modify the protocol so that C_A can
 - 1. Authenticate to KDC_A , and
 - 2. Ask KDC_A to request a TGT for TGS_B from KDC_B on C_A 's behalf

Following the notation used in class:

C_A authenticates to KDC_A:

 $C_A \longrightarrow KDC_A: C_A, TGS_B, N_{C_A}$

 KDC_A forwards the request for a TGT for TGS_B to KDC_B using their shared secret K_{AB}

 $KDC_A \longrightarrow KDC_B$: { C_A , TGS_B , N_{KDC_A} } K_{AB}

• KDC_B decrypts the request from KDC_A and returns a ticket for C_A to talk to TGS_B .

 $KDC_B \longrightarrow KDC_A : T_{C_A, TGS_B}, \{K_{C_A, TGS_B}\} K_{AB}$

where $T_{C_A,TGS_B} = TGS_B$, { C_A , C-addr, lifetime, K_{C_A,TGS_B} } K_{TGS_B}

- KDC_A can then decrypt and re-encrypt the session key: $KDC_A \longrightarrow C_A: T_{C_A,TGS_B}, \{K_{C_A,TGS_B}\}K_{C_A}$
- C_A now knows K<sub>C_A,T_{GSB} and can use this session key along with T<sub>C_A,T_{GSB} to continue Phase 2 of Kerberos with TGS_B directly.
 </sub></sub>

Relative costs of RSA and AES, given

- AES-128 encrypt/decrypt 1 block in time t
- AES-256 encrypt/decrypt 1 block in time 1.4*t*.
- A single RSA encryption takes time an^2 .
- A single RSA decryption takes time bn^3 .
- A single RSA key generation step takes time cn^4 .

Problem 2a

- How many AES-128 encryption operations can you perform in the time it takes to do a single RSA-1024 encryption?
- Time for a single RSA-1024 encryption: $a(1024^2) = a 2^{20}$
- Time for a single AES-128 encryption: *t*

$$2^{20}\frac{a}{t}$$

Problem 2b

- How many AES-128 decryption operations can you perform in the time it takes to do a single RSA-1024 decryption?
- Time for a single RSA-1024 decryption: $b(1024^3) = b 2^{30}$
- Time for a single AES-128 decryption: *t*

$$2^{30}\frac{b}{t}$$

Problem 2c

- Moving from AES-128 to AES-256
- AES-256 encryptions per RSA-1024 encryption

$$2^{20} \frac{a}{1.4t} = 748982.8571428... \frac{a}{t}$$

Problem 2d

- Moving from AES-128 to AES-256, RSA-1024 to RSA-2048
- AES-256 decryptions per RSA-2048 decryption
- One RSA-2048 decryption: $bn^3 = (2^{11})^3 b = 2^{33} b$
- One AES-256 decryption: 1.4*t*

$$2^{33} \frac{b}{1.4t} = 6135667565.7142857...\frac{b}{t}$$

Problem 2e (for AES-128/RSA-1024)

- 2²⁰AES-128 encryptions = 1 RSA-1024 decryption.
- Using AES-128 and RSA-1024, sending 16MB of data requires:
 - 1 RSA keygen = $c (1024)^4 = c 2^{40}$
 - 2 RSA encryptions = $2a(1024)^2 = 2a2^{20} = a2^{21}$
 - 2 RSA decryptions = $2b(1024)^3 = 2b2^{30} = b2^{31}$
 - Total time on RSA operations: $2^{21}(a + 2^{10}b + 2^{19}c)$
- 16MB of data = 1M (2^20) data blocks
 - Need two* AES operations per block (1 encrypt, 1 decrypt)
 - $2 2^{20}$ AES operations = 2 * (one RSA decryption)

 $= 2 * b 2^{30} = 2^{31} b$

*NOTE: Some students may have interpreted "If you <u>send</u> 16MB..." as meaning "only count 1 AES encryption/block." We had intended for both the AES encrypt and decrypt to count, but we will accept answers that only count 1 AES encryption/block so long as they are internally consistent.

Problem 2e (AES-128/RSA-1024)

- Total time on RSA operations: $2^{21}(a + 2^{10}b + 2^{19}c)$
- Total time for AES operations: $2^{31}b$
- Total time for all operations: $2^{21}(a + 2^{10}b + 2^{19}c) + 2^{31}b$ = $2^{21}(a + 2^{10}b + 2^{19}c)$
- Fraction of overall time spent in RSA:

$$\frac{2^{21}(a+2^{10}b+2^{19}c)}{2^{21}(a+2^{11}b+2^{19}c)} = \frac{(a+2^{10}b+2^{19}c)}{(a+2^{11}b+2^{19}c)}$$

Problem 2e (for AES-256/RSA-2048)

- 2²⁰AES-128 encryptions = 1 RSA-1024 decryption.
- For RSA-2048:
 - 1 RSA keygen = $c (2048)^4 = c 2^{44}$
 - 2 RSA encryptions = $2a(2048)^2 = 2a2^{22} = a2^{23}$
 - 2 RSA decryptions = $2b(2048)^3 = 2b2^{33} = b2^{34}$
 - Total time on RSA operations: $2^{23}(a + 2^{11}b + 2^{19}c)$
- 16MB of data = 1M (2^20) data blocks
 - Need two AES-256 operations per block (1 encrypt, 1 decrypt)
 - 2 2²⁰AES-256 operations = 2 * 1.4 * (one RSA-1024 decryption)

$$= 2 * 1.4 * b2^{30}$$

Problem 2e (AES-256/RSA-2048)

- Total time on RSA operations: $2^{23}(a + 2^{11}b + 2^{19}c)$
- Total time for AES operations: 1.4 b 2³¹
- Total time for all operations:

 $2^{23}(a + 2^{11}b + 2^{19}c) + 1.4 b 2^{31}$ $= 2^{23}(a + 1.4b2^8 + 2^{11}b + 2^{19}c)$

• Fraction of overall time spent in RSA:

$$\frac{2^{23}(a+2^{11}b+2^{19}c)}{2^{23}(a+1.4b2^8+2^{11}b+2^{19}c)} = \frac{(a+2^{11}b+2^{19}c)}{(a+1.4b2^8+2^{11}b+2^{19}c)}$$

- First, let's look at MD5 vs. SHA-1
- MD5 has a 128-bit output, so with a birthday attack we would expect to find a collision in 2⁶⁴ hash operations.
- SHA-1 has a 160-bit output, so 2⁸⁰ hash operations for a collision via birthday attack.

$$\frac{2^{80}}{2^{64}} = 2^{16}$$
, so we need 16 Moore's Law doublings

= 24 years

Now, RSA-768 vs RSA-1024. Let's compute the formula for n = 768 and n = 1024.

n = 768:

$$e^{2*768^{\frac{1}{3}}*((\log_2 768))^{\frac{2}{3}}} = 7.794344... \times 10^{35}$$

n = 1024:

$$e^{2*1024^{\frac{1}{3}}*((\log_2 1024))^{\frac{2}{3}}} = 4.328252... \times 10^{40}$$

Ratio: approx 55530.67904...

Ratio: approx 55530.67904... Now, log₂ 55530.67904... = 15.76 So we need 15.76 Moore's Law doublings

= 23.64 years

Bottom line: move from RSA-1024 to RSA-2048 first

- Alice and Bob live in different countries, exchange key K face-to-face, want to exchange a sequence of messages in the future.
 - At any point in time, Alice's computer can be seized, giving an attacker all the information stored on her computer at the time of seizure.
- Let m₁, m₂, m₃, ... be the sequence of messages Alice and Bob exchange.
- How can we use K to secure each m_i, such that if Alice's computer is seized at time t, none of the m₁, m₂, ... m_{t-1} are compromised?

- At any point in time, we want Alice's machine to contain only information necessary for encrypting future messages, and not anything that could be used to decrypt past messages.
- So, some things that don't work:
 - Encrypt each m_i with K directly (would have to keep K around, and when the computer is seized it exposes all prior m_i).
 - Encrypt each m_i with $K_i = H(i \parallel K)$ where H is a hash function (would still have to keep K around, and once seized would reveal past messages.

- One possible approach:
 - Let $K_0 = K$.
 - Let $K_i = H(K_{i-1})$
 - Store only the K_i for the next message to send.
 - Encrypt m_i with K_i .
 - Once m_i is sent, compute K_{i+1} and destroy K_i .
- Other solutions are possible...

Modifying SSL/TLS to support session restart

- Proposal: Whenever a session is established, the premaster secret is used to derive a session identifier that can be retained by the client and server.
- This session identifier is then cached along w/ the original pre-master secret, and the client can request restart by sending the identifier along with the rest of the session details (including the ciphersuite).

• How can an attacker exploit this protocol modification?

- An attacker can play man-in-the-middle between a client requesting restart and the server
- The attacker can't change the pre-master secret, but because the client sends the session details to the server, the adversary can change any of those details.
 - In particular, the adversary can change the ciphersuite, making it something easier
- This is called a *downgrade attack* it causes the client and server to use a ciphersuite that neither would negotiate to absent interference from the adversary