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The wiretap channel: “In the beginning” 

Key (K1) 
Key (K2) 

Eavesdropper 

Plaintext 

 (P) 

Noisy insecure 

channel 
Encrypt Decrypt 

The Sender 

Alice 
The Receiver 

Bob 

Plaintext 

(P) 

Message sent is: 

C= EK1(P) 

Decrypted as: 

P=DK2(C) 

P is called plaintext. 

C is called ciphertext. 

Symmetric Key: K1=K2 

Public Key: K1 K2 

K1 is publicly known 

K2 is Bob’s secret 
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Cryptography and adversaries 

• Cryptography is computing in the presence of an adversary. 

• What do you want to protect? 

• Against who?  

• Under what circumstances? 

• An adversary is characterized by: 

– Talent 

– Access to information 

• Probable plaintext attacks. 

• Known plaintext/ciphertext attacks. 

• Chosen plaintext attacks. 

• Adaptive interactive chosen plaintext attacks (oracle model). 

– Computational resources 
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Computational strength of adversary 

• Infinite - Perfect Security 

– Information Theoretic 

– Doesn’t depend on computing resources or time available 

• Polynomial 

– Asymptotic measure of computing power 

– Indicative but not dispositive 

• Realistic 

– The actual computing resources under known or suspected attacks. 

– This is us, low brow. 
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Symmetric ciphers 

• Encryption and Decryption use the same key. 

– The transformations are simple and fast enough for practical 

implementation and use. 

– Two major types:  

• Stream ciphers: bit at a time  

• Block ciphers: n bits  n bits 

– Examples: DES, AES, RC4, A5, Enigma, SIGABA, etc. 

Key (k) 

Ciphertext (C) Encrypt  

Ek(P) 
Plaintext (P) 

Key (k) 

Plaintext (P) 
Decrypt  

Dk(P) 
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Cipher Requirements 

• WW II 

– Universally available (simple, light instrumentation) – interoperability. 

– Compact, rugged: easy for people (soldiers) to use. 

– Kerckhoff’s Principle: Security in key only: We assume that the 

attacker knows the complete details of the cryptographic algorithm 

and implementation 

– Adversary has access to some corresponding plain and cipher-text 

• Now  

– Adversary has access to unlimited cipher-text and lots of chosen 

text. 

– Implementation in digital devices (power/speed) paramount. 

– Easy for computers to use. 

– Resistant to ridiculous amount of computing power. 



JLM 20110204 7 

Practical attacks 

• Exhaustive search of theoretical key space. 

• Exhaustive search of actual key space as restricted by 

poor practice. 

• Exploiting bad key management or storage. 

• Stealing keys. 

• Exploiting encryption errors. 

• Spoofing (ATM PIN). 

• Leaking due to size, position, language choice, 

frequency, inter-symbol transitions, timing differences, 

side channels.. 
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Mathematical view of block ciphers 

• E(k, x)= y. 

• E: GF(2)mxGF(2)n       GF(2)n, often m=n. 

• E(k,x) is a bijection in second variable. 

• E(k, ·) in SN, N= 2n.  In other words, k selects a 

permutation from SN.  If n=64, N=264 and |SN|= 264! which 

is enormous 

• Each bit position is a balanced boolean function. 

• E (and its inverse) should be easy to compute if you 

know k but not if you don’t. 
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What is a block cipher 
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Iterated key dependant 

transformations  

• Building an unpredictable or random permutation is easy if you’re 

allowed to use enormous keys. 

• Each bit position must be a horribly complicated function of key and 

input to defeat cryptanalysis 

• Lots of constraints must be satisfied (bijection, balance, …) 

• How do we do this? 

• Use a simple (key dependant) transformation (called a “round”) and 

apply it many (~n) times. 

• The simple transformation must change for each round otherwise 
Ek(x)= sk(x)r which is not safe. 

• Easiest way to do this is to make the simple transformation depend on 

different portions of the key in each round.  This is called a “key 

schedule”. 
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Block ciphers -review 

•  Complicated keyed invertible functions constructed 

from iterated elementary rounds. 

Characteristics: 

• Fast 

• Data encrypted in fixed “block sizes” (64,128,256 bit 

blocks are common). 

• Key and message bits non-linearly mixed in cipher-

text 
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     f 

Horst Feistel to the rescue! 

F(Ki,X)= non-linear function 

ki 

Graphic courtesy of Josh Benaloh 

Note: If si(L,R)= (L f(E(R) ki), R) and t(L, R)= (R, L), this 

round  is tsi(L, R). 
 

To invert: swap halves and apply same transform with same key: 

sittsi(L,R)= (L,R). 
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Iterated Feistel Cipher 

Plaintext 

Ciphertext 

r Feistel 

Rounds 

k1 

k2 

kr 

Key Schedule 

Key 
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Data Encryption Standard 

• Federal History 

• 1972 study. 

• RFP: 5/73, 8/74. 

• NSA: S-Box influence, key size reduction. 

• Published in Federal Register: 3/75. 

• FIPS 46:  January, 1976. 

• DES 
• Descendant of Feistel’s Lucifer. 

• Designers: Horst Feistel, Walter Tuchman, Don Coppersmith, 

Alan Konheim, Edna Grossman, Bill Notz, Lynn Smith, and Bryant 

Tuckerman. 

• Brute Force Cracking 
• EFS DES Cracker: $250K, 1998. 1,536 custom chips. Can brute 

force a DES key in days. 

• Deep Crack and distributed net break a DES key in 22.25 hours. 
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DES Described Algebraically 

• si(L,R)= (L f(E(R) ki), R)  

• ki is 48 bit sub-key for round i. 

• f(x)= P(S1S2S3 … S8(x)).  Each S –box operates on 6 bit 

quantities and outputs 4 bit quantities.   

• P permutes the resulting 32 output bits. 
• t(L, R)= (R, L). 

• Each round (except last) is  tsi.  

• Note that tt= t2= 1= si si = si
2. 

• Full DES is:  DESK(x)= IP-1 s16t ... s3t s2ts1 IP(x). 

• So its inverse is:  DESK
-1(x)= IP-1 s1t ... s14ts15ts16 IP(x). 

JLM 20110204 



19 

DES Key Schedule 

Key schedule round 1 
   10 51 34 60 49 17 33 57  2  9 19 42  

    3 35 26 25 44 58 59  1 36 27 18 41  

   22 28 39 54 37  4 47 30  5 53 23 29 

   61 21 38 63 15 20 45 14 13 62 55 31  

  

 

Key schedule round 2 
    2 43 26 52 41  9 25 49 59  1 11 34  

   60 27 18 17 36 50 51 58 57 19 10 33  

   14 20 31 46 29 63 39 22 28 45 15 21 

   53 13 30 55  7 12 37  6  5 54 47 23  

  

JLM 20110204 
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What can go wrong 

• Key space is too small 

• Ek(x)= rr rr-1 … r1, all linear in the key bits.  

– Resulting transformation is linear 

– It’s easy to solve the resulting linear equations 

• Ek(x) decomposible into transformations with independent 

key bits 

– Ek1||k2(x)= E’k1(x)||E’’k2(x) 

• Ek(x) should “look” like a random permutation and the 

effect of k should “look” like it picks the random 

permutations unpredictibly 
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DES Attacks: Exhaustive Search 

• Symmetry DES(k 1, x 1)=DES(k, x) 1 

• Suppose we know plain/cipher text pair (p,c) 
for(k=0;k<256;k++) { 

 if(DES(k,p)==c) { 

  printf(“Key is %x\n”, k); 

  break; 

  } 

} 

• Expected number of trials (if k was chosen at random) 

before success: 255 
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Random mappings 

• Let Fn denote all functions (mappings) from a finite domain of size n to a 
finite co-domain of size n 

• Every mapping is equally likely to be chosen, |Fn| = nn  the probability of 
choosing a particular mapping is 1/ nn 

• Example.  f : {1, 2, …, 13}  {1, 2, …, 13} 

 

 

 

 

 

• As n tends to infinity, the following are expectations of some parameters 
associated with a random point in {1, 2, …, n} and a random function 
from Fn: (i) tail length: √(n/8) (ii) cycle length: √(  n/8) (iii) rho-length: √ ( 
n/2). 

Graphic by Maithili Narasimha 

 



Time memory trade off (“TMTO”) 

• If we can pre-compute a table of (k, Ek(x)) for a fixed x, 

then given corresponding (x,c) we can find the key in 

O(1) time. 

• Trying random keys takes O(N) time (where N, usually, 

2k, is the number of possible keys) 

• Can we balance “memory” and “time” resources? 

• It is not a 50-50 proposition.  Hellman showed we could 

cut the search time to O(N(1/2)) by pre-computing and 

storing O(N(1/2)) values. 

23 

JLM 20110204 



24 

Group theory and DES 

• What is the minimum length of a product of involutions 

from a fixed set required to generate Sn? 

• What does this have to do with the number of rounds in 

a cipher? 

• How does this affect the increased security by 

“enciphering twice” with different keys? 

• Theorem (Coppersmith and Grossman): If sK(L,R)= 

(L f(E(R) K , R), <t, sK>= AN, N= 2n. 

• Note (Netto): If a and b are chosen at random from Sn 

there is a good chance (~¾) that <a,b>= An or Sn . 
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Weak Keys 

• DES has: 

– Four weak keys k for which Ek(Ek(m))= m. 

– Twelve semi-weak keys which come in pairs k1 and k2 and are 

such that Ek1(Ek2(m))= m.  

 

– Weak keys are due to “key schedule” algorithm 

• How they arise: 

– A 28 bit quantity has potential symmetries of period 1, 2, 4, 7, and 

14. 

– Suppose each of C0 and D0 has a symmetry of period 1; for 

example C0 =0x0000000, D0= 0x1111111.  We can easily figure 

out a master key (K) that produces such a C0 and D0. 
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Feistel Ciphers defeat simple attacks 

• After 4 to 6 rounds to get flat statistics. 

• Parallel system attack 
– Solve for key bits or constrain key bits 

ki(1)= a11(K)p1 c1 + a12(K)p2 c1 +…+ a1N(K)pncn 

 …            …            …           … 

ki(m)= am1(K)p1 c1 + am2(K)p2 c1 +…+ amN(K)pncn 

• Solving Linear equations for coefficients determining cipher 
c1= f11(K)p1 + f12(K)p2 +…+ f1n(K)pn 

c2= f21(K)p1 + f22(K)p2 +…+ f2n(K)pn 

 …            …            …           … 

cm= fm1(K)p1 + fm2(K)p2 +…+ fmn(K)pn 

• Even a weak round function can yield a strong Feistel 
cipher if iterated sufficiently. 
– Provided it’s non-linear 

JLM 20110204 
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The sophisticated attacks 

• Exhaustive search 

• Differential cryptanalysis 

– Differentials 

• Linear Cryptanalysis 

– Linear approximations 

JLM 20110204 
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Polynomial representation 

• If f is boolean function on n variables x1, x2, …, xn and a=(a1, a2, …, an ) 

then f(x1, x2, …, xn)= Sag(a) x1
a1 x2

a2 …, xn
an  where g(a) = Sb<a f(b1, b2, …, 

bn). Here b<a means the binary representation of b does not have a 1 unless 

there is a corresponding 1 in the representation of a. 

JLM 20110204 

x1 x2 x3 f(x1, x2, x3) 

0 0 0 1 

1 0 0 0 

0 1 0 1 

1 1 0 0 

0 0 1 1 

1 0 1 0 

0 1 1 0 

1 1 1 1 

• g(0,0,0)= f(0,0,0)=1 

• g(0,1,0)=f(0,0,0)+f(0,1,0)=0 

• g(1,0,0)=f(0,0,0)+f(1,0,0)=1 

• g(1,1,0)=f(0,0,0)+f(1,0,0) )+f(0,1,0))+f(1,1,0)=0  

• g(0,0,1)=f(0,0,0)+f(0,0,1)=0 

• g(0,1,1)=f(0,0,0)+f(0,0,1) +f(0,1,0)+f(0,1,1)=1 

• g(0,0,1)= g(1,0,1)= g(0,1,1)= g(1,1,1)= 0 

 

• f(x1, x2, x3)= 1+x1+x2 x3 
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S Boxes as Polynomials over GF(2) 

1,1: 
56+4+35+2+26+25+246+245+236+2356+16+15+156+14+146+145+13+1
35+134+1346+1345+13456+125+1256+1245+123+12356+1234+12346 

  

1,2: 
C+6+5+4+45+456+36+35+34+346+26+25+24+246+2456+23+236+235+2
34+2346+1+15+156+134+13456+12+126+1256+124+1246+1245+12456
+123+1236+1235+12356+1234+12346  

  

1,3: 
C+6+56+46+45+3+35+356+346+3456+2+26+24+246+245+236+16+15+1
45+13+1356+134+13456+12+126+125+12456+123+1236+1235+12356+
1234+12346  

  

1,4: 
C+6+5+456+3+34+346+345+2+23+234+1+15+14+146+135+134+1346+1
345+1256+124+1246+1245+123+12356+1234+12346  

 

Legend: C+6+56+46 means 1 x6 x5x6 x4x6 
  

JLM 20110204 



JLM 20110204 30 

Differential Cryptanalysis 

 

• Let E and E* be inputs to a cipher and C and C* be corresponding 

outputs with E E*=E’ and C C*=C’. 

• The notation E’  C’, p means the “input xor”, E’ produces the “output 

xor” C’ with probability p.  Not all input/output xors and possible and 

the distribution is uneven.  This can be used to find keys. E’  C’, p is 

called a characteristic. 

• Notation: Dj(x’,y’)= {u: Sj(u) Sj(u x’)= y’}. kj x Dj(x’,y’)= tj(x,x’,y’).   

 test(Ej, Ej*,Cj’)= tj(Ej,Ej  Ej*’, Cj’) 

• For the characteristic 0x34d in S-box 1 from inputs1 35=34,           

D1(34,d)= {06, 10, 16, 1c, 22, 24, 28, 32} and kj {7, 10, 17, 1d,  23, 25, 

29, 33}= 1 D1(34,d) 
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Simplified DES 

• Li+1= Ri, each 6 bits. 

• Ri+1= Li f(Ri,Ki) 

• K is 9 bits. 

• E(x)=  (x1 x2 x4 x3 x4 x3 x5 x6) 

• S1 

– 101 010 001 110 011 100 111 000 

– 001 100 110 010 000 111 101 011 

• S2 

– 100 000 110 101 111 001 011 010 

– 101 011 000 111 110 010 001 100 

• Ki is 8 bits of K starting at ith bit. 

 

 

L0R0 

L4 R4 

F 

F  

F  

F  

L0 

L1 

L2 

L3 

R0 

R1 

R2 

R3 

L4 R4 
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Differential Cryptanalysis – 3 rounds 

• R4 R1= f(k3,R2).            ………. (1) 

• L4 L3=f (k4,R3).            ………. (2) 

• R4=R3, L2=R1, L3=R2. 

 

• 1&2 L4 L3 R2 L1= f(k2,R1) f(k4,R3). 

• L3=R2 L4 L1= f(k2,R1) f(k4,R3). 

 

• L4 L1= f(k2,R1) f(k4,R3).  ……..(3) 

• L4* L1*= f(k2,R1*) f(k4,R3*). ....(4) 

• 3&4 L4
’ L1

’= 

f(k2,R1
*) f(k4,R3

*) f(k2,R1
*) f(k4,R3

*). 

• R1=R1
* L4

’ L1
’= f(k4,R3) f(k4,R3

*). 

 

 

 

 

 

 

L1 R1 

F 

F  

F  

L4 R4 

R2 

R3 

R1 L1 

L2 

L3 
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Differential Cryptanalysis – 3 rounds 

L1, R1   : 000111 011011 

L1*, R1*: 101110 011011 

L1’, R1’: 101001 000000 

 

L4, R4   : 100101 000011  

L4*, R4*: 011000 100100  

L4’, R4’: 111101 100111 

 

E(R4)   : 0000 0011 

E(R4’)  : 1010 1011 

L4’ L1’ : 111 101  101 001= 010 100. 

S1’: 1010  010(1001,0011). 

S2’: 1011  100(1100,0111). 

 

(E(R4 k4)1..4=1001|0011, k4= 1001|0011. 

(E(R4) k4)5..8= 1100|0111,k4= 1111|0100. 

 

K= 00x001101 

 

 

 

 

 

 

 

 

 

 

 

 

L1 R1 

F 

F  

F  

L4 R4 

R2 

R3 

R1 L1 

L2 

L3 
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Comments on Differential 

Cryptanalysis of full DES 

# 

Rounds 

Needed 

pairs 

Analyzed 

Pairs 

Bits 

Found 

# Char 

rounds 

Char 

prob 

S/N Chosen 

Plain 

4 23 23 42 1 1 16 24 

6 27 27 30 3 1/16 216 28 

8 215 213 30 5 1/1048

6 

15.6 216 

16 257 25 18 15 2-55.1 16 258 
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DES S-Box Design Criteria 

 

• No S-box is linear or affine function of its input. 

• Changing one bit in the input of an S-Box changes at 
least two output bits. 

• S-boxes were chosen to minimize the difference 
between the number of 1’s and 0’s when any input bit is 
held constant. 

• S(X) and S(X 001100) differ in at least 2 bits 

• S(X) S(X 11xy00) 
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1R Differential attack 

• Trial decode last round with all 

possible subkeys, see if 

differential holds. 

 

L1 R1 

F 

F  

F  

L4 R4 

R2 

Rn 

R1 L1 

L2 

Ln 

… 
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Linear Cryptanalysis 

• Basic idea: 

– Suppose ai(P) i(C)=gi(k) holds with gi, linear, for i= 1, 

2, …, m. 

– Each equation imposes a linear constraint and reduces 

key search by a factor of 2.   

– Guess (n-m-1) bits of key.  There are 2(n-m-1).  Use the 

constraints to get the remaining keys. 

 

• Can we find linear constraints in the “per round” functions 

and knit them together? 

• No!  Per Round functions do not have linear constraints. 



JLM 20110204 38 

Linear Cryptanalysis 

• Next idea  

– Can we find a(P) (C)= g(k) which holds with g, linear, 
with probability p? 

– Suppose a(P) (C)= g(k), with probability p>.5. 

– Collect a lot of plain/cipher pairs.   

– Each will “vote” for g(k)=0 or g(k)=1. 

– Pick the winner. 

 

• p= 1/2+e requires ce-2 texts (we’ll see why later). 

•  e  is called “bias”. 
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Linear Cryptanalysis Notation 

• Matsui numbers bits from right to 
left, rightmost bit is bit 0.  FIPS (and 
everyone else) goes from left to 
right starting at 1.  I will use the 
FIPS conventions.  To map Matsui 
positions to everyone else’s: 

– M(i)= 64-EE(i).  For 32 bits 
make the obvious change. 

 
• Matsui also refers to the two 

portions of the plaintext and cipher-
text as  (PH, PL), (CH, CL), we’ll stick 
with (PL, PR), (CL, CR). 

 

PL PR 

CL CR 

F 
X1 

F 

X2 

 

F 

X3  

k1 

k2 

k3 

Y1 

Y2 

Y3 
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Linear and near linear dependence  

• Here is a linear relationship over GF(2) in S5 that holds with 

probability 52/64 (from NS5(010000,1111)= 12: 

 

 

 

• X[2] Y[1] Y[2] Y[3] Y[4]=K[2] 1. 

• Sometimes written: X[2] Y[1,2,3,4]=K[2] 1. 

 

• You can find relations like this using the “Boolean Function” 

techniques we describe a little later 

 

• After applying P, this becomes 

X[17] F(X,K)[3,8,14,25]= K[26] 1 

S5 
K[1..6] 

Y[1..4] 

X[1..6] 
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Linear Cryptanalysis of 3 round DES 

X[17] Y[3,8,14,25]= K[26] 1,  p= 52/64 

 

• Round 1 

X1[17] Y1[3,8,14,25]= K1[26] 1 

PR[17] PL[3,8,14,25] R1[3,8,14,25]=  

        K1[26] 1 

 

• Round 3 

X3[17] Y3[3,8,14,25]= K3[26] 1 

R1[3,8,14,25] CL[3,8,14,25] CR[17]=  

        K3[26] 1 

 

• Adding the two get: 

PR[17] PL[3,8,14,25] CL[3,8,14,25] CR[17]= 

        K1[26] K3[26] 

 

Thus holds with p= (52/64)2+(12/64)2=.66 

 

PL PR 

CL CR 

F 
X1, 17 

F 
X2  

F 
X3  

k1 

k2 

k3 

Y1,  

3,8,14,25 

Y2 

Y3 

L1 

L2 

L0 R0 

R1 

R2 
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Piling up Lemma 

• Let Xi  (1cicn) be independent random variables whose 

values are 0 with probability pi.  Then the probability that 

X1 X2  ... Xn= 0 is  

½+2n-1 P[1,n] (pi-1/2) 

 

Proof:   

By induction on n.  It’s tautological for n=1.   

Suppose Pr[X1 X2  ... Xn-1= 0]= q= ½+2n-2 P[1,n-1] (pi-1/2).   

Then Pr[X1 X2  ... Xn= 0]= qpn +(1-q)(1-pn)= ½+2n-1 P[1,n] 

(pi-1/2) as claimed. 
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Linear Cryptanalysis of full DES 

• Can be accomplished with ~243 known plaintexts, using a14 round 
approximation 

– For each 48 bit last round sub-key, decrypt cipher-text 
backwards across last round for all sample cipher-texts 

– Increment count for all sub-keys whose linear expression holds 
true to the penultimate round 

– This is done for the first and last round yielding 13 key bits each 
(total: 26)  

 

• Here they are: 

PR[8,14,25] CL[3,8,14,25] CR[17]= K1[26] K3[4] K4[26] K6[26]  
         K7[4] K8[26] K10[26] K11[4] K12[26] K14[26]  

with probability ½ -1.19x2-21 

 

CR[8,14,25] PL[3,8,14,25] PR[17]= K13[26] K12[24] K11[26]  
         K9[26] K8[24] K7[26] K5[26] K4[4] K3[26] K1 [26]  

with probability ½ -1.19x2-21 
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Estimating cost of Linear attack 

• Let X be the random variable representing the number of “1’s” resulting 

from an approximate linear relation of bias q. 

• Linear attack is successful if for n trials, X>N/2 

• What is Pr(X>N/2)?  X is normally distributed as X~N(m, s), where 

m=N/2+Nq and s= N1/2/2.  N~O(q-2) 
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Full Linear Attack on DES 

• Linear cryptanalysis can be accomplished with ~243 known 
plaintexts, using a more sophisticated estimation 14 round 
approximation 

– For each 48 bit last round sub-key, decrypt cipher-text 
backwards across last round for all sample cipher-texts 

– Increment count for all sub-keys whose linear expression holds 
true to the penultimate round 

– This is done for the first and last round yielding 13 key bits each 
(total: 26)  

 
• Here they are: 

PR[8,14,25] CL[3,8,14,25] CR[17]= 
K1[26] K3[4] K4[26] K6[26] K7[4] K8[26] 

K10[26] K11[4] K12[26] K14[26]  

with probability ½ -1.19x2-21 

 

CR[8,14,25] PL[3,8,14,25] PR[17]= K13[26] K12[24] K11[26] K9[26] K8[24] 
K7[26] K5[26] K4[4] K3[26] K1 [26]  

with probability ½ -1.19x2-21 
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FEAL-4 Cipher 

• Four round Feistel cipher with a 64-

bit block and 64-bit key  

• Plaintext: P, Cipher-text: C 

• Round function: F 

• 32-bit sub-keys: K0, K1, …, K5 

• Most important failed cipher:  

showed the power of differential 

cryptanalysis and linear 

cryptanalysis 

 

Slide adapted from Mark Stamp 
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FEAL-4 Round Function 

• G0(a,b) = (a+b (mod 256))<<< 2 

• G1(a,b) = (a+b+1 (mod 256))<<< 2 

• Where “<<<”  is left cyclic shift 

(rotation) 

• Then F(x0,x1,x2,x3) = (y0,y1,y2,y3) 

where 

1. y1 = G1(x0x1, x2x3)   

2. y0 = G0(x0, y1)  

3. y2 = G0(y1, x2x3)  

4. y3 = G1(y2, x3)  

Diagram from Mark Stamp 
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FEAL-4 Key Schedule 

• FK(a0||a1||a2||a3, b0||b1||b2||b3)= c0||c1||c2||c3 by 

– d1= a0a1 

– d2= a2a3 

– c1= G1(d1,a2b0) 

– c2= G0(d2,c1b1) 

– c0= G0(a0,c1b2) 

– c3= G1(a3,c2b3) 

• K-2= 0 

• K-1= KL 

• K0= KR 

• Ki= fK(Ki-2, Ki-1Ki-3) 

 

 Slide adapted from Mark Stamp 
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FEAL-4 Differential Attack 

• If A0A1 = 0 then F(A0) = F(A1), p=1. 

• If A0A1= 0x80800000 then F(A0)F(A1)= 

0x02000000, p=1 

• Choose (P0, P1):  

•        P0P1=0x8080000080800000  

• P= P0P1, C= C0C1 

• L= 0x02000000Z, Y= 0x80800000  X 

• For C= (L,R) we have Y = LR 

• Solve for sub-key K3: Z = 0x02000000L 

• Compute Y0= L0R0, Y1= L1R1 

• Guess K3 and compute putative Z0, Z1 

• Note: Zi= F(YiK3) 

• Compare true Z to putative Z  

 Slide adapted from Mark Stamp 49 
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FEAL-4 Differential Attack 

• Using 4 chosen plaintext pairs 

– Work is of order 232  

– Expect one K3 to survive 

• Can reduce work to about 217 

– For 32-bit word A=(a0,a1,a2,a3), define  

 M(A) = (z, a0a1, a2a3, z), where z is all-zero byte 

– For all possible A=(z, a0, a1, z), compute 

     Q0 = F(M(Y0)A) and Q1 = F(M(Y1)A)  

– Can be used to find 16 bits of K3  

• When A = M(K3), we have Q0Q18…23 = Z8…23 where Xi…j is bits i 

thru j of X.  Can recover K3 with about 217 work 

• Once K3 is known, can successively recover K2,K1,K0 and finally K4,K5 

• Second characteristic: 0xa200 8000   0x2280 8000 
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FEAL-4 Differential Attack 

• Primary for K3 • Secondary for K3 

• Assuming only one chosen plaintext pair 
Slide adapted from Mark Stamp 
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FEAL-4 Linear Attack 

• X = X[0], …, X[31]), Y=F(X).  Notation: X[i,j]= X[i]X[j] 

• (ab)[7] = (a+b(mod 256))[7], so  

• G0(a,b)[5] = (ab)[7]  

• (ab1)[7] = (a+b+1(mod 256))[7], so  

• G1(a,b)[5] = (ab1)[7] 

• Since y1= G1(x0x1, x2x3), 

• Y[13]=y1[5]=x0[7]x1[7]x2[7]x3[7]1=X[7,15,23,31]1 

• Since y0=G0(x0, y1), Y[5]=y0[5]=y1[7]x0[7] =Y[15]X[7] 

• Since y2=G0(y1, x2x3),  

     Y[21]=y2[5]=y1[7]x2[7]x3[7] = Y[15]X[23,31] 

• Since y3=G1(y2,x3),  

     Y[29]=y3[5]=y2[7]x3[7]1= Y[23]X[31]1 
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Y X 

Y=F(X) 

•  Y=(y0, y1, y2, y3) 
•  X=(x0, x1, x2, x3) 

 

F 



FEAL-4 Linear Attack 
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PL, PR 

X0 

X1 

X3 

R0 
L0 

L1 

L2 

L3 

R1 

R2 
X2 

R3 

Y0 

Y1 

Y2 

Y3 

JLM 20110204 CL, CR 

• L0= PL, R0= PLPR 

• Y0= F(R0K0), R1= L0Y0, L1= R0 

• Y1= F(R1K1), R2= L1Y1, L2= R1 

• Y2= F(R2K2), R3= L2Y2, L3= R2 

• Y3= F(R3K3) 

• CL= L3Y3K4, CR= CLR3K5 

• CL= L1Y1Y3K4= PLPRY1Y3K4 

• So CLPLPRK4= Y1Y3 

• CLPLPRK4 =F(R1K1)F(R3K3) 

• CLPLPRK4 =F(L0Y0K1)F(R3K3) 

• Since R3 = CLCRK5, and L0= PL 

• CLPLPRK4 = F(PLY0K1)F(CLCRK5K3) 

 

 

 

 

 

 

 

 

 

 

 



FEAL-4 Linear Attack 

• We’ve show 

1. CLPLPRK4 = F(PLY0K1)F(CLCRK5K3),  

2. Y0= F(R0K0)=F(PLPRK0)  

3. Y[13]=X[7,15,23,31]1 

4. Y[5] =Y[15]X[7] 

5. Y[21]=Y[15]X[23,31] 

6. Y[29]Y[23] = X[31]1 

• From 1, 

7. (CLPLPRK4)[23,29]= F(PLY0K1)[23,29]F(CLCRK5K3)[23,29] 

• From 6,  

8. F(PLY0K1)[23,29]= (PLY0K1)[31]1 

9. F(CLCRK5K3)[23,29]= (CLCRK5K3)[31]1 

• Adding 8 and 9, 

10. (CLPLPRK4)[23,29]= (PLY0K1)[31](CLCRK5K3)[31] 
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FEAL-4 Linear Attack 

• From the last slide, 

• (CLPLPRK4)[23,29]= (PLY0K1)[31](CLCRK5K3)[31], so 

• K4[23,29](K1K5K3)[31]= 

     (CLPLPR)[23,29]PL[31]Y0[31](CLCR)[31]= 

     (CLPLPR)[23,29]PL[31](CLCR)[31] F(PLPRK0)[31] 

• The left hand side is a constant for fixed key. 

• The attack consists of guessing K0 and computing 

 h(P,C)= (CLPLPR)[23,29]PL[31](CLCR)[31]F(PLPRK0)[31] 

     for a number of corresponding (PL, PR), (CL, CR) 

• If the guessed K0 is right, h(P,C) will have the same value for each 

corresponding pair of plain-text and cipher-text. 
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FEAL-4 Linear Attack - Improvement 

• Possible to improve on linear attack 

– Put K0’= ((K0)0,…,7(K0)8,…,15, (K0)16,…,23(K0)24,…,31) 

– Consider reduced cipher to get a new relation 

– h’(P,C)= 

(CLPLPR)[5,13,21]PL[15](CLCR)[15]F(PLPRK0)[15] 

– h’(P,C) depends only on bits 0,9,…,15,17,…,23  of K0 

– Find these 12 bits of K0 first, then the remaining 20 can be found 

using similar approximations and exhaustive search. 
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DESX and whitening 

 
 

 

 

 

• Attacks like differential and linear cryptanalysis are easier 

since we can direct observe the input to the first round 

and output of the last round directly. 

 

• Rivest and Killian:   

 

• DESX(k1,k2,k3,x)= k3DES(k1, k2x) 

 

• Strategy adopted by almost all the AES participants. 

 

 

 

 
JLM 20110204 



58 

AES History 

• Call for DES successor 1/97 

• Nine Submissions 

– CAST-256, CRYPTON, DEAL, DFC (cipher), E2, FROG, HPC, 
LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, 
and Twofish.  

• Finalists 

– MARS, RC6, Rijndael, Serpent, and Twofish  

• And  

• the winner is Rijndael: FIPS 197 published 11/2001 

 

• Good References:   

– Daemen and Rijimen, The Design of Rijndael.  Springer.  

– Ferguson et. al., The Twofish Encryption Algorithm.  Wiley. 

– Tons of contemporaneous material, thesis, etc.  Almost all on 
WWW. 
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AES 

Plaintext 

Ciphertext 

r Rounds 

k1 

k2 

kr 

Key Schedule 

Key 
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AES Requirements 

• 128, 192, 256 bit keys 

• Algorithms will be judged on the following factors:  

– Actual security of the algorithm compared to other submitted algorithms 

(at the same key and block size).  

– The extent to which the algorithm output is indistinguishable from a 

random permutation on the input block.  

– Soundness of the mathematical basis for the algorithm’s security.  

– Other security factors raised by the public during the evaluation 

process, including any attacks which demonstrate that the actual 

security of the algorithm is less than the strength claimed by the 

submitter.  

– Claimed attacks will be evaluated for practicality.  
• Key agility (NSA): “Two blocks encrypted with two different keys 

should not take much more time than two blocks encrypted with the 

same key. 
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End 
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