Practical Aspects of Modern Cryptography Winter 2011

> Josh Benaloh Brian LaMacchia

Agenda

- Guest lecture: Tolga Acar, Distributed Key Management and Cryptographic Agility
- Hardware crypto tokens
 - Smart cards
 - TPMs (v1.2 & ".Next") tokens for PCs
- Virtualization and virtualized crypto tokens

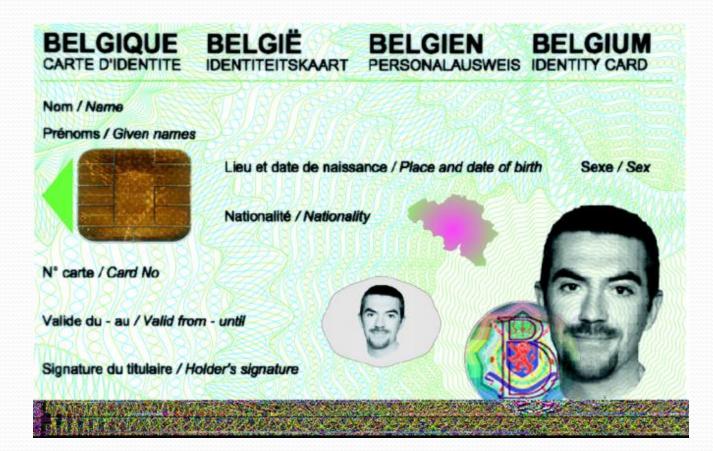
Agenda

- Guest lecture: Tolga Acar, Distributed Key Management and Cryptographic Agility
- Hardware crypto tokens
 - Smart cards
 - TPMs (v1.2 & ".Next") tokens for PCs
- Virtualization and virtualized crypto tokens

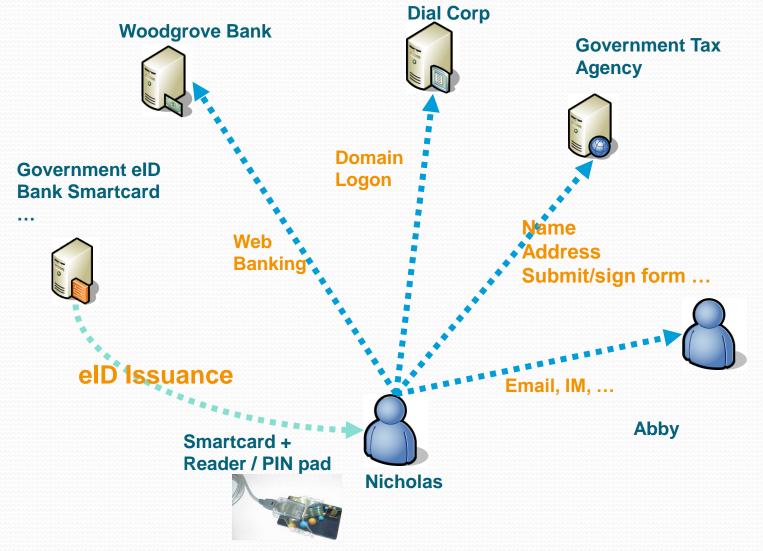
Slide Acknowledgements

- Some of these slides are based on slides created by the following folks at MS:
 - Shon Eizenhoefer
 - Paul England
 - Himanshu Raj
 - David Wootten

Agenda


- Guest lecture: Tolga Acar, Distributed Key Management and Cryptographic Agility
- Hardware crypto tokens
 - Smart cards
 - TPMs (v1.2 & ".Next") tokens for PCs
- Virtualization and virtualized crypto tokens

What is a smart card?


- Long history, invented in the 1970s
- Integrated Circuit Cards ICC
- Initially used for pay phone systems in France
- Most successful deployment: GSM cell phones
- Payment: EMV Europay, MasterCard and VISA
- Strong User Authentication. Some examples:
 - National eID programs in Asia and Europe
 - DoD CAC cards

Benefits of smart cards

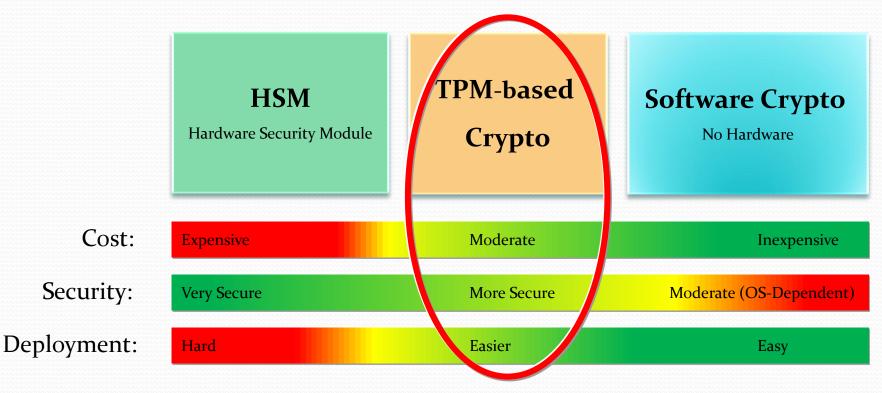
- Provides secure storage for private keys & data
 - Tamper resistant
 - Cryptographically secure
- Provides two factor authentication
 - Something you have The Card
 - Something you know The PIN (Also referred to as Card Holder Verification- CHV)
- Programmable cards
 - Ex.: JavaCards, .NET Cards

Possible eID scenarios

February 24, 2011

Practical Aspects of Modern Cryptography

Stages in a Smart Card's Life Cycle

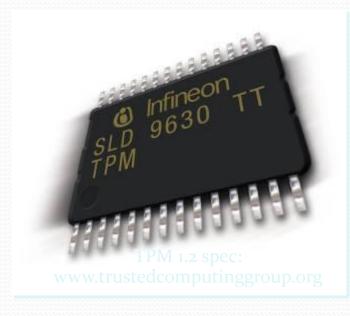

- Initial Issuance
- PIN unblock
- Renewal
- Retirement
- Revocation
- Forgotten Smart Card

Agenda

- Guest lecture: Tolga Acar, Distributed Key Management and Cryptographic Agility
- Hardware crypto tokens
 - Smart cards
 - TPMs (v1.2 & ".Next") tokens for PCs
- Virtualization and virtualized crypto tokens

Recall DKM-TPM Motivation from Tolga's talk:

Secret Protection Technology:



• Approach sits between a pure HSM solution and a full software solution.

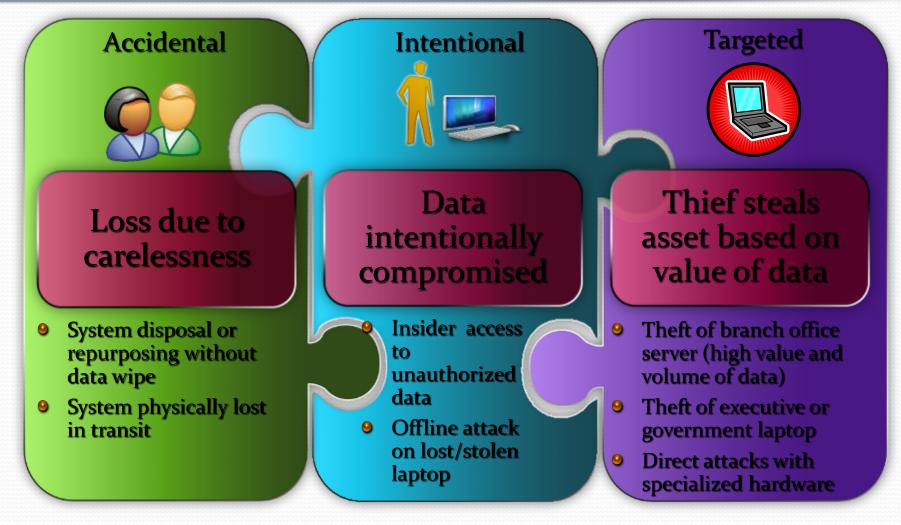
What Is A Trusted Platform Module (TPM)?

Smartcard-like module on the motherboard

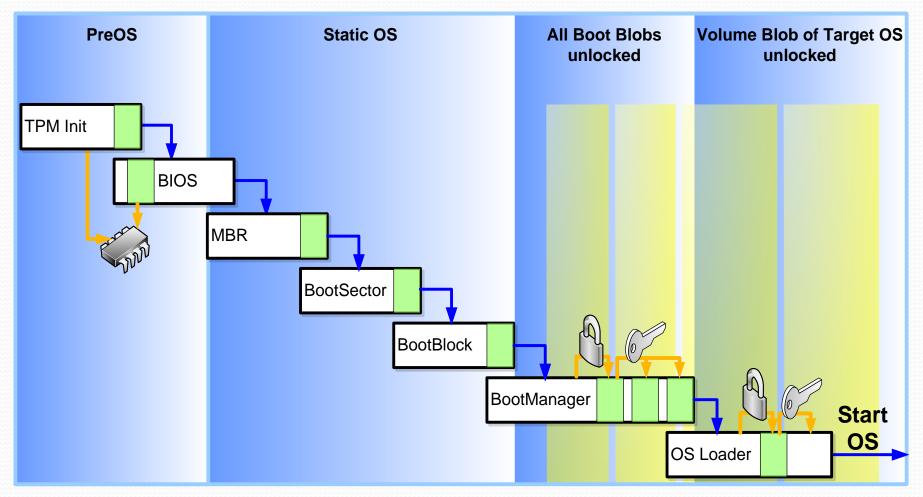
- Protects secrets
- Performs cryptographic functions
 - RSA, SHA-1, RNG
- Performs digital signature operations
- Anchors chain of trust for keys and credentials
- Protects itself against attacks
- Holds Platform Measurements (hashes)
- Can create, store and manage keys
 - Provides a unique Endorsement Key (EK)
 - Provides a unique Storage Root Key (SRK)

TPM v1.2 Key Features

Platform measurements


- TPM can "measure" (hash w/ SHA-1) instruction sequences & store the results in "platform configuration registers" (PCRs)
- Encryption
 - TPM can encrypt arbitrary data using TPM keys (or keys protected by TPM keys)
- Sealed Storage
 - TPM can encrypt arbitrary data, using TPM keys (or keys protected by TPM keys) and under a set of PCR values
 - Data can only be decrypted later under the same PCR configuration
- Attestation (in a moment)

Sealed Storage


- Why is Sealed Storage useful?
- Provides a mechanism for defending against boot-time attacks
- Example: Full Volume Encryption (FVE)
 - BitLocker[™] Drive Encryption on Windows

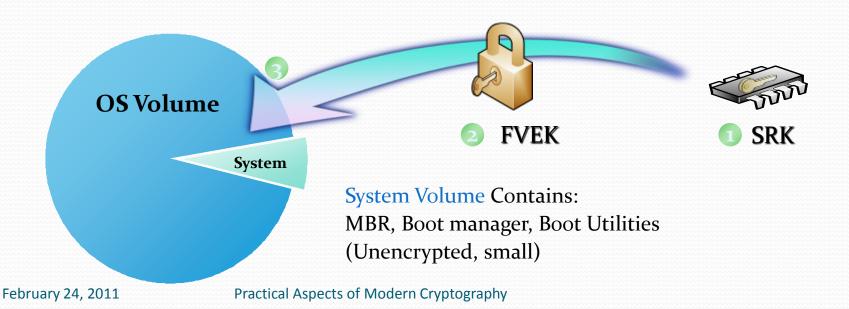
Information Protection Threats

Internal threats are just as prevalent as external threats

Booting w/ TPM measurements

February 24, 2011

Practical Aspects of Modern Cryptography


Disk Layout And Key Storage

OS Volume Contains

- Encrypted OS
- Encrypted Page File
- Encrypted Temp Files
- Encrypted Data
- Encrypted Hibernation File

Where's the Encryption Key?

- 1. SRK (Storage Root Key) contained in TPM
- 2. SRK encrypts FVEK (Full Volume Encryption Key) protected by TPM/PIN/USB Storage Device
- 3. FVEK stored (encrypted by SRK) on hard drive in the OS Volume

Attestation

- Sealed Storage lets a TPM *encrypt* data to a specific set (or subset) of PCR values
- Attestation is an authentication technology
 - But more than "simple signing"
- Attestation allows a TPM to sign data and a set (or subset) of the current PCR values
 - So the TPM "attests" to a certain software configuration (whatever was measured into those PCR registers) as part of its digital signature
 - "Quoting"

Key Recovery Scenarios

- Lost/Forgotten Authentication Methods
 - Lost USB key, user forgets PIN
- Upgrade to Core Files
 - Unanticipated change to pre-OS files (BIOS upgrade, etc...)
- Broken Hardware
 - Hard drive moved to a new system
- Deliberate Attack
 - Modified or missing pre-OS files (Hacked BIOS, MBR, etc...)

TPM.Next

- The TPM architecture after TPM v1.2
- More than 3 years of specification development
- Current work on TPM.Next is happening within the Trusted Computing Group (TCG) consortium
- The actual TPM.Next specification is currently confidential
 - The only publicly available information is not very technical
- I can talk about things that Microsoft has submitted to the TCG
 - But this may or may not show up in TPM.Next

Cryptographic Algorithm Agility

- TPM 1.2 is based on RSA 2048-bit and SHA-1 with little variability possible.
- SHA-1 is being phased out.
- Support for new asymmetric algorithms (ECC) is needed in some important markets.
- Requirements to be able to support localization.
- Can't react quickly to a broken algorithm.

Potential Solutions

- Every use of a cryptographic algorithm should allow the TPM user to specify the algorithm to be used.
 - Much wider range of algorithm options while maintaining interface compatibility
- Every data structure should be tagged to indicate the algorithms used to construct it.
 - No assumptions required or allowed.
- Define sets of algorithms for interoperability.
 - Set is a combination of asymmetric, symmetric, and hash algorithms.
- Allow multiple sets to be used simultaneously.
 - Support different security and localization needs.
 - Make it easy to replace broken algorithms without having to develop an entirely new specification or product.

TPM Management

- User has a difficult time understanding the TPM controls.
 - What is the difference between TPM enable and activate?
- Security and privacy functions use the same controls.
 - Need to take ownership of TPM to use the Storage Root Key but that also enables Endorsement Key operations which are privacy sensitive.
- PCR sealing model is brittle.
 - Makes it difficult to manage keys that rely on PCR values.
 - System updates that change a PCR measurement can be very disruptive.

PCR "Brittleness"

- Many configuration changes leading to PCR changes are benign
 - But still result in keys becoming unusable, etc.
- Sometimes if you plan ahead you can prevent this
 - E.g. *seal* to a future known good configuration
- Sometimes we can fix this with smarter external software
 - E.g. *extend* hashes of authorized signing keys and check certificates
- But it's caused enough problems that TPM support makes sense

Potential Solutions

- Change to simpler model for control on/off
- Should split controls.
 - Security functions based on Storage Root Key default on
 - Identity/privacy functions based on Endorsement Key default off
 - Provisioning functions based on BIOS controls always on
- Allow a recognized authority to approve different PCR settings.
 - An authority over the PCR environment in which the key may be used much like migration authority controls the hierarchy in which a key may be used.

Ecosystem Issues

TPM/TCM are not interchangeable.

- No BIOS level abstraction for a security token (TPM/TCM) as there is for a disk (read/write logical blocks).
- Makes it hard to adopt boot code for alternative algorithms.
- Trusted computing crosses national boundaries.
 - Neither the TPM nor the TCM has the ability to meet both local and international cryptographic requirements at the same time.
 - The sunset of SHA1 has demonstrated the importance of not being tied to a fixed set of algorithms.
 - It will be a major upset to the ecosystem (chip, system, software) to switch to a new TPM with a new software interface.
- Changing the TPM algorithms is going to cause a major upheaval in the ecosystem.

Potential Solutions

- TPM.next should have an interface that is not tied to a specific set of algorithms.
 - Boot code can use the BIOS interface without being aware of the underlying cryptographic algorithms.
 - Makes for a better abstraction.
- TPM.next should allow multiple sets of algorithms to co-exist at the same time on the same TPM.
 - Give the ability simultaneously to support both local and international standards.
- TPM.next should allow new algorithms to be introduced as needed without having to re-specify the interface.
 - Avoid future upset of the ecosystem when an algorithm is broken or better algorithms are needed.

Summary

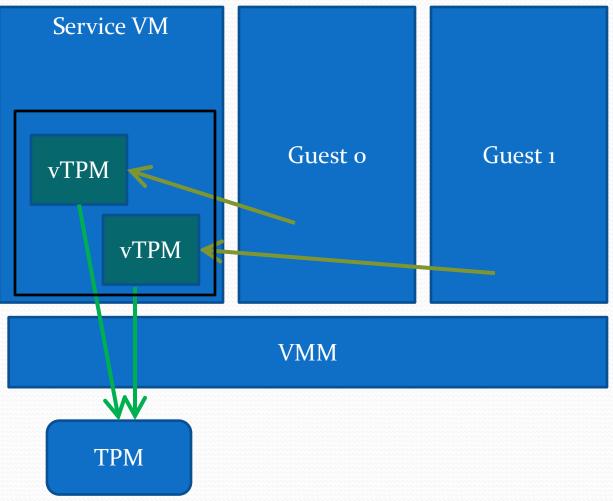
- TPM.next tries to keep the best ideas of the TPM and incorporate the best ideas from the TCM.
- TPM.next tries to improve the sub-optimal parts of the TPM and TCM especially with respect to algorithm flexibility.
- TPM.next is intended to be an international standard that can address local requirements while maintaining software compatibility over a broad range of applications.
- Please join with TCG to create a TPM.next design which will satisfy both China-market and international requirements through a single unified world-wide standard.

Agenda

- Guest lecture: Tolga Acar, Distributed Key Management and Cryptographic Agility
- Hardware crypto tokens
 - Smart cards
 - TPMs (v1.2 & ".Next") tokens for PCs
- Virtualization and virtualized crypto tokens

Virtualization

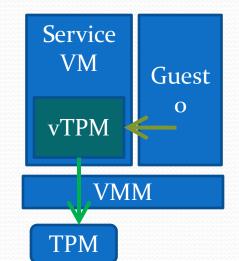
- Sharing a single physical platform among multiple virtual machines (VMs) with *complete isolation* among VMs
- Benefits
 - Consolidation of workloads, Fault tolerance, Extensibility, Ease of Management, Better security


Virtualization

- With increasing h/w support, performance degradation is becoming minimal
- With multi-core, we can envision pervasive adoption
 - Solutions available for server, client, and mobile platforms
 - E.g., virtualized data centers (EC2, Azure)
 - And, Dilbert running his office VM on home computer

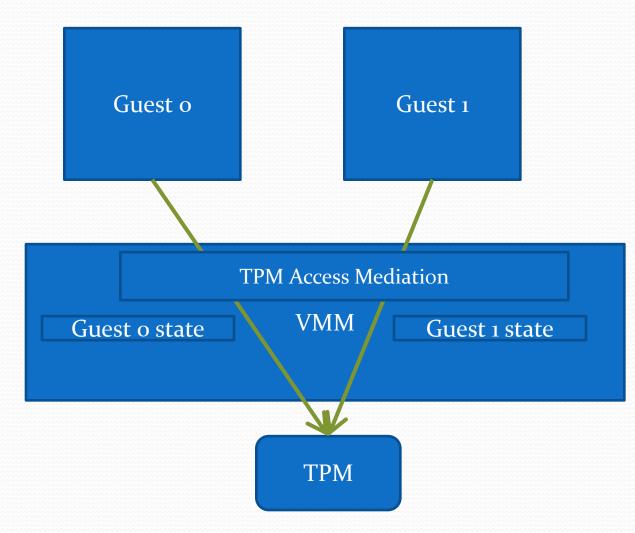
Virtual TPM

- Challenge: physical TPM itself is hard to virtualize
 - By design, TPM resists virtualization
- TPM emulation
 - Complete s/w emulation, TCG interface: vTPM [Berger06]
- Para-virtualized TPM sharing [England08]
 - Hypercall interface with Hv as mediator


vTPM

vTPM

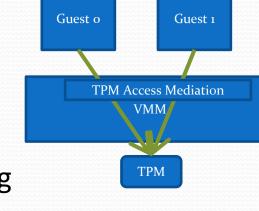
Pros


- Standard TCG interface
- High fidelity: full legacy support
- Vendors can add VM use-cases
 - Migration, suspend/resume, rollback
- Cons
 - Low resistance to physical attack
 - Reduced resistance to software attack
 - Hypervisor is more complex and exposed than TPM embedded OS
 - Trust model for TPM is complex
 - Hypervisor security model influences vTPM security

vTPM

- Each vTPM has its independent key hierarchy
 - EK, SRK, AIKs ...
 - May take extra precaution while storing these in memory
 - Wrapped with physical TPM's SRK?
 - Attestation using vTPM
 - In a manner similar to physical TPM
 - E.g., a signed statement using an AIK that is linked to vTPM's EK

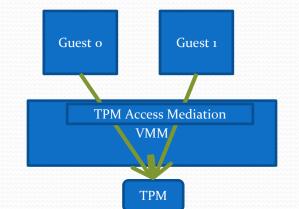

Para-Virtualized TPM Sharing

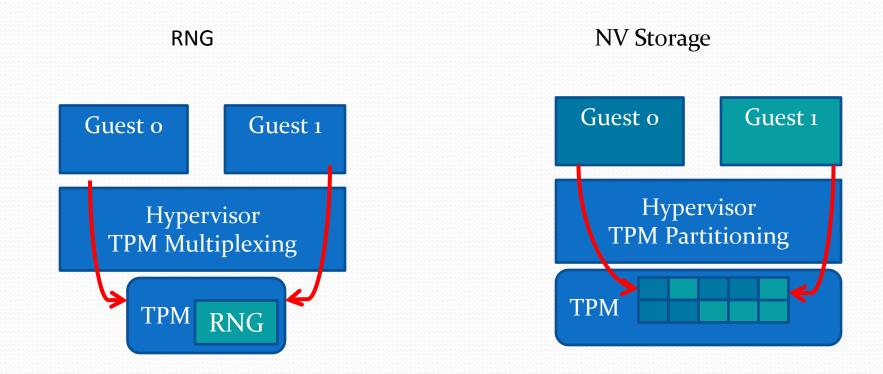


Para-Virtualized TPM Sharing

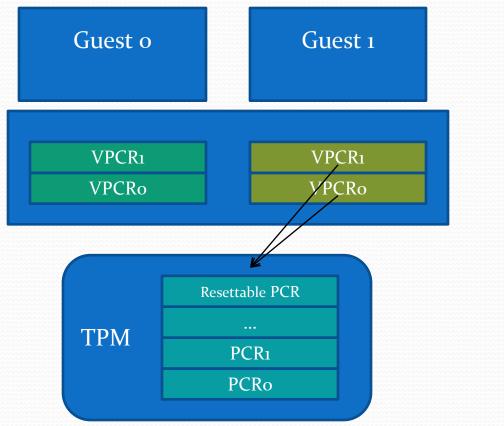
- Roll of Access Mediation Layer
 - Schedule access to TPM
 - Authenticate guests to TPM
 - Store guest measurement in resettable PCR
 - Protect Hv from guests and guests from each other
- Designed as minimal SW-stack for TPM sharing
- Minimal or no *application* changes

Important Observation




Para-Virtualized TPM

Pros


- Simple
- Hardware protection for asymetric keys
- Cons
 - Requires software changes, at least at the library level
 - Hypercall based interface
 - Meaning of seal/unseal/quote
 - Which physical PCRs are mixed?
 - Ordering of vPCRs
 - Actual operation against PCR 15
 - We can only provide a "virtualization-friendly" subset of the TPM
 - similar to OS-friendly subset

Para-Virtualized TPM - Examples

Para-Virtualized TPM - Attestation

HvQuote(TCB, nonce)

PcrReset(15) PcrExtend(15,VPCR1) Quote((0,15), nonce)

Para-Virtualized TPM

- TVP binds a VM to a physical platform
- Must re-establish the key hierarchy after migration
 - Need to signal VM about migration
 - Is this a good thing?

Backup

Practical Aspects of Modern Cryptography