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Distributed Key Management 
and 
Cryptographic Agility 



Overview 

• Distributed Key Lifecycle 
– Problem statement and status quo 
– Distributed Key Manager 
– Typical application scenario and architecture 

• Hardware Rooted Key Management 
– How to use TPMs for key management 
– TPM Key hierarchy 

• Diving into Cryptographic Theory 
– Security Definitions 
– Cryptographic Agility 
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Distributed Key Management 
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Key Lifecycle Model 

• Creation. A key object is created on at least one replica, but 
its attributes (e.g., key value) are not set.  

• Initialization. The key object has all its core key attributes 
set on at least one replica.  

• Full Distribution. An initialized key is available on all 
replicas. 

• Active. An initialized key is available for cryptographic 
operations on at least one replica.  

• Inactive. An initialized key is available for some 
cryptographic operations on all replicas (e.g., decrypt, 
only).  

• Termination. An initialized key is permanently deleted from 
all replicas.  
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Key State Transitions 
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DKM Problem Statement 

• No cross-user and cross-machine data protection 
– Windows Data Protection API (DPAPI) is single-user, single-machine. 
– KeyCzar and PKCS#11 uses local keys; no distribution mechanism. 

• Engineering problem 
– Ad-hoc key management groups (protection siloes) 
– Scalability & Availability (10Ks of machines) 
– Geo-redundancy (multiple data centers) 
– Key lifecycle management (automation) 

• Cryptography problem 
– Protect arbitrary data (broad applicability) 
– Use existing algorithms (e.g. AES, HMAC-SHA2) 
– Automatically update group keys (key rollover) 
– Crypto agile (algorithm and key length changes) 
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DKM Architecture 
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DKM Approach 

• Active Directory Approach 
– Key storage is straightforward 

• Store group keys in AD objects 

• Protect keys with AD object ACLs 

• AD security groups correspond to principals / groups 

– Rely on Active Directory replication for high availability 

– Network transport is secure (LDAP with Kerberos) 

• DKM provides 
– Auto key update mechanism 

– Multiple groups and multiple keys per group 

– Cryptographic policy per domain and per group 

– Crypto agility 
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Walkthrough: DKM in Hosted E-Mail 

• Scenario: 

– Hosting mail for multiple tenants in a datacenter 

– Product supports message aggregation from other 
providers for users with multiple email accounts 

• User signs in once 

• E-Mail Server fetches and aggregates mail 

– Tenant Admins must be able to perform 
Administrative tasks 

• But should NOT be able to read user credentials 
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Walkthrough:  DKM in Hosted E-Mail 
Hosted E-Mail
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DKM in Hosted E-Mail 
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DKM-TPM Motivation 

Secret Protection Technology: 

 

 

 

 

 

 

 

 

 

 

• Approach sits between a pure HSM solution and a full software solution. 
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DKM-TPM Key Hierarchy  
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DKM-TPM Roles 

1. Master (Root of Trust) 
• Root of Trust for TPM public keys 
• Role assignment to TPM public keys 
• Push to Stores 

2. Store (Repositories) 
• DKM repository (keys, policies, and metadata) 
• DKM Responder 
• Responds to requests from Masters, Stores, and Nodes 

3. Node (Application servers) 
• Cryptographic operations with DKM keys 
• Client API 
• Sends requests to Stores 



DKM-TPM Roles 
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Cryptosystem Security Definitions 

• Probabilistic Polynomial-Time (PPT) adversaries 

– Probabilistic randomized algorithm that gives the 
correct answer with > ½ probability. 

• Random Oracle Model (RO or ROM) 

– Black box with a stateful uniform random response 
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y  {0, 1}* 
If (x in A) y  Fetch(A,x) 
Else Store(x,y) in A 
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Attack Game 

• Encryption scheme security definitions 
– IND-R: Indistinguishability from Random 
– IND-CPA: Indistinguishability under Chosen Plaintext Attack (a.k.a. 

semantic security) 
– IND-CCA: Indistinguishability under Chosen Ciphertext Attack 

• IND-CPA ⊂ IND-CCA 
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b  {0, 1} 
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Ciphertext Attacks 

• IND-CCA2: Indistinguishability under adaptive 
chosen ciphertext attack 
– Decryption Oracle access (non-trivial) 

• Non-adaptive 
– Query the decryption oracle till the challenge 

ciphertext is received 

• Adaptive 
– Continuous queries to the oracle (max q queries) 

• IND-CPA  ⊂  IND-CCA  ⊂  IND-CCA2 
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IND-CCA/CCA2 Game 
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Cryptographic Agility 
• Cryptographic primitives as sets: 

– PRF = {F : F is a secure pseudorandom function} 

– AE = {F : F is a secure authenticated encryption scheme} 

• Assume F1 and F2 have the same key space and length 

• Informal Definition: A primitive Π is agile if any F1, F2 ∈ 
Π can securely use the same key. 
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Pseudo Random Function Agility 

Facts 

• PRF: F is a PRF if no efficient adversary can distinguish F(K,.) from a random 
function. 

• F1(K1,x) and F2(K2,x) are not distinguishable from a pair of random functions. 
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• Definition: A set {F1,F2} is agile if F1(K,x) 
and F2(K,x) are not distinguishable from a 
pair of random functions. 

 

• Question: Are PRFs agile? 

– Yes, if every {F1,F2} is agile. 

• Answer: No. 

– Example: F2(K,x) = NOT (F1(K,x)) 

• Now, what? 



Agility in Practice 
• Certain primitives are agile: collision-resistant hash functions 

• Strong agility is achievable in practice: Authenticated Encryption 
– Don’t use the key directly in the encryption algorithm <ae> 

– Use a derived subkey in <ae> 
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⊥ (x,F1(K,x)) 

F1 F2 

⊥ (x,F1(K,x)) 

K 
 • PRF-based security for Authenticated 

Encryption: CCM, GCM, etc. 
– Pick a PRF from a small agile set 

• Encryption of M with K, with PRF 
– Kae = PRF(K,<ae>) 

– C = E(Kae, M) 

• Decryption 
– Kae = PRF(K,<ae>) 

– M = D(Kae, C) 


