Block Ciphers

John Manferdelli imanfer@microsoft.com JohnManferdelli@hotmail.com

© 2004-2011, John L. Manferdelli.
This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only

The wiretap channel: "In the beginning"

The Sender
Alice

Message sent is:

$$
\mathrm{C}=\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})
$$

Decrypted as:
$\mathrm{P}=\mathrm{D}_{\mathrm{K} 2}(\mathrm{C})$
P is called plaintext.
C is called ciphertext.

The Receiver
Bob

Key (K_{2})

Symmetric Key: $\mathrm{K}_{1}=\mathrm{K}_{2}$ Public Key: $\mathrm{K}_{1} \neq \mathrm{K}_{2}$ K_{1} is publicly known
K_{2} is Bob's secret

Cryptography and adversaries

- Cryptography is computing in the presence of an adversary.
- What do you want to protect?
- Against who?
- Under what circumstances?
- An adversary is characterized by:
- Talent
- Access to information
- Probable plaintext attacks.
- Known plaintext/ciphertext attacks.
- Chosen plaintext attacks.
- Adaptive interactive chosen plaintext attacks (oracle model).
- Computational resources

Computational strength of adversary

- Infinite - Perfect Security
- Information Theoretic
- Doesn't depend on computing resources or time available
- Polynomial
- Asymptotic measure of computing power
- Indicative but not dispositive
- Realistic
- The actual computing resources under known or suspected attacks.
- This is us, low brow.

Symmetric ciphers

- Encryption and Decryption use the same key.
- The transformations are simple and fast enough for practical implementation and use.
- Two major types:
- Stream ciphers: bit at a time
- Block ciphers: n bits $\rightarrow \mathrm{n}$ bits
- Examples: DES, AES, RC4, A5, Enigma, SIGABA, etc.

Cipher Requirements

- WW II
- Universally available (simple, light instrumentation) - interoperability.
- Compact, rugged: easy for people (soldiers) to use.
- Kerckhoff's Principle: Security in key only: We assume that the attacker knows the complete details of the cryptographic algorithm and implementation
- Adversary has access to some corresponding plain and cipher-text
- Now
- Adversary has access to unlimited cipher-text and lots of chosen text.
- Implementation in digital devices (power/speed) paramount.
- Easy for computers to use.
- Resistant to ridiculous amount of computing power.

Practical attacks

- Exhaustive search of theoretical key space.
- Exhaustive search of actual key space as restricted by poor practice.
- Exploiting bad key management or storage.
- Stealing keys.
- Exploiting encryption errors.
- Spoofing (ATM PIN).
- Leaking due to size, position, language choice, frequency, inter-symbol transitions, timing differences, side channels..

Mathematical view of block ciphers

- $E(k, x)=y$.
- $E: G F(2)^{m} x G F(2)^{n} \longrightarrow G F(2)^{n}$, often $m=n$.
- $E(k, x)$ is a bijection in second variable.
- $E(k, \cdot)$ in $S_{N}, N=2^{n}$. In other words, k selects a permutation from S_{N}. If $n=64, N=2^{64}$ and $\left|S_{N}\right|=2^{64}$! which is enormous
- Each bit position is a balanced boolean function.
- E (and its inverse) should be easy to compute if you know k but not if you don't.

What is a block cipher

Iterated key dependant transformations

- Building an unpredictable or random permutation is easy if you're allowed to use enormous keys.
- Each bit position must be a horribly complicated function of key and input to defeat cryptanalysis
- Lots of constraints must be satisfied (bijection, balance, ...)
- How do we do this?
- Use a simple (key dependant) transformation (called a "round") and apply it many ($\sim n$) times.
- The simple transformation must change for each round otherwise $E_{k}(x)=\sigma_{k}(x)^{r}$ which is not safe.
- Easiest way to do this is to make the simple transformation depend on different portions of the key in each round. This is called a "key schedule".

Block ciphers -review

- Complicated keyed invertible functions constructed from iterated elementary rounds.
Characteristics:
- Fast
- Data encrypted in fixed "block sizes" (64,128,256 bit blocks are common).
- Key and message bits non-linearly mixed in ciphertext

Horst Feistel to the rescue!

Graphic courtesy of Josh Benaloh

Note: If $\sigma_{i}(L, R)=\left(L \oplus f\left(E(R) \oplus k_{i}\right), R\right)$ and $\tau(L, R)=(R, L)$, this round is $\tau \sigma_{i}(L, R)$.

To invert: swap halves and apply same transform with same key: $\sigma_{i} \tau \tau \sigma_{i}(L, R)=(L, R)$.

Iterated Feistel Cipher

Data Encryption Standard

- Federal History
- 1972 study.
- RFP: 5/73, 8/74.
- NSA: S-Box influence, key size reduction.
- Published in Federal Register: 3/75.
- FIPS 46: January, 1976.
- DES
- Descendant of Feistel's Lucifer.
- Designers: Horst Feistel, Walter Tuchman, Don Coppersmith, Alan Konheim, Edna Grossman, Bill Notz, Lynn Smith, and Bryant Tuckerman.
- Brute Force Cracking
-EFS DES Cracker: \$250K, 1998. 1,536 custom chips. Can brute force a DES key in days.
- Deep Crack and distributed net break a DES key in 22.25 hours.

Figure 5.2. Electronic Codebook (ECB) Mode-Calculation of $f(R, K)$.

DES Described Algebraically

- $\square_{i}(L, R)=\left(L \oplus f\left(E(R) \oplus k_{i}\right), R\right)$
- k_{i} is 48 bit sub-key for round i.
- $f(x)=P\left(S_{1} S_{2} S_{3} \ldots S_{8}(x)\right)$. Each S-box operates on 6 bit quantities and outputs 4 bit quantities.
- P permutes the resulting 32 output bits.
- $\tau(\mathrm{L}, \mathrm{R})=(\mathrm{R}, \mathrm{L})$.
- Each round (except last) is $\tau \sigma_{i}$.

- Full DES is: DES $_{K}(x)=I P^{-1} \sigma_{16} \tau \operatorname{ldm}_{3} \tau \sigma_{2} \tau \sigma_{1} I P(x)$.
- So its inverse is: $\mathrm{DES}_{K}{ }^{-1}(x)=I P^{-1} \sigma_{1} \tau \mathrm{~m}_{\sigma_{14} \tau \sigma_{15} \tau \sigma_{16}} \mathrm{IP}(x)$.

DES Key Schedule

Key schedule round 1

10	51	34	60	49	17	33	57	2	9	19	42
3	35	26	25	44	58	59	1	36	27	18	41
22	28	39	54	37	4	47	30	5	53	23	29
61	21	38	63	15	20	45	14	13	62	55	31

Key schedule round 2

$$
\begin{array}{rrrrrrrrrrrr}
2 & 43 & 26 & 52 & 41 & 9 & 25 & 49 & 59 & 1 & 11 & 34 \\
60 & 27 & 18 & 17 & 36 & 50 & 51 & 58 & 57 & 19 & 10 & 33 \\
14 & 20 & 31 & 46 & 29 & 63 & 39 & 22 & 28 & 45 & 15 & 21 \\
53 & 13 & 30 & 55 & 7 & 12 & 37 & 6 & 5 & 54 & 47 & 23
\end{array}
$$

What can go wrong

- Key space is too small
- $\mathrm{E}_{\mathrm{k}}(\mathrm{x})=\rho_{\mathrm{r}} \rho_{\mathrm{r}-1} \ldots \rho_{1}$, all linear in the key bits.
- Resulting transformation is linear
- It's easy to solve the resulting linear equations
- $\mathrm{E}_{\mathrm{k}}(\mathrm{x})$ decomposible into transformations with independent key bits
- $\mathrm{E}_{\mathrm{k} 1 \mid k 2}(\mathrm{x})=\mathrm{E}_{\mathrm{k} 1}^{\prime}(\mathrm{x}) \mid \mathrm{E}^{\prime \prime}{ }_{k 2}(\mathrm{x})$
- $E_{k}(x)$ should "look" like a random permutation and the effect of k should "look" like it picks the random permutations unpredictibly

DES Attacks: Exhaustive Search

- Symmetry DES($\mathbf{k} \oplus \mathbf{1}, \mathbf{x} \oplus \mathbf{1})=\mathrm{DES}(\mathbf{k}, \mathbf{x}) \oplus \mathbf{1}$
- Suppose we know plain/cipher text pair (p,c)

```
for(k=0;k<2 56;k++) {
    if(DES(k,p)==c) {
        printf("Key is %x\n", k);
        break;
        }
    }
```

- Expected number of trials (if k was chosen at random) before success: 2^{55}

Random mappings

- Let F_{n} denote all functions (mappings) from a finite domain of size n to a finite co-domain of size n
- Every mapping is equally likely to be chosen, $\left|F_{n}\right|=n^{n}$ the probability of choosing a particular mapping is $1 / \mathrm{n}^{\mathrm{n}}$

Graphic by Maithili Narasimha

- As n tends to infinity, the following are expectations of some parameters associated with a random point in $\{1,2, \ldots, n \wp$ and a random function from \mathcal{F}_{n} : (i) tail length: $\sqrt{ }(\pi n \triangleleft 8)$ (ii) cycle length: $\sqrt{ }(\pi n \triangleleft 8)$ (iii) rho-length: $\sqrt{ }(\pi$ $n \triangleleft 2 \leftharpoondown \triangleright$

Time memory trade off ("TMTO")

- If we can pre-compute a table of $\left(k, E_{k}(x)\right)$ for a fixed x, then given corresponding (x, c) we can find the key in O(1) time.
- Trying random keys takes $\mathrm{O}(\mathrm{N})$ time (where N , usually, 2^{k}, is the number of possible keys)
- Can we balance "memory" and "time" resources?
- It is not a 50-50 proposition. Hellman showed we could cut the search time to $\mathrm{O}\left(\mathrm{N}^{(1 / 2)}\right)$ by pre-computing and storing $\mathrm{O}\left(\mathrm{N}^{(1 / 2)}\right)$ values.

Group theory and DES

- What is the minimum length of a product of involutions from a fixed set required to generate S_{n} ?
- What does this have to do with the number of rounds in a cipher?
- How does this affect the increased security by "enciphering twice" with different keys?
- Theorem (Coppersmith and Grossman): If $\sigma_{\mathrm{K}}(\mathrm{L}, \mathrm{R})=$ $\left(L \oplus f(E(R) \oplus K, R),<\tau \square_{k}>=A_{N}, N=2^{n}\right.$.
- \quad Note (Netto): If a and b are chosen at random from S_{n} there is a good chance $(\sim 3 / 4)$ that $\left\langle a, b>=A_{n}\right.$ or S_{n}.

Weak Keys

- DES has:
- Four weak keys k for which $E_{k}\left(E_{k}(m)\right)=m$.
- Twelve semi-weak keys which come in pairs k_{1} and k_{2} and are such that $E_{k 1}\left(E_{k 2}(m)\right)=m$.
- Weak keys are due to "key schedule" algorithm
- How they arise:
- A 28 bit quantity has potential symmetries of period $1,2,4,7$, and 14.
- Suppose each of C_{0} and D_{0} has a symmetry of period 1; for example $C_{0}=0 \times 0000000, D_{0}=0 \times 1111111$. We can easily figure out a master key (K) that produces such a C_{0} and D_{0}.

Feistel Ciphers defeat simple attacks

- After 4 to 6 rounds to get flat statistics.
- Parallel system attack
- Solve for key bits or constrain key bits

$$
\begin{gathered}
\mathrm{k}_{\mathrm{i}(1)}=\mathrm{a}_{11}(\mathrm{~K}) \mathrm{p}_{1} \mathrm{c}_{1}+\mathrm{a}_{12}(\mathrm{~K}) \mathrm{p}_{2} \mathrm{c}_{1}+\ldots+\mathrm{a}_{1 \mathrm{~N}}(\mathrm{~K}) \mathrm{p}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}} \\
\ldots \\
\ldots \\
\ldots
\end{gathered} \ldots \quad \ldots
$$

- Solving Linear equations for coefficients determining cipher

$$
\begin{gathered}
c_{1}=f_{11}(K) p_{1}+f_{12}(K) p_{2}+\ldots+f_{1 n}(K) p_{n} \\
c_{2}=f_{21}(K) p_{1}+f_{22}(K) p_{2}+\ldots+f_{2 n}(K) p_{n} \\
\ldots \quad \ldots \quad \ldots \quad \ldots \\
c_{m}=f_{m 1}(K) p_{1}+f_{m 2}(K) p_{2}+\ldots+f_{m n}(K) p_{n}
\end{gathered}
$$

- Even a weak round function can yield a strong Feistel cipher if iterated sufficiently.
- Provided it's non-linear

The sophisticated attacks

- Exhaustive search
- Differential cryptanalysis
- Differentials
- Linear Cryptanalysis
- Linear approximations

Polynomial representation

- If f is boolean function on n variables $x_{1}, x_{2}, \ldots, x_{n}$ and $\mathbf{a}=(a 1, a 2, \ldots$, an $)$ then $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{a} g(\mathbf{a}) x_{1}{ }^{a 1} x_{2}{ }^{a 2} \ldots, x_{n}{ }^{\text {an }}$ where $g(\mathbf{a})=\sum_{b<a} f\left(b_{1}, b_{2}, \ldots\right.$, b_{n}). Here $\mathbf{b}<\mathbf{a}$ means the binary representation of b does not have a 1 unless there is a corresponding 1 in the representation of a.
- $g(0,0,0)=f(0,0,0)=1$
- $g(0,1,0)=f(0,0,0)+f(0,1,0)=0$
- $g(1,0,0)=f(0,0,0)+f(1,0,0)=1$
- $g(1,1,0)=f(0,0,0)+f(1,0,0))+f(0,1,0))+f(1,1,0)=0$
- $g(0,0,1)=f(0,0,0)+f(0,0,1)=0$
- $g(0,1,1)=f(0,0,0)+f(0,0,1)+f(0,1,0)+f(0,1,1)=1$
- $g(0,0,1)=g(1,0,1)=g(0,1,1)=g(1,1,1)=0$
- $f\left(x_{1}, x_{2}, x_{3}\right)=1+x_{1}+x_{2} x_{3}$

\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	$\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$
0	0	0	1
1	0	0	0
0	1	0	1
1	1	0	0
0	0	1	1
1	0	1	0
0	1	1	0
1	1	1	1

S Boxes as Polynomials over GF(2)

1,1:
$56+4+35+2+26+25+246+245+236+2356+16+15+156+14+146+145+13+1$
$35+134+1346+1345+13456+125+1256+1245+123+12356+1234+12346$
1,2:
$C+6+5+4+45+456+36+35+34+346+26+25+24+246+2456+23+236+235+2$
$34+2346+1+15+156+134+13456+12+126+1256+124+1246+1245+12456$ $+123+1236+1235+12356+1234+12346$

1,3:
$C+6+56+46+45+3+35+356+346+3456+2+26+24+246+245+236+16+15+1$ $45+13+1356+134+13456+12+126+125+12456+123+1236+1235+12356+$ $1234+12346$

1, 4:
$C+6+5+456+3+34+346+345+2+23+234+1+15+14+146+135+134+1346+1$ $345+1256+124+1246+1245+123+12356+1234+12346$

Legend: $C+6+56+46$ means $1 \oplus X_{6} \oplus X_{5} X_{6} \oplus X_{4} X_{6}$

Differential Cryptanalysis

- Let E and E^{*} be inputs to a cipher and C and C^{*} be corresponding outputs with $\mathrm{E} \oplus \mathrm{E}^{*}=\mathrm{E}^{\prime}$ and $\mathrm{C} \oplus \mathrm{C}^{*}=\mathrm{C}^{\prime}$.
- The notation E' \rightarrow C", p means the "input xor", E' produces the "output xor" C^{\prime} with probability p. Not all input/output xors and possible and the distribution is uneven. This can be used to find keys. $E^{\prime} \rightarrow C^{\prime}, p$ is called a characteristic.
- Notation: $D_{j}\left(x^{\prime}, y^{\prime}\right)=\left\{u: S_{j}(u) \oplus S_{j}\left(u \oplus x^{\prime}\right)=y^{\prime}\right\} . k_{j} \in x \oplus D_{j}\left(x^{\prime}, y^{\prime}\right)=D_{j}\left(x, x^{\prime}, y^{\prime}\right)$. $\operatorname{test}\left(\mathrm{E}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}}{ }^{*}, \mathrm{C}_{\mathrm{j}}^{\prime}\right)=\tau_{\mathrm{j}}\left(\mathrm{E}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}} \oplus \mathrm{E}_{\mathrm{j}}{ }^{\prime}, \mathrm{C}_{\mathrm{j}}^{\prime}\right)$
- For the characteristic $0 x 34 \rightarrow$ d in S-box 1 from inputs $1 \oplus 35=34$, $D_{1}(34, d)=\{06,10,16,1 c, 22,24,28,32\}$ and $k_{j} \in\{7,10,17,1 d, 23,25$, $29,33\}=1 \oplus D_{1}(34, d)$

Simplified DES

- $\mathrm{L}_{\mathrm{i}+1}=\mathrm{R}_{\mathrm{i}}$, each 6 bits.
- $R_{i+1}=L_{i} \oplus f\left(R_{i}, \mathrm{~K}_{\mathrm{i}}\right)$
- K is 9 bits.
- $E(x)=\left(x_{1} x_{2} x_{4} x_{3} x_{4} x_{3} x_{5} x_{6}\right)$
- S_{1}
- 101010001110011100111000
- 001100110010000111101011
- S_{2}

$$
\begin{aligned}
& -100 \\
& - \\
& - \\
& -
\end{aligned} 01000110 \quad 101 \quad 111001011010
$$

- K_{i} is 8 bits of K starting at $\mathrm{ith}^{\text {bit. }}$

Differential Cryptanalysis - 3 rounds

- $R_{4} \oplus R_{1}=f\left(k_{3}, R_{2}\right)$.
- $\mathrm{L}_{4} \oplus \mathrm{~L}_{3}=\mathrm{f}\left(\mathrm{k}_{4}, \mathrm{R}_{3}\right)$.
- $R_{4}=R_{3}, L_{2}=R_{1}, L_{3}=R_{2}$.
- $1 \& 2 \rightarrow L_{4} \oplus L_{3} \oplus R_{2} \oplus L_{1}=f\left(k_{2}, R_{1}\right) \oplus f\left(k_{4}, R_{3}\right)$.
- $\mathrm{L}_{3}=\mathrm{R}_{2} \rightarrow \mathrm{~L}_{4} \oplus \mathrm{~L}_{1}=\mathrm{f}\left(\mathrm{k}_{2}, \mathrm{R}_{1}\right) \oplus \mathrm{f}\left(\mathrm{k}_{4}, \mathrm{R}_{3}\right)$.
- $\mathrm{L}_{4} \oplus \mathrm{~L}_{1}=\mathrm{f}\left(\mathrm{k}_{2}, \mathrm{R}_{1}\right) \oplus \mathrm{f}\left(\mathrm{k}_{4}, \mathrm{R}_{3}\right)$.
- $L_{4}{ }^{*} \oplus L_{1}{ }^{*}=f\left(k_{2}, R_{1}{ }^{*}\right) \oplus f\left(k_{4}, R_{3}{ }^{*}\right)$.
- $3 \& 4 \rightarrow \mathrm{~L}_{4}{ }^{\prime} \oplus \mathrm{L}_{1}{ }^{\prime}=$ $\mathrm{f}\left(\mathrm{k}_{2}, \mathrm{R}_{1}{ }^{*}\right) \oplus \mathrm{f}\left(\mathrm{k}_{4}, \mathrm{R}_{3}{ }^{*}\right) \oplus \mathrm{f}\left(\mathrm{k}_{2}, \mathrm{R}_{1}{ }^{*}\right) \oplus \mathrm{f}\left(\mathrm{k}_{4}, \mathrm{R}_{3}{ }^{*}\right)$.
- $R_{1}=R_{1}{ }^{*} \rightarrow L_{4}{ }^{\prime} \oplus L_{1}{ }^{\prime}=f\left(k_{4}, R_{3}\right) \oplus f\left(k_{4}, R_{3}{ }^{*}\right)$.

Differential Cryptanalysis - 3 rounds

```
L
L
L
L
L
L}\mp@subsup{4}{}{\prime},\mp@subsup{R}{4}{\prime}=111101 10011
E(R4): : 0000 0011
E(R4}\mp@subsup{}{}{\prime}): : 1010 101
L
S ' ': 1010 -> 010(1001,0011).
S}\mp@subsup{2}{}{\prime}:1011->100(1100,0111)
(E ( }\mp@subsup{\textrm{R}}{4}{}\oplus\mp@subsup{\textrm{k}}{4}{}\mp@subsup{)}{1..4}{\prime}=1001|0011, \mp@subsup{k}{4}{}=1001|0011
```



```
K= 00x001101
```


JLM 20110204

Comments on Differential Cryptanalysis of full DES

$\#$ Rounds	Needed pairs	Analyzed Pairs	Bits Found	\# Char rounds	Char prob	S/N	Chosen Plain
4	2^{3}	2^{3}	42	1	1	16	2^{4}
6	2^{7}	2^{7}	30	3	$1 / 16$	2^{16}	2^{8}
8	2^{15}	2^{13}	30	5	$1 / 1048$ 6	15.6	2^{16}
16	2^{57}	2^{5}	18	15	$2^{-55.1}$	16	2^{58}

DES S-Box Design Criteria

- No S-box is linear or affine function of its input.
- Changing one bit in the input of an S-Box changes at least two output bits.
- S-boxes were chosen to minimize the difference between the number of 1's and 0's when any input bit is held constant.
- $S(X)$ and $S(X \oplus 001100)$ differ in at least 2 bits
- $S(X) \neq S(X \oplus 11 x y 00)$

1R Differential attack

- Trial decode last round with all possible subkeys, see if differential holds.

Linear Cryptanalysis

- Basic idea:
- Suppose $\alpha_{i}(P) \oplus \beta_{i}(\mathrm{C})=\gamma_{i}(\mathrm{k})$ holds with γ_{i} Dlinear, for $\mathrm{i}=1$, 2, ..., m.
- Each equation imposes a linear constraint and reduces key search by a factor of 2 .
- Guess (n-m-1) bits of key. There are $2^{(n-m-1)}$. Use the constraints to get the remaining keys.
- Can we find linear constraints in the "per round" functions and knit them together?
- No! Per Round functions do not have linear constraints.

Linear Cryptanalysis

- Next idea
- Can we find $\alpha(\mathrm{P}) \oplus \beta(\mathrm{C})=\gamma(\mathrm{k})$ which holds with γ ■linear, with probability p ?
- Suppose $\alpha(P) \oplus \beta(C)=\gamma(k)$, with probability $p>.5$.
- Collect a lot of plain/cipher pairs.
- Each will "vote" for $\gamma(k)=0$ or $\gamma(k)=1$.
- Pick the winner.
- $p=1 / 2+\in$ requires $c \epsilon^{-2}$ texts (we'll see why later).
- \in IIlls called "bias".

Linear Cryptanalysis Notation

- Matsui numbers bits from right to left, rightmost bit is bit 0. FIPS (and everyone else) goes from left to right starting at 1. I will use the FIPS conventions. To map Matsui positions to everyone else's:
$-M(i)=64-E E(i)$. For 32 bits make the obvious change.
- Matsui also refers to the two portions of the plaintext and ciphertext as $\left(\mathrm{P}_{\mathrm{H}}, \mathrm{P}_{\mathrm{L}}\right)$, $\left(\mathrm{C}_{H}, \mathrm{C}_{L}\right)$, we'll stick with ($\left.\mathrm{P}_{\mathrm{L}}, \mathrm{P}_{\mathrm{R}}\right),\left(\mathrm{C}_{\mathrm{L}}, \mathrm{C}_{\mathrm{R}}\right)$.

Linear and near linear dependence

- Here is a linear relationship over GF(2) in S5 that holds with probability $52 / 64$ (from $\mathrm{NS}_{5}(010000,1111)=12$:

- $\mathrm{X}[2] \oplus \mathrm{Y}[1] \oplus \mathrm{Y}[2] \oplus \mathrm{Y}[3] \oplus \mathrm{Y}[4]=\mathrm{K}[2] \oplus 1$.
- Sometimes written: $\mathrm{X}[2] \oplus \mathrm{Y}[1,2,3,4]=\mathrm{K}[2] \oplus 1 \mathbb{D}$
- You can find relations like this using the "Boolean Function" techniques we describe a little later
- After applying P, this becomes
$X[17] \oplus F(X, K)[3,8,14,25]=K[26] \oplus 1$

Linear Cryptanalysis of 3 round DES

$X[17] \oplus Y[3,8,14,25]=K[26] \oplus 1, p=52 / 64$

- Round 1
$\mathrm{X}_{1}[17] \oplus \mathrm{Y}_{1}[3,8,14,25]=\mathrm{K}_{1}[26] \oplus 1$
$P_{\mathrm{R}}[17] \oplus \mathrm{P}_{\mathrm{L}}[3,8,14,25] \oplus \mathrm{R}_{1}[3,8,14,25]=$ $\mathrm{K}_{1}[26] \oplus 1$

- Round 3
$\mathrm{X}_{3}[17] \oplus \mathrm{Y}_{3}[3,8,14,25]=\mathrm{K}_{3}[26] \oplus 1$
$\mathrm{R}_{1}[3,8,14,25] \oplus \mathrm{C}_{\mathrm{L}}[3,8,14,25] \oplus \mathrm{C}_{\mathrm{R}}[17]=$ $\mathrm{K}_{3}[26] \oplus 1$
- Adding the two get:
$\mathrm{P}_{\mathrm{R}}[17] \oplus \mathrm{P}_{\mathrm{L}}[3,8,14,25] \oplus \mathrm{C}_{\mathrm{L}}[3,8,14,25] \oplus \mathrm{C}_{\mathrm{R}}[17]=$ $\mathrm{K}_{1}[26] \oplus \mathrm{K}_{3}[26]$

Thus holds with $p=(52 / 64)^{2}+(12 / 64)^{2}=.66$

41

Piling up Lemma

－Let $X_{i}(1 \square \square$ ）be independent random variables whose values are 0 with probability p_{i} ．Then the probability that $X_{1} \oplus X_{2} \oplus$ 恤 $由 X_{n}=0$ is

$$
1 / 2+2^{n-1} \square_{[1, n]}\left(p_{i}-1 / 2\right)
$$

Proof：
By induction on n ．It＇s tautological for $\mathrm{n}=1$ ．

Then $\operatorname{Pr}\left[X_{1} \oplus X_{2} \oplus\right.$ 血皿 $\left.\rightarrow X_{n}=0\right]=q p_{n}+(1-q)\left(1-p_{n}\right)=1 / 2+2^{n-1} \square_{[1, n]}$ （ $\mathrm{p}_{\mathrm{i}}-1 / 2$ ）as claimed．

Linear Cryptanalysis of full DES

- Can be accomplished with $\sim 2^{43}$ known plaintexts, using a14 round approximation
- For each 48 bit last round sub-key, decrypt cipher-text backwards across last round for all sample cipher-texts
- Increment count for all sub-keys whose linear expression holds true to the penultimate round
- This is done for the first and last round yielding 13 key bits each (total: 26)
- Here they are:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{R}}[8,14,25] \oplus \mathrm{C}_{\mathrm{L}}[3,8,14,25] \oplus \mathrm{C}_{\mathrm{R}}[17]=\mathrm{K}_{1}[26] \oplus \mathrm{K}_{3}[4] \oplus \mathrm{K}_{4}[26] \oplus \mathrm{K}_{6}[26] \oplus \\
& \left.\quad \mathrm{K}_{7}[4] \oplus \mathrm{K}_{8}[26] \oplus \mathrm{K}_{10}[26] \oplus \mathrm{K}_{11} 14\right] \oplus \mathrm{K}_{12}[26] \oplus \mathrm{K}_{14}[26] \\
& \text { with probability } 1 / 2-1.19 \times 2^{-21}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{R}}[8,14,25] \oplus \mathrm{P}_{\mathrm{L}}[3,8,14,25] \oplus \mathrm{P}_{\mathrm{R}}[17]=\mathrm{K}_{13}[26] \oplus \mathrm{K}_{12}[24] \oplus \mathrm{K}_{11}[26] \oplus \\
& \quad \mathrm{K}_{9}[26] \oplus \mathrm{K}_{8}[24] \oplus \mathrm{K}_{7}[26] \oplus \mathrm{K}_{5}[26] \oplus \mathrm{K}_{4}[4] \oplus \mathrm{K}_{3}[26] \oplus \mathrm{K}_{1}[26]
\end{aligned} \text { with probability } 1 / 2-1.19 \times 2^{-21} .
$$

Estimating cost of Linear attack

- Let X be the random variable representing the number of " 1 's" resulting from an approximate linear relation of bias q.
- Linear attack is successful if for n trials, $X>N / 2$
- What is $\operatorname{Pr}(X>N / 2)$? X is normally distributed as $X \sim N(\mathbb{D I l})$, where $\mathrm{D}=\mathrm{N} / 2+\mathrm{Nq}$ and $\mathrm{C}=\mathrm{N}^{1 / 2} / 2 . \mathrm{N} \sim \mathrm{O}\left(\mathrm{q}^{-2}\right)$

Full Linear Attack on DES

- Linear cryptanalysis can be accomplished with $\sim 2^{43}$ known plaintexts, using a more sophisticated estimation 14 round approximation
- For each 48 bit last round sub-key, decrypt cipher-text backwards across last round for all sample cipher-texts
- Increment count for all sub-keys whose linear expression holds true to the penultimate round
- This is done for the first and last round yielding 13 key bits each (total: 26)
- Here they are:

$$
\begin{aligned}
& P_{R}[8,14,25] \oplus C_{[}[3,8,14,25] \oplus C_{[}[17]= \\
& \mathrm{K}_{1}[26] \oplus \mathrm{K}_{3}[4] \oplus \mathrm{K}_{4}[26] \oplus \mathrm{K}_{6}[26] \oplus \mathrm{K}_{7}[4] \oplus \mathrm{K}_{8}[26] \\
& \oplus \mathrm{K}_{10}[26] \oplus \mathrm{K}_{11}[4] \oplus \mathrm{K}_{12}[26] \oplus \mathrm{K}_{14}[26] \\
& \text { with probability } 1 / 2-1.19 \times 2^{-21}
\end{aligned}
$$

$\mathrm{C}_{\mathrm{R}}[8,14,25] \oplus \mathrm{P}_{\mathrm{H}}[3,8,14,25] \oplus \mathrm{P}_{\mathrm{R}}[17]=\mathrm{K}_{13}[26] \oplus \mathrm{K}_{12}[24] \oplus \mathrm{K}_{11}[26] \oplus \mathrm{K}_{9}[26] \oplus \mathrm{K}_{8}[24]$ $\oplus \mathrm{K}_{7}[26] \oplus \mathrm{K}_{5}[26] \oplus \mathrm{K}_{4}[4] \oplus \mathrm{K}_{3}[26] \oplus \mathrm{K}_{1}[26]$
with probability $1 / 2-1.19 \times 2^{-21}$

FEAL-4 Cipher

- Four round Feistel cipher with a 64bit block and 64-bit key
- Plaintext: P, Cipher-text: C
- Round function: F
- 32-bit sub-keys: $\mathrm{K}_{0}, \mathrm{~K}_{1}, \ldots, \mathrm{~K}_{5}$

Slide adapted from Mark Stamp

FEAL-4 Round Function

- $\mathrm{G}_{0}(\mathrm{a}, \mathrm{b})=(\mathrm{a}+\mathrm{b}(\bmod 256)) \lll 2$
- $G_{1}(a, b)=(a+b+1(\bmod 256)) \lll 2$
- Where "<<<" is left cyclic shift (rotation)
- Then $\mathrm{F}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)$ where

1. $\mathrm{y}_{1}=\mathrm{G}_{1}\left(\mathrm{x}_{0} \oplus \mathrm{x}_{1}, \mathrm{x}_{2} \oplus \mathrm{x}_{3}\right)$
2. $y_{0}=G_{0}\left(x_{0}, y_{1}\right)$
3. $\mathrm{y}_{2}=\mathrm{G}_{0}\left(\mathrm{y}_{1}, \mathrm{x}_{2} \oplus \mathrm{x}_{3}\right)$
4. $y_{3}=G_{1}\left(y_{2}, x_{3}\right)$

FEAL-4 Key Schedule

- $F_{K}\left(a_{0}\left\|a_{1}\right\| a_{2}\left\|a_{3}, b_{0}\right\| b_{1}\left\|b_{2}\right\| b_{3}\right)=c_{0}\left\|c_{1}\right\| c_{2} \| c_{3}$ by
$-d_{1}=a_{0} \oplus a_{1}$
$-d_{2}=a_{2} \oplus a_{3}$
$-\mathrm{c}_{1}=\mathrm{G}_{1}\left(\mathrm{~d}_{1}, \mathrm{a}_{2} \oplus \mathrm{~b}_{0}\right)$
$-c_{2}=G_{0}\left(d_{2}, c_{1} \oplus b_{1}\right)$
$-\mathrm{c}_{0}=\mathrm{G}_{0}\left(\mathrm{a}_{0}, \mathrm{c}_{1} \oplus \mathrm{~b}_{2}\right)$
$-\mathrm{C}_{3}=\mathrm{G}_{1}\left(\mathrm{a}_{3}, \mathrm{c}_{2} \oplus \mathrm{~b}_{3}\right)$
- $\mathrm{K}_{-2}=0$
- $\mathrm{K}_{-1}=\mathrm{K}_{\mathrm{L}}$
- $\mathrm{K}_{0}=\mathrm{K}_{\mathrm{R}}$
- $K_{i}=f_{k}\left(\mathrm{~K}_{\mathrm{i}-2}, \mathrm{~K}_{\mathrm{i}-1} \oplus \mathrm{~K}_{\mathrm{i}-3}\right)$

FEAL-4 Differential Attack

```
\(\mathrm{P}^{\prime}=0 \times 8080000080800000\)
```

- If $A_{0} \oplus A_{1}=0$ then $F\left(A_{0}\right)=F\left(A_{1}\right), p=1$.
- If $A_{0} \oplus A_{1}=0 \times 80800000$ then $F\left(A_{0}\right) \oplus F\left(A_{1}\right)=$ 0x02000000, p=1
- Choose ($\mathrm{P}_{0}, \mathrm{P}_{1}$):
$\mathrm{P}_{0} \oplus \mathrm{P}_{1}=0 \times 8080000080800000$
- $P^{\prime}=P_{0} \oplus P_{1}, C^{\prime}=C_{0} \oplus C_{1}$
- $L^{\prime}=0 \times 02000000 \oplus Z^{\prime}, Y^{\prime}=0 \times 80800000 \oplus X^{\prime}$
- For $\mathrm{C}=(\mathrm{L}, \mathrm{R})$ we have $\mathrm{Y}=\mathrm{L} \oplus \mathrm{R}$
- Solve for sub-key $K_{3}: Z^{\prime}=0 \times 02000000 \oplus L^{\prime}$
- Compute $\mathrm{Y}_{0}=\mathrm{L}_{0} \oplus \mathrm{R}_{0}, \mathrm{Y}_{1}=\mathrm{L}_{1} \oplus \mathrm{R}_{1}$
- Guess K_{3} and compute putative Z_{0}, Z_{1}
- Note: $\mathrm{Z}_{\mathrm{i}}=\mathrm{F}\left(\mathrm{Y}_{\mathrm{i}} \oplus \mathrm{K}_{3}\right)$
- Compare true Z^{\prime} to putative Z^{\prime}

FEAL-4 Differential Attack

- Using 4 chosen plaintext pairs
- Work is of order 2^{32}
- Expect one K_{3} to survive
- Can reduce work to about 2^{17}
- For 32-bit word $A=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$, define $M(A)=\left(z, a_{0} \oplus a_{1}, a_{2} \oplus a_{3}, z\right)$, where z is all-zero byte
- For all possible $A=\left(z, a_{0}, a_{1}, z\right)$, compute

$$
Q_{0}=F\left(M\left(Y_{0}\right) \oplus A\right) \text { and } Q_{1}=F\left(M\left(Y_{1}\right) \oplus A\right)
$$

- Can be used to find 16 bits of K_{3}
- When $A=M\left(K_{3}\right)$, we have $\left\langle Q_{0} \oplus Q_{1}\right\rangle_{8 \ldots 23}=\left\langle Z^{\prime}\right\rangle_{8 \ldots 23}$ where $\langle X\rangle_{i, \ldots .}$ is bits i thru j of X. Can recover K_{3} with about 2^{17} work
- Once K_{3} is known, can successively recover $\mathrm{K}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{0}$ and finally $\mathrm{K}_{4}, \mathrm{~K}_{5}$
- Second characteristic: 0xa200 8000 0x2280 8000

FEAL-4 Differential Attack

- Primary for K_{3}

```
// Characteristic is \(0 \times 8080000080800000\)
\(P_{0}=\) random 64-bit value
\(P_{1}=P_{0} \oplus 0 \times 8080000080800000\)
// Given corresponding ciphertexts
\(/ / C_{0}=\left(L_{0}, R_{0}\right)\) and \(C_{1}=\left(L_{1}, R_{1}\right)\)
\(Y_{0}=L_{0} \oplus R_{0}\)
\(Y_{1}=L_{1} \oplus R_{1}\)
\(L^{\prime}=L_{0} \oplus L_{1}\)
\(Z^{\prime}=L^{\prime} \oplus 0 \times 02000000\)
for \(\left(a_{0}, a_{1}\right)=(0 \times 00,0 \times 00)\) to ( \(\left.0 \times x f, 0 \times f f\right)\)
    \(Q_{0}=F\left(M\left(Y_{0}\right) \oplus\left(0 \times 00, a_{0}, a_{1}, 0 \times 00\right)\right)\)
    \(Q_{1}=F\left(M\left(Y_{1}\right) \oplus\left(0 \times 00, a_{0}, a_{1}, 0 \times 00\right)\right)\)
    if \(\left\langle Q_{0} \oplus Q_{1}\right\rangle_{8 \ldots 23}==\left\langle Z^{\prime}\right\rangle_{8 \ldots 23}\) then
        Save \(\left(a_{0}, a_{1}\right)\)
    end if
next \(\left(a_{0}, a_{1}\right)\)
```

// Characteristic is $0 \times 8080000080800000$
$P_{0}=$ random 64-bit value
$P_{1}=P_{0} \oplus 0 \times 8080000080800000$
// Given corresponding ciphertexts
$/ / C_{0}=\left(L_{0}, R_{0}\right)$ and $C_{1}=\left(L_{1}, R_{1}\right)$
$Y_{0}=L_{0} \oplus R_{0}$
$Y_{1}=L_{1} \oplus R_{1}$
$L^{\prime}=L_{0} \oplus L_{1}$
$Z^{\prime}=L^{\prime} \oplus 0 \times 02000000$
for $\left(a_{0}, a_{1}\right)=(0 \times 00,0 \times 00)$ to ($\left.0 x f f, 0 x f f\right)$
$Q_{0}=F\left(M\left(Y_{0}\right) \oplus\left(0 \times 00, a_{0}, a_{1}, 0 \times 00\right)\right)$
$Q_{1}=F\left(M\left(Y_{1}\right) \oplus\left(0 \times 00, a_{0}, a_{1}, 0 \times 00\right)\right)$
if $\left\langle Q_{0} \oplus Q_{1}\right\rangle_{8 \ldots 23}==\left\langle Z^{\prime}\right\rangle_{8 \ldots 23}$ then Save $\left(a_{0}, a_{1}\right)$
end if
next $\left(a_{0}, a_{1}\right)$

- Secondary for K_{3}
$/ / P_{0}, P_{1}, C_{0}, C_{1}, Y_{0}, Y_{1}, Z^{\prime}$ as in primary
// Given list of saved (a_{0}, a_{1}) from primary for each primary survivor (a_{0}, a_{1})
for $\left(c_{0}, c_{1}\right)=(0 x 00,0 x 00)$ to ($\left.0 \times x f, 0 x f f\right)$
$D=\left(c_{0}, a_{0} \oplus c_{0}, a_{1} \oplus c_{1}, c_{1}\right)$
$\tilde{Z}_{0}=F\left(Y_{0} \oplus D\right)$
$\tilde{Z}_{1}=F\left(Y_{1} \oplus D\right)$
if $\tilde{Z}_{0} \oplus \tilde{Z}_{1}==Z^{\prime}$ then
Save $D / /$ candidate subkey K_{3}
end if
next $\left(c_{0}, c_{1}\right)$
next $\left(a_{0}, a_{1}\right)$
- Assuming only one chosen plaintext pair

FEAL-4 Linear Attack

- $X=X[0], \ldots, X[31]), Y=F(X)$. Notation: $X[i, j]=X[i j \oplus X[j]$
- $\quad(\mathrm{a} \oplus \mathrm{b})[7]=(\mathrm{a}+\mathrm{b}(\bmod 256))[7]$, so
- $\mathrm{G}_{0}(\mathrm{a}, \mathrm{b})[5]=(\mathrm{a} \oplus \mathrm{b})[7]$
- $\quad(\mathrm{a} \oplus \mathrm{b} \oplus 1)[7]=(\mathrm{a}+\mathrm{b}+1(\bmod 256))[7]$, so
- $\mathrm{G}_{1}(\mathrm{a}, \mathrm{b})[5]=(\mathrm{a} \oplus \mathrm{b} \oplus 1)[7]$
- Since $y_{1}=G_{1}\left(x_{0} \oplus x_{1}, x_{2} \oplus x_{3}\right)$,
- $\mathrm{Y}[13]=\mathrm{y}_{1}[5]=\mathrm{x}_{0}[7] \oplus \mathrm{x}_{1}[7] \oplus \mathrm{x}_{2}[7] \oplus \mathrm{x}_{3}[7] \oplus 1=\mathrm{X}[7,15,23,31] \oplus 1$
- Since $\mathrm{y}_{0}=\mathrm{G}_{0}\left(\mathrm{x}_{0}, \mathrm{y}_{1}\right), \mathrm{Y}[5]=\mathrm{y}_{0}[5]=\mathrm{y}_{1}[7] \oplus \mathrm{x}_{0}[7]=\mathrm{Y}[15] \oplus \mathrm{X}[7]$
- Since $y_{2}=G_{0}\left(y_{1}, x_{2} \oplus x_{3}\right)$,

$$
Y[21]=y_{2}[5]=y_{1}[7] \oplus \mathrm{x}_{2}[7] \oplus \mathrm{x}_{3}[7]=\mathrm{Y}[15] \oplus \mathrm{X}[23,31]
$$

- Since $\mathrm{y}_{3}=\mathrm{G}_{1}\left(\mathrm{y}_{2}, \mathrm{x}_{3}\right)$,

$$
\mathrm{Y}[29]=\mathrm{y}_{3}[5]=\mathrm{y}_{2}[7] \oplus \mathrm{x}_{3}[7] \oplus 1=\mathrm{Y}[23] \oplus \mathrm{X}[31] \oplus 1
$$

- $Y=\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$
- $X=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$

FEAL-4 Linear Attack

- $\mathrm{L}_{0}=\mathrm{P}_{\mathrm{L}}, \mathrm{R}_{0}=\mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}}$
- $Y_{0}=F\left(R_{0} \oplus K_{0}\right), R_{1}=L_{0} \oplus Y_{0}, L_{1}=R_{0}$
- $Y_{1}=F\left(R_{1} \oplus K_{1}\right), R_{2}=L_{1} \oplus Y_{1}, L_{2}=R_{1}$
- $Y_{2}=F\left(R_{2} \oplus K_{2}\right), R_{3}=L_{2} \oplus Y_{2}, L_{3}=R_{2}$
- $Y_{3}=F\left(R_{3} \oplus K_{3}\right)$

- $\mathrm{C}_{\mathrm{L}}=\mathrm{L}_{3} \oplus \mathrm{Y}_{3} \oplus \mathrm{~K}_{4}, \mathrm{C}_{\mathrm{R}}=\mathrm{C}_{\mathrm{L}} \oplus \mathrm{R}_{3} \oplus \mathrm{~K}_{5}$
- $\mathrm{C}_{\mathrm{L}}=\mathrm{L}_{1} \oplus \mathrm{Y}_{1} \oplus \mathrm{Y}_{3} \oplus \mathrm{~K}_{4}=\mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}} \oplus \mathrm{Y}_{1} \oplus \mathrm{Y}_{3} \oplus \mathrm{~K}_{4}$
- So $\mathrm{C}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}} \oplus \mathrm{K}_{4}=\mathrm{Y}_{1} \oplus \mathrm{Y}_{3}$
- $\mathrm{C}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}} \oplus \mathrm{K}_{4}=\mathrm{F}\left(\mathrm{R}_{1} \oplus \mathrm{~K}_{1}\right) \oplus \mathrm{F}\left(\mathrm{R}_{3} \oplus \mathrm{~K}_{3}\right)$
- $\mathrm{C}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}} \oplus \mathrm{K}_{4}=\mathrm{F}\left(\mathrm{L}_{0} \oplus \mathrm{Y}_{0} \oplus \mathrm{~K}_{1}\right) \oplus \mathrm{F}\left(\mathrm{R}_{3} \oplus \mathrm{~K}_{3}\right)$
- Since $R_{3}=C_{L} \oplus C_{R} \oplus K_{5}$, and $L_{0}=P_{L}$
- $\mathrm{C}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}} \oplus \mathrm{K}_{4}=\mathrm{F}\left(\mathrm{P}_{\mathrm{L}} \oplus \mathrm{Y}_{0} \oplus \mathrm{~K}_{1}\right) \oplus \mathrm{F}\left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{C}_{\mathrm{R}} \oplus \mathrm{K}_{5} \oplus \mathrm{~K}_{3}\right)$

FEAL-4 Linear Attack

- We've show

1. $\mathrm{C}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}} \oplus \mathrm{K}_{4}=\mathrm{F}\left(\mathrm{P}_{\mathrm{L}} \oplus \mathrm{Y}_{0} \oplus \mathrm{~K}_{1}\right) \oplus \mathrm{F}\left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{C}_{\mathrm{R}} \oplus \mathrm{K}_{5} \oplus \mathrm{~K}_{3}\right)$,
2. $Y_{0}=F\left(R_{0} \oplus K_{0}\right)=F\left(P_{L} \oplus P_{R} \oplus K_{0}\right)$
3. $Y[13]=X[7,15,23,31] \oplus 1$
4. $Y[5]=Y[15] \oplus X[7]$
5. $Y[21]=Y[15] \oplus X[23,31]$
6. $\mathrm{Y}[29] \oplus \mathrm{Y}[23]=\mathrm{X}[31] \oplus 1$

- From 1 ,

7. $\left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}} \oplus \mathrm{K}_{4}\right)[23,29]=\mathrm{F}\left(\mathrm{P}_{\mathrm{L}} \oplus \mathrm{Y}_{0} \oplus \mathrm{~K}_{4}\right)[23,29] \oplus \mathrm{F}\left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{C}_{\mathrm{R}} \oplus \mathrm{K}_{5} \oplus \mathrm{~K}_{3}\right)[23,29]$

- From 6,

8. $\mathrm{F}\left(\mathrm{P}_{\mathrm{L}} \oplus \mathrm{Y}_{0} \oplus \mathrm{~K}_{\mathrm{f}}\right)[23,29]=\left(\mathrm{P}_{\mathrm{L}} \oplus \mathrm{Y}_{0} \oplus \mathrm{~K}_{\mathrm{t}}\right)[31] \oplus 1$
9. $F\left(C_{L} \oplus C_{R} \oplus K_{5} \oplus K_{3}\right)[23,29]=\left(C_{L} \oplus C_{R} \oplus K_{5} \oplus K_{3}\right)[31] \oplus 1$

- Adding 8 and 9 ,

10. $\left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}} \oplus \mathrm{K}_{4}\right)[23,29]=\left(\mathrm{P}_{\mathrm{L}} \oplus \mathrm{Y}_{0} \oplus \mathrm{~K}_{1}\right)[31] \oplus\left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{C}_{\mathrm{R}} \oplus \mathrm{K}_{5} \oplus \mathrm{~K}_{3}\right)[31]$

FEAL-4 Linear Attack

- From the last slide,
- $\left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}} \oplus \mathrm{K}_{4}\right)[23,29]=\left(\mathrm{P}_{\mathrm{L}} \oplus \mathrm{Y}_{0} \oplus \mathrm{~K}_{1}\right)[31] \oplus\left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{C}_{\mathrm{R}} \oplus \mathrm{K}_{5} \oplus \mathrm{~K}_{3}\right)[31]$, so
- $\mathrm{K}_{4}[23,29] \oplus\left(\mathrm{K}_{1} \oplus \mathrm{~K}_{5} \oplus \mathrm{~K}_{3}\right)[31]=$

$$
\begin{aligned}
& \left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}}\right)[23,29] \oplus \mathrm{P}_{\mathrm{L}}[31] \oplus \mathrm{Y}_{0}[31] \oplus\left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{C}_{\mathrm{R}}\right)[31]= \\
& \left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}}\right)[23,29] \oplus \mathrm{P}_{\mathrm{L}}[31] \oplus\left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{C}_{\mathrm{R}}\right)[31] \oplus \mathrm{F}\left(\mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}} \oplus \mathrm{~K}_{0}\right)[31]
\end{aligned}
$$

- The left hand side is a constant for fixed key.
- The attack consists of guessing K_{0} and computing

$$
h(P, C)=\left(C_{L} \oplus P_{L} \oplus P_{R}\right)[23,29] \oplus P_{L}[31] \oplus\left(C_{L} \oplus C_{R}\right)[31] \oplus F\left(P_{L} \oplus P_{R} \oplus K_{0}\right)[31]
$$

for a number of corresponding ($\left.\mathrm{P}_{\mathrm{L}}, \mathrm{P}_{\mathrm{R}}\right),\left(\mathrm{C}_{\mathrm{L}}, \mathrm{C}_{\mathrm{R}}\right)$

- If the guessed K_{0} is right, $h(P, C)$ will have the same value for each corresponding pair of plain-text and cipher-text.

FEAL-4 Linear Attack - Improvement

- Possible to improve on linear attack
- Put $\mathrm{K}_{0}{ }^{\prime}=\left(\left(\mathrm{K}_{0}\right)_{0, \ldots, 7} \oplus\left(\mathrm{~K}_{0}\right)_{8, \ldots, 15},\left(\mathrm{~K}_{0}\right)_{16, \ldots, 23} \oplus\left(\mathrm{~K}_{0}\right)_{24, \ldots, 31}\right)$
- Consider reduced cipher to get a new relation
- h'(P,C)= $\left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}}\right)[5,13,21] \oplus \mathrm{P}_{\mathrm{L}}[15] \oplus\left(\mathrm{C}_{\mathrm{L}} \oplus \mathrm{C}_{\mathrm{R}}\right)[15] \oplus \mathrm{F}\left(\mathrm{P}_{\mathrm{L}} \oplus \mathrm{P}_{\mathrm{R}} \oplus \mathrm{K}_{0}\right)[15]$
- h'(P,C) depends only on bits $0,9, \ldots, 15,17, \ldots, 23$ of K_{0}
- Find these 12 bits of K_{0} first, then the remaining 20 can be found using similar approximations and exhaustive search.

DESX and whitening

- Attacks like differential and linear cryptanalysis are easier since we can direct observe the input to the first round and output of the last round directly.
- Rivest and Killian:
- $\operatorname{DESX}\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, \mathrm{x}\right)=\mathrm{k}_{3} \oplus \operatorname{DES}\left(\mathrm{k}_{1}, \mathrm{k}_{2} \oplus \mathrm{x}\right)$
- Strategy adopted by almost all the AES participants.

AES History

- Call for DES successor 1/97
- Nine Submissions
- CAST-256, CRYPTON, DEAL, DFC (cipher), E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, and Twofish.
- Finalists
- MARS, RC6, Rijndael, Serpent, and Twofish
- And
- the winner is Rijndael: FIPS 197 published 11/2001
- Good References:
- Daemen and Rijimen, The Design of Rijndael. Springer.
- Ferguson et. al., The Twofish Encryption Algorithm. Wiley.
- Tons of contemporaneous material, thesis, etc. Almost all on WWW.

AES

AES Requirements

- 128, 192, 256 bit keys

Algorithms will be judged on the following factors:

- Actual security of the algorithm compared to other submitted algorithms (at the same key and block size).
- \quad The extent to which the algorithm output is indistinguishable from a random permutation on the input block.
- Soundness of the mathematical basis for the algorithm's security.
- Other security factors raised by the public during the evaluation process, including any attacks which demonstrate that the actual security of the algorithm is less than the strength claimed by the submitter.
- Claimed attacks will be evaluated for practicality.

Key agility (NSA): "Two blocks encrypted with two different keys should not take much more time than two blocks encrypted with the same key.

End

