CSE P 590 A Spring 2013 4: MLE, EM

Ι

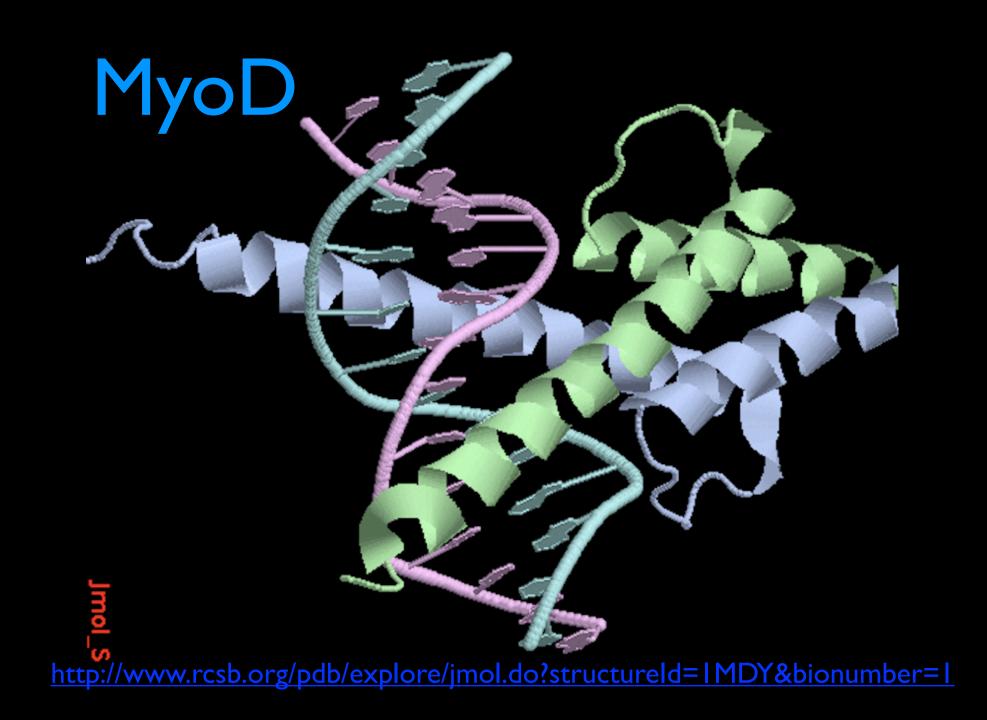
Outline

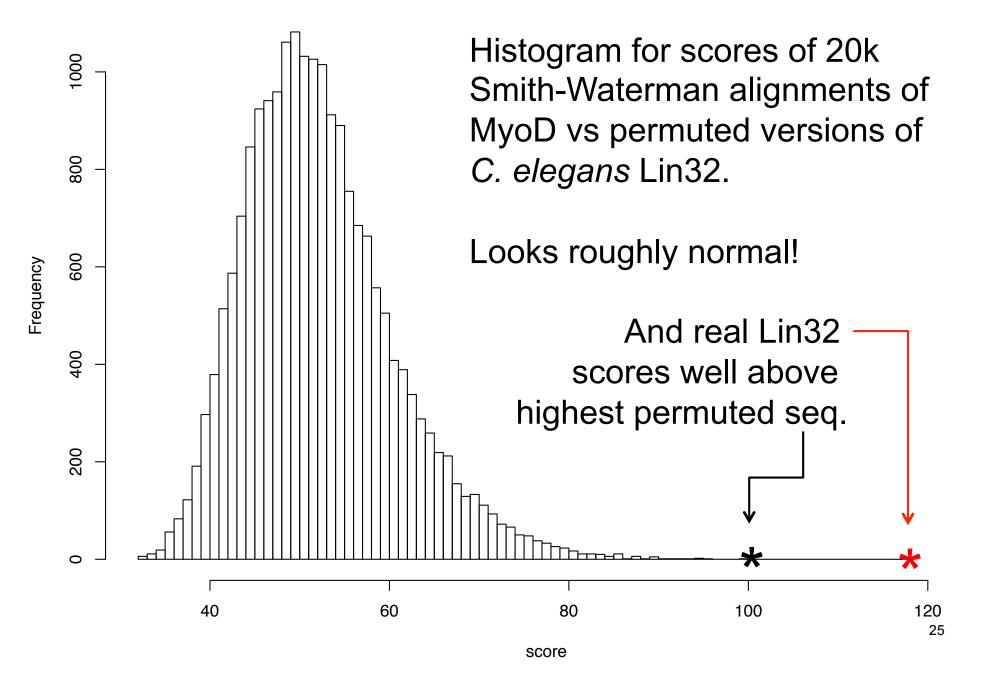
HW#2 Discussion MLE: Maximum Likelihood Estimators EM: the Expectation Maximization Algorithm

Next: Motif description & discovery

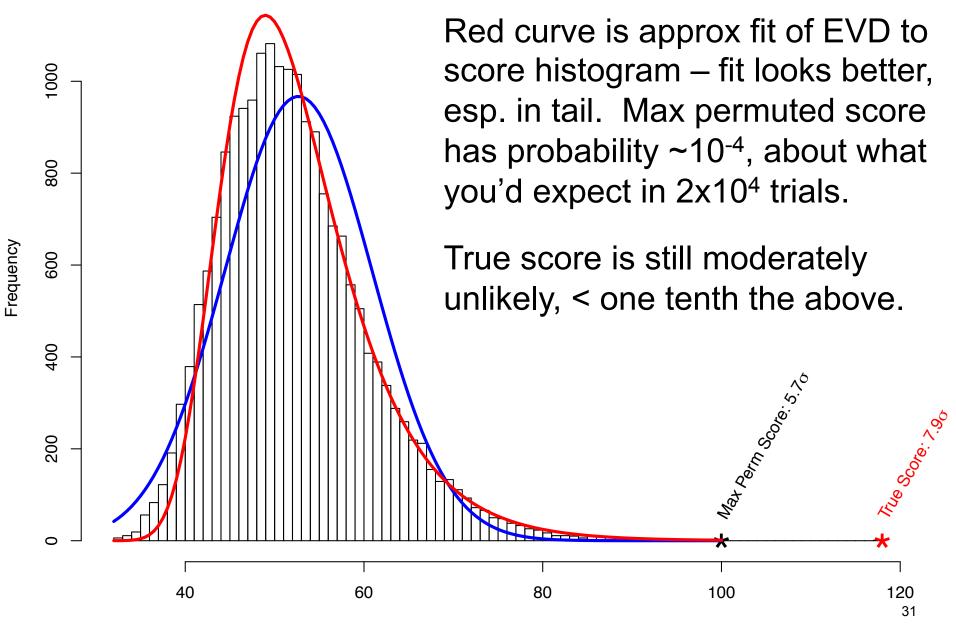
HW # 2 Discussion

	Species	Name	Description	Access -ion	score to #l
I	Homo sapiens (Human)	MYODI_HUMAN	Myoblast determination protein I	P15172	1709
2	Homo sapiens (Human)	TALI_HUMAN	T-cell acute lymphocytic leukemia protein I (TAL-I)	P17542	143
3	<u>Mus musculus (Mouse)</u>	MYOD1_MOUSE	Myoblast determination protein I	P10085	1494
4	<u>Gallus gallus (Chicken)</u>	MYODI_CHICK	Myoblast determination protein I homolog (MYODI homolog)	P16075	1020
5	<u>Xenopus laevis (African clawed frog)</u>	MYODA_XENLA	Myoblast determination protein I homolog A (Myogenic factor I)	P13904	978
6	<u>Danio rerio (Zebrafish)</u>	MYODI_DANRE	Myoblast determination protein I homolog (Myogenic factor I)	Q90477	893
7	<u>Branchiostoma belcheri (Amphioxus)</u>	Q8IU24_BRABE	MyoD-related	Q8IU24	428
8	<u>Drosophila melanogaster (Fruit fly)</u>	MYOD_DROME	Myogenic-determination protein (Protein nautilus) (dMyd)	P22816	368
9	<u>Caenorhabditis elegans</u>	LIN32_CAEEL	Protein lin-32 (Abnormal cell lineage protein 32)	Q10574	118
10	Homo sapiens (Human)	SYFM_HUMAN	Phenylalanyl-tRNA synthetase, mitochondrial	O95363	56





Permutation Score Histogram vs Gaussian



Probability Basics, I

Distribution

$$p_1, \dots, p_6 \ge 0; \sum_{1 \le i \le 6} p_i = 1$$
 $f(x) \ge 0; \int_{\mathbb{R}} f(x) dx = 1$

$$p_1 = \dots = p_6 = 1/6$$
 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$

Mean & Variance. Population / distribution versus sample

Population

$$\label{eq:mean} \begin{array}{ll} \mbox{mean} & \mu = \sum_{1 \leq i \leq 6} i p_i & \mu = \int_{\mathbb{R}} x f(x) dx \\ \mbox{variance} & \sigma^2 = \sum_{1 \leq i \leq 6} (i-\mu)^2 p_i & \sigma^2 = \int_{\mathbb{R}} (x-\mu)^2 f(x) dx \\ \end{array}$$
 Sample

mean
$$ar{x} = \sum_{1 \leq i \leq n} x_i/n$$
 variance $ar{s}^2 = \sum_{1 \leq i \leq n} (x_i - ar{x})^2/n$

Learning From Data: MLE

Maximum Likelihood Estimators

Parameter Estimation

Assuming sample $x_1, x_2, ..., x_n$ is from a parametric distribution $f(x|\theta)$, estimate θ .

E.g.: Given sample HHTTTTTHTHTHTTTHH of (possibly biased) coin flips, estimate

θ = probability of Heads

 $f(x|\theta)$ is the Bernoulli probability mass function with parameter θ

Likelihood

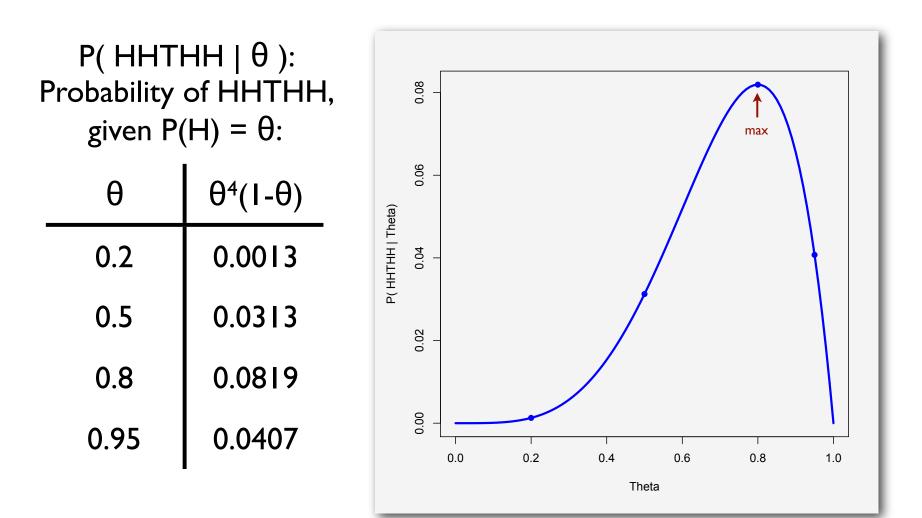
$$\begin{split} \mathsf{P}(\mathsf{x} \mid \theta): \ \mathsf{Probability} \ \mathsf{of} \ \mathsf{event} \ \mathsf{x} \ \mathsf{given} \ \mathit{model} \ \theta \\ \mathsf{Viewed} \ \mathsf{as} \ \mathsf{a} \ \mathsf{function} \ \mathsf{of} \ \mathsf{x} \ (\mathsf{fixed} \ \theta), \ \mathsf{it's} \ \mathsf{a} \ \mathit{probability} \\ \mathsf{E.g.}, \ \Sigma_{\mathsf{x}} \ \mathsf{P}(\mathsf{x} \mid \theta) = \mathsf{I} \end{split}$$

Viewed as a function of θ (fixed x), it's a likelihood E.g., $\Sigma_{\theta} P(x \mid \theta)$ can be anything; relative values of interest. E.g., if θ = prob of heads in a sequence of coin flips then P(HHTHH | .6) > P(HHTHH | .5),

I.e., event HHTHH is more likely when $\theta = .6$ than $\theta = .5$

And what θ make HHTHH most likely?

Likelihood Function



Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est. Likelihood of (indp) observations $x_1, x_2, ..., x_n$

$$L(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$$

As a function of θ , what θ maximizes the likelihood of the data actually observed Typical approach: $\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta) = 0$ or $\frac{\partial}{\partial \theta} \log L(\vec{x} \mid \theta) = 0$

Example I

n coin flips, $x_1, x_2, ..., x_n$; n_0 tails, n_1 heads, $n_0 + n_1 = n$; $dL/d\theta = 0$ θ = probability of heads 0.0015 0.001 $L(x_1, x_2, \dots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$ 0.0005 $\log L(x_1, x_2, \dots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$ $\frac{\partial}{\partial \theta} \log L(x_1, x_2, \dots, x_n \mid \theta) = \frac{-n_0}{1 - \theta} + \frac{n_1}{\theta}$ Setting to zero and solving: Observed fraction of successes in sample is

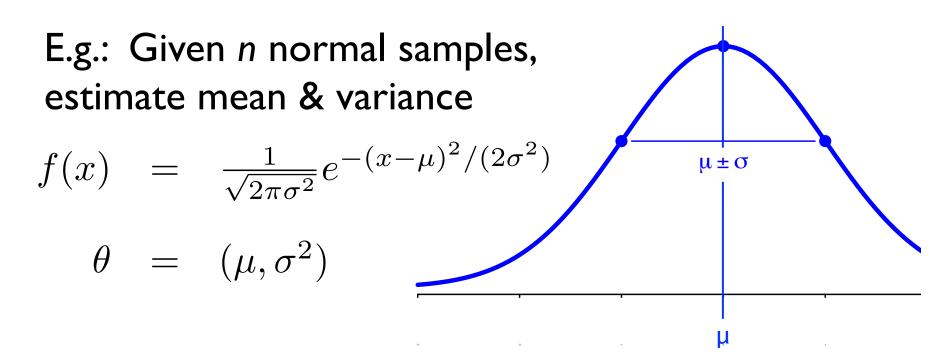
$$\hat{ heta} = rac{n_1}{n}$$

MLE of success probability in *population*

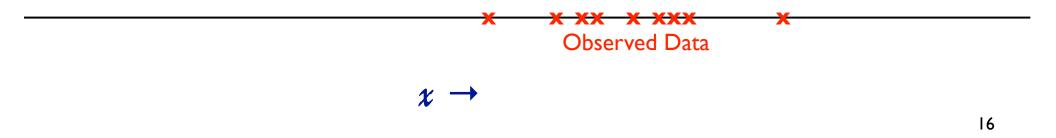
(Also verify it's max, not min, & not better on boundary)

Parameter Estimation

Assuming sample $x_1, x_2, ..., x_n$ is from a parametric distribution $f(x|\theta)$, estimate θ .

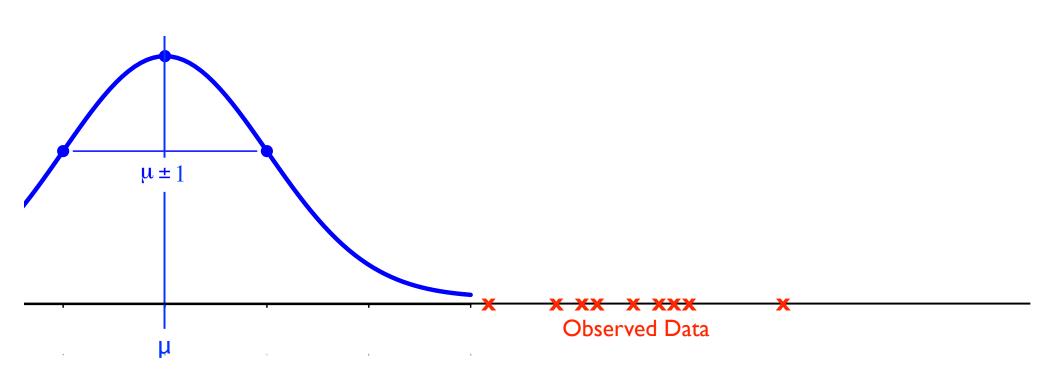


Ex2: I got data; a little birdie tells me it's normal, and promises $\sigma^2 = I$



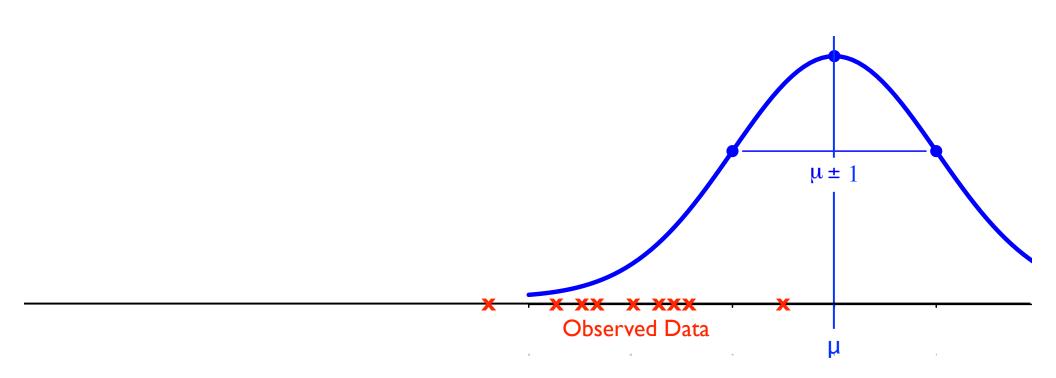
Which is more likely: (a) this?

 μ unknown, $\sigma^2 = 1$



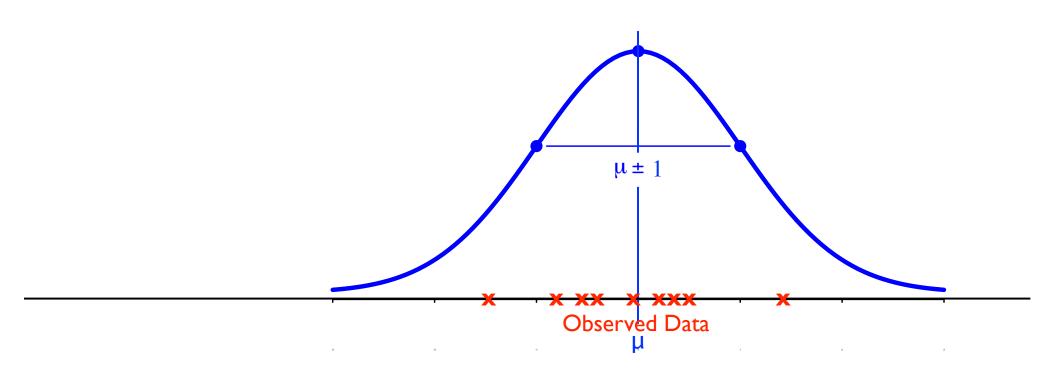
Which is more likely: (b) or this?

 μ unknown, $\sigma^2 = 1$



Which is more likely: (c) or this?

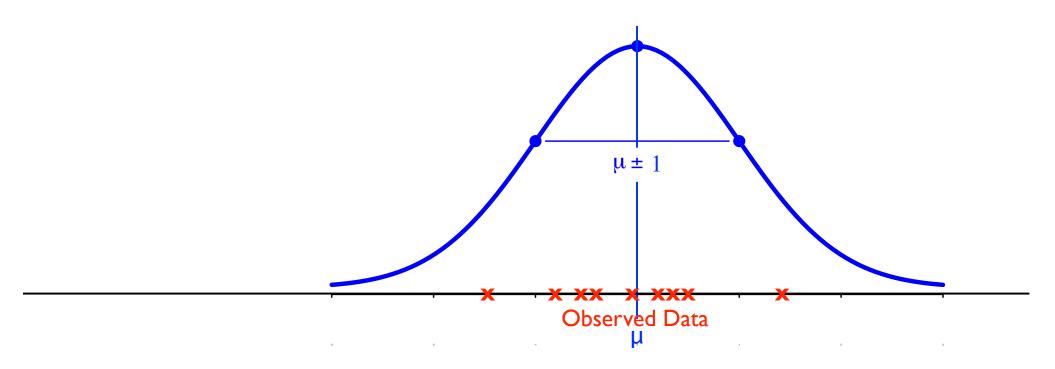
 μ unknown, $\sigma^2 = 1$



Which is more likely: (c) or *this*?

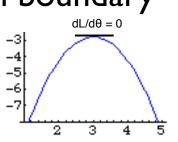
 μ unknown, $\sigma^2 = 1$

Looks good by eye, but how do I optimize my estimate of μ ?



Ex. 2:
$$x_i \sim N(\mu, \sigma^2), \ \sigma^2 = 1, \ \mu$$
 unknown
 $L(x_1, x_2, \dots, x_n | \theta) = \prod_{1 \le i \le n} \frac{1}{\sqrt{2\pi}} e^{-(x_i - \theta)^2/2}$
 $\ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi - \frac{(x_i - \theta)^2}{2}$
 $\frac{d}{d\theta} \ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{1 \le i \le n} (x_i - \theta)$
And verify it's max,
not min & not better $\sum_{n \le i \le n} (x_i - \theta) = 0$

And verify it's max, not min & not better on boundary



$$\hat{\theta} = \left(\sum_{1 \le i \le n} x_i\right) / n = \bar{x}$$

Sample mean is MLE of population mean

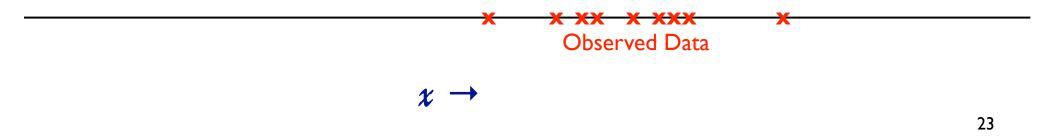
Hmm ..., density ≠ probability

So why is "likelihood" function equal to product of *densities*??

a) for maximizing likelihood, we really only care about *relative* likelihoods, and density captures that and/or

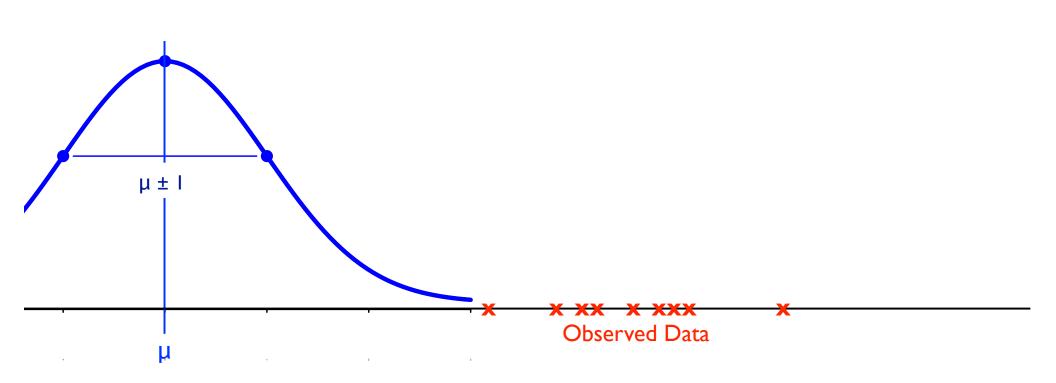
b) if density at x is f(x), for any small $\delta > 0$, the probability of a sample within $\pm \delta/2$ of x is $\approx \delta f(x)$, but δ is *constant* wrt θ , so it just drops out of $d/d\theta \log L(...) = 0$.

Ex3: I got data; a little birdie tells me it's normal (but does *not* tell me μ , σ^2)



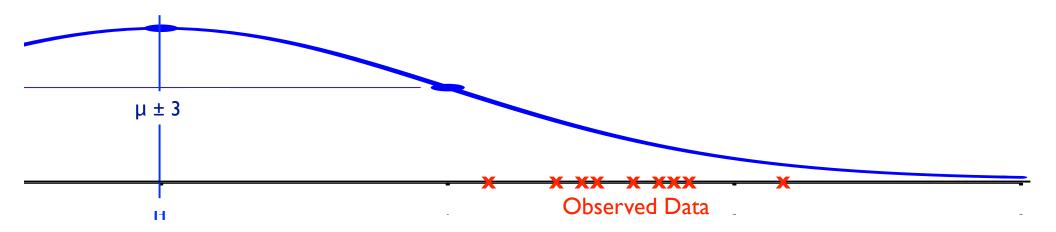
Which is more likely: (a) this?

 μ, σ^2 both unknown



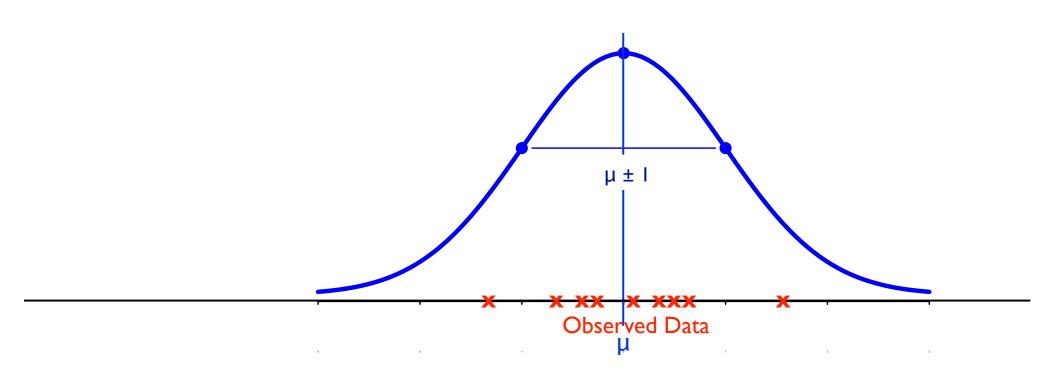
Which is more likely: (b) or this?

 μ, σ^2 both unknown



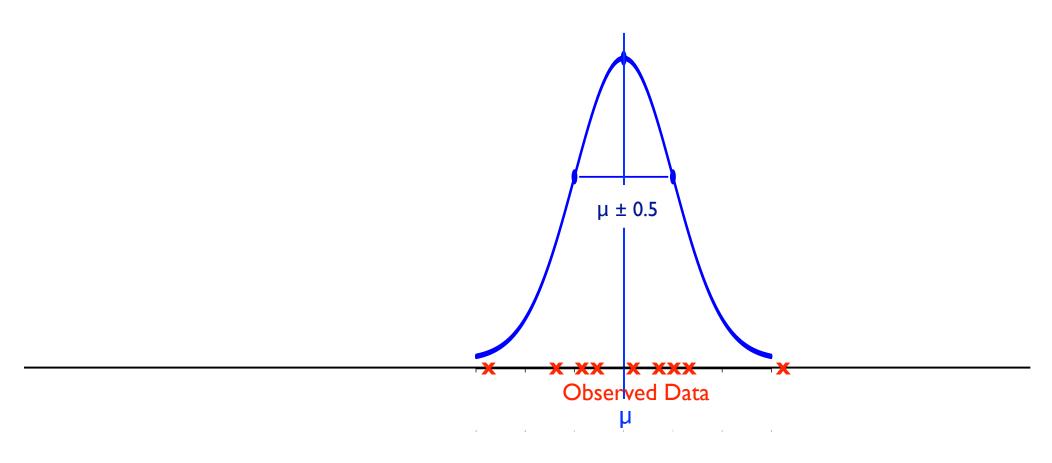
Which is more likely: (c) or this?

 μ, σ^2 both unknown



Which is more likely: (d) or this?

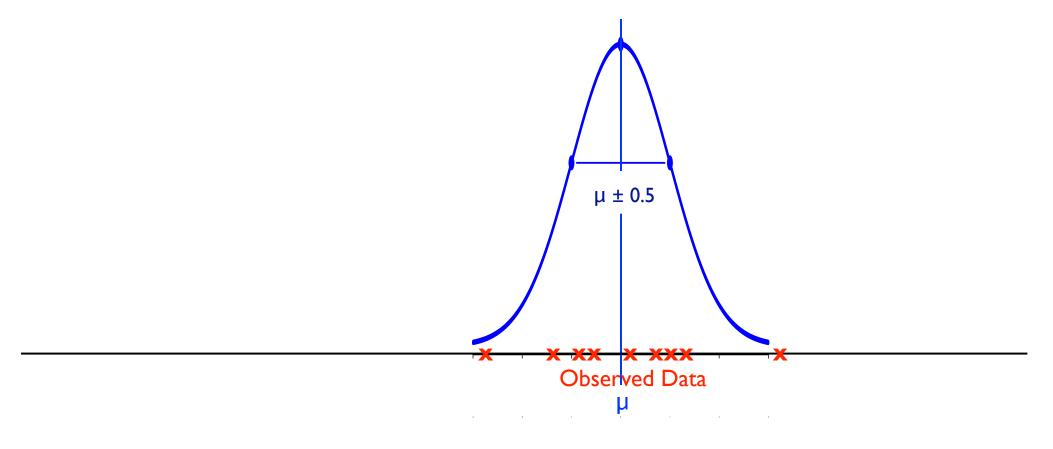
 μ,σ^2 both unknown



Which is more likely: (d) or this?

 μ, σ^2 both unknown

Looks good by eye, but how do I optimize my estimates of $\mu \& \sigma^2$?



Ex 3: $x_i \sim N(\mu, \sigma^2), \ \mu, \sigma^2$ both unknown

 θ_{2}

 θ_1

population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since θ_2 drops out of the $\partial/\partial \theta_1 = 0$ equation 29

Ex. 3, (cont.)

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}$$
$$\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \frac{2\pi}{2\pi \theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2} = 0$$
$$\hat{\theta}_2 = \left(\sum_{1 \le i \le n} (x_i - \hat{\theta}_1)^2 \right) / n = \bar{s}^2$$

Sample variance is MLE of population variance

Summary

MLE is one way to estimate parameters from data

You choose the *form* of the model (normal, binomial, ...)

Math chooses the value(s) of parameter(s)

Has the intuitively appealing property that the parameters maximize the *likelihood* of the observed data; basically just assumes your sample is "representative"

Of course, unusual samples will give bad estimates (estimate normal human heights from a sample of NBA stars?) but that is an unlikely event

Often, but not always, MLE has other desirable properties like being *unbiased*, or at least *consistent*

EM

The Expectation-Maximization Algorithm

A Hat Trick

Two slips of paper in a hat:

Pink: $\mu = 3$, and

Blue: $\mu = 7$.

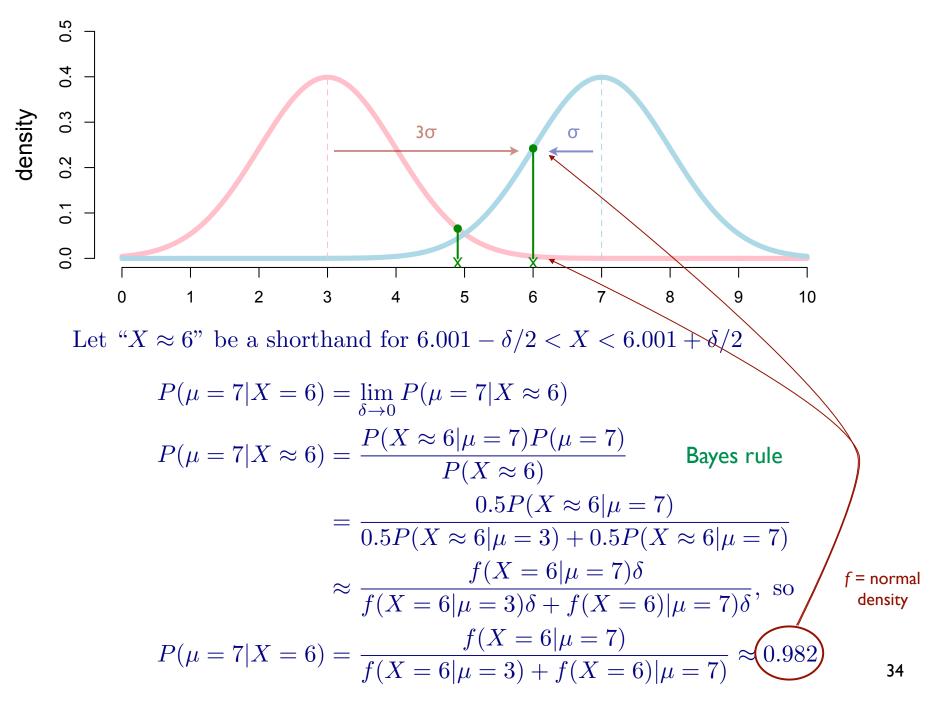
You draw one, then (without revealing color or μ) reveal a single sample X ~Normal(mean μ , $\sigma^2 = 1$).

You happen to draw X = 6.001.

Dr. D. says "your slip = 7." What is P(correct)?

What if X had been 4.9?

A Hat Trick



Another Hat Trick

Two secret numbers, $\mu_{\textit{pink}}$ and $\mu_{\textit{blue}}$

On pink slips, many samples of Normal(μ_{pink} , $\sigma^2 = 1$),

Ditto on blue slips, from Normal($\mu_{blue}, \sigma^2 = 1$).

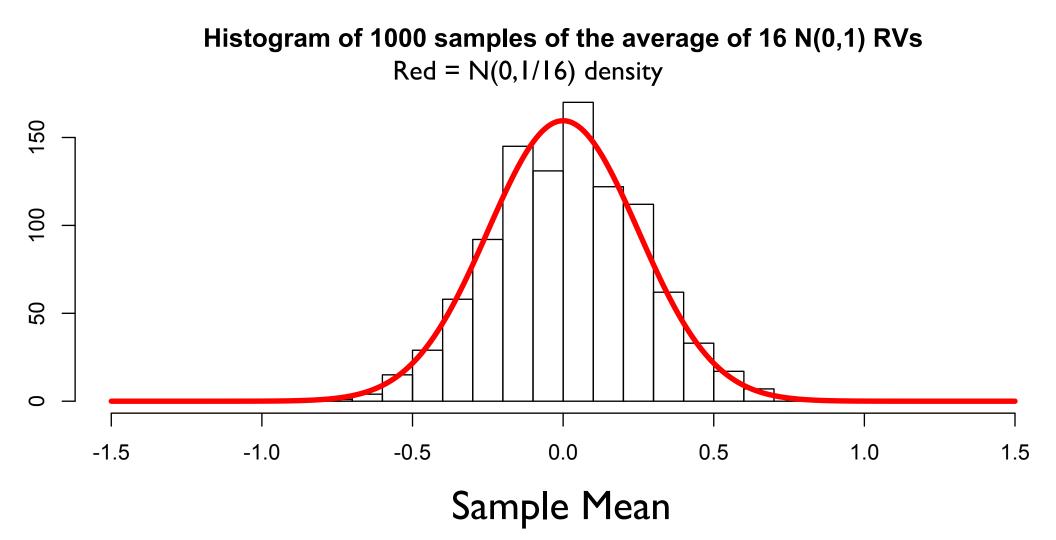
Based on 16 of each, how would you "guess" the secrets (where "success" means your guess is within ±0.5 of each secret)?

Roughly how likely is it that you will succeed?

Hat Trick 2 (cont.)

Pink/blue = red herrings; separate & independent Given X₁, ..., X₁₆ ~ N(μ , σ^2), $\sigma^2 = 1$ Calculate Y = (X₁ + ... + X₁₆)/16 ~ N(?, ?) E[Y] = μ Var(Y) = 16 $\sigma^2/16^2 = \sigma^2/16 = 1/16$ "Y within ±.5 of μ " = "Y within $\mu \pm 2 \sigma_Y$ " ≈ 95% prob

Note I: Y is a point estimate for μ ; Y ± 2 σ is a 95% confidence interval for μ

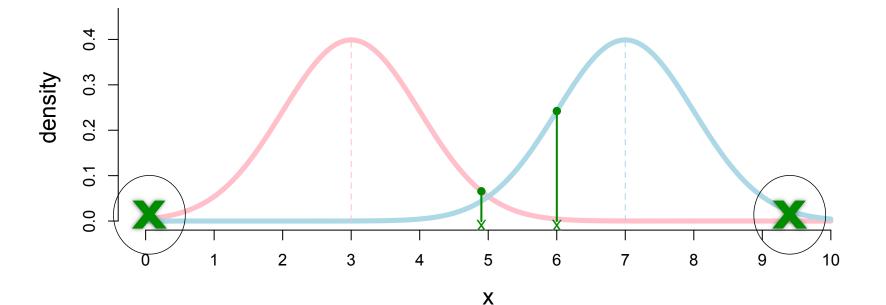


Hat Trick 2 (cont.)

Note 2:

What would you do if some of the slips you pulled had coffee spilled on them, obscuring color?

If they were half way between means of the others? If they were on opposite sides of the means of the others



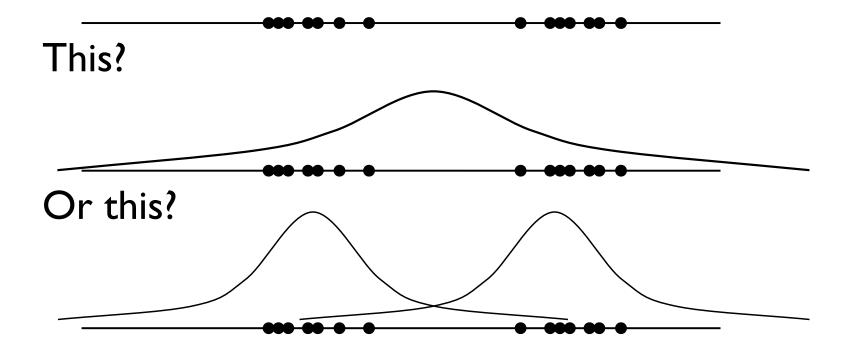
Previously: How to estimate μ given data

For this problem, we got a nice, closed form, solution, allowing calculation of the μ , σ that maximize the likelihood of the observed data.

We're not always so lucky...

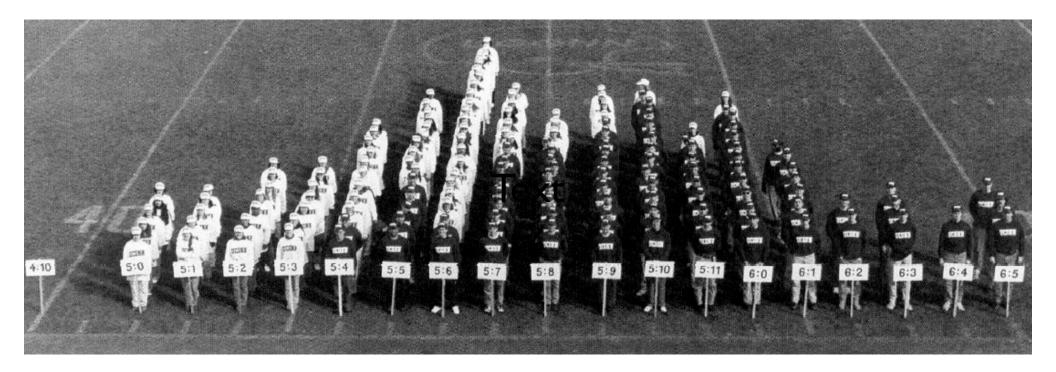
X XX X XXX Observed Data $\mu \pm 1$

μ



(A modeling decision, not a math problem..., but if the later, what math?)

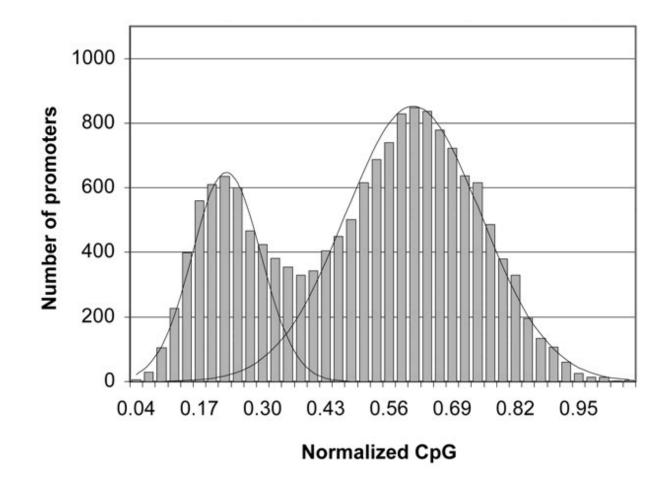
A Living Histogram



male and female genetics students, University of Connecticut in 1996 http://mindprod.com/jgloss/histogram.html

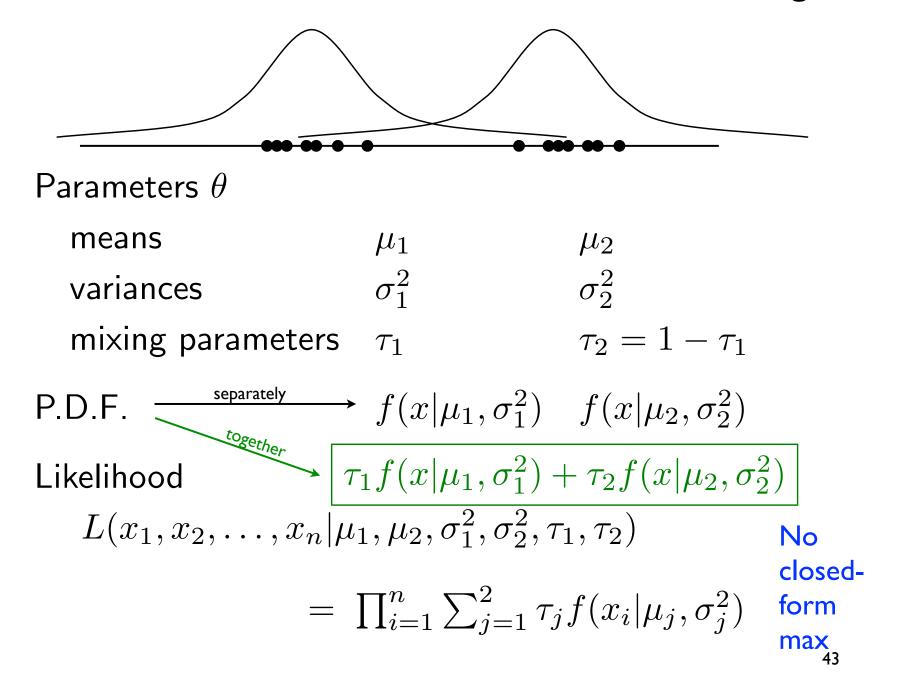
Another Real Example:

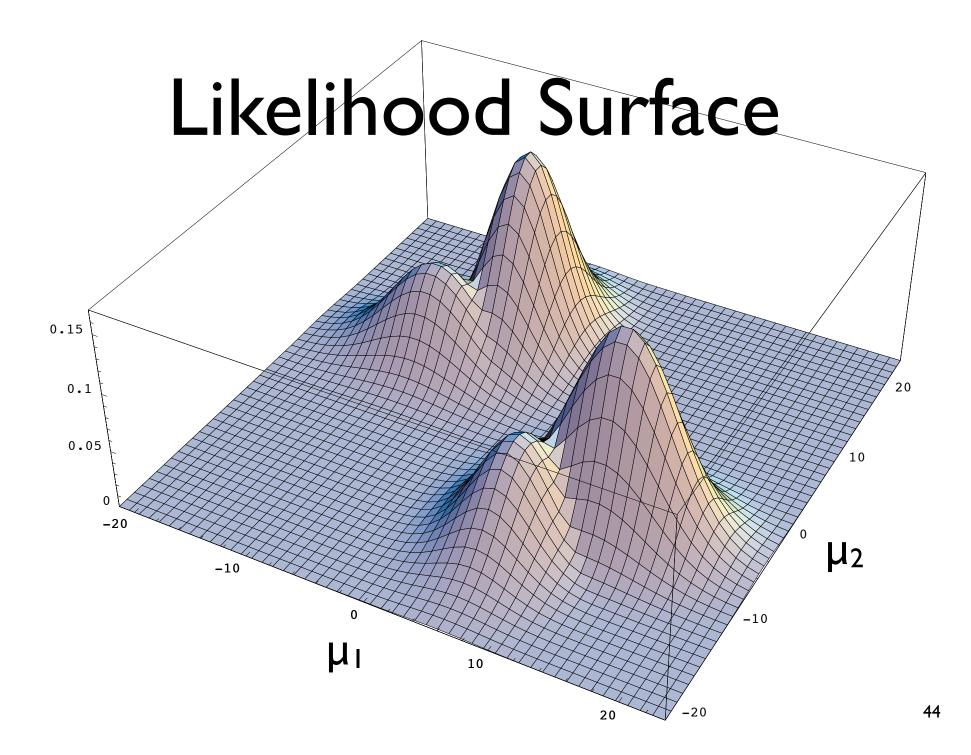
CpG content of human gene promoters

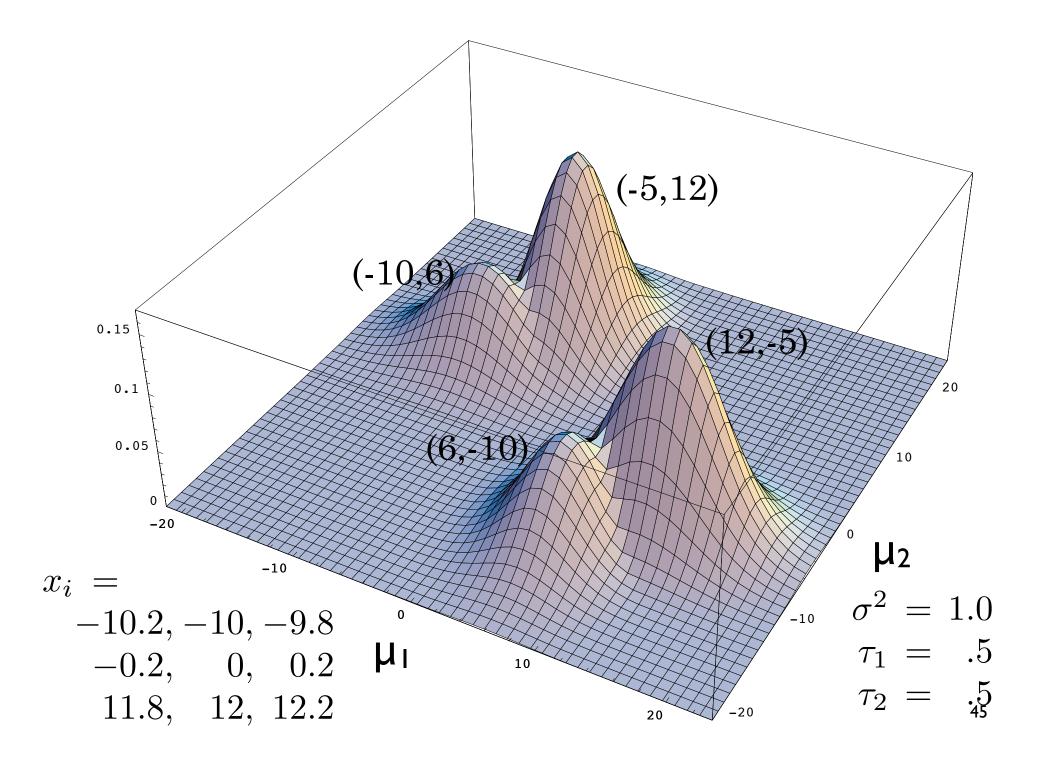


"A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters" Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

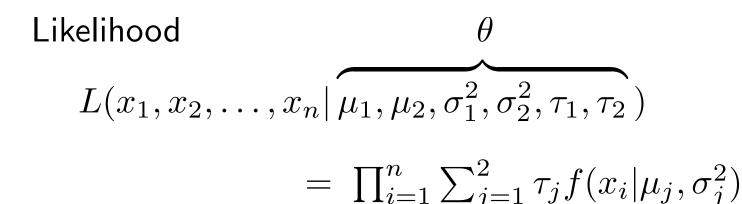
Gaussian Mixture Models / Model-based Clustering







A What-If Puzzle



Messy: no closed form solution known for finding θ maximizing L

But what if we knew the $z_{ij} = \begin{cases} 1 & \text{if } x_i \text{ drawn from } f_j \\ 0 & \text{otherwise} \end{cases}$

EM as Egg vs Chicken

IF z_{ij} known, could estimate parameters θ E.g., only points in cluster 2 influence μ_2 , σ_2 IF parameters θ known, could estimate z_{ij}

E.g.,
$$|\mathbf{x}_i - \mu_1| / \sigma_1 \ll |\mathbf{x}_i - \mu_2| / \sigma_2 \Rightarrow \mathsf{P}[\mathbf{z}_{i1} = \mathbf{I}] \gg \mathsf{P}[\mathbf{z}_{i2} = \mathbf{I}]$$

But we know neither; (optimistically) iterate:

E: calculate expected z_{ij} , given parameters M: calc "MLE" of parameters, given $E(z_{ij})$

Overall, a clever "hill-climbing" strategy

Josef Simple Version: Josef Classification EM"

If $E[z_{ij}] < .5$, pretend $z_{ij} = 0$; $E[z_{ij}] > .5$, pretend it's I I.e., *classify* points as component 0 or I Now recalc θ , assuming that partition (standard MLE) Then recalc $E[z_{ij}]$, assuming that θ Then re-recalc θ , assuming new $E[z_{ij}]$, etc., etc. "Full EM" is a bit more involved, (to account for uncertainty in classification) but this is the crux.

"K-means clustering", essentially

Full EM

 x_i 's are known; θ unknown. Goal is to find MLE θ of:

 $L(x_1,\ldots,x_n \mid heta)$ (hidden data likelihood)

Would be easy if z_{ij} 's were known, i.e., consider:

 $L(x_1,\ldots,x_n,z_{11},z_{12},\ldots,z_{n2}\mid heta)$ (complete data likelihood) But z_{ij} 's aren't known.

Instead, maximize *expected* likelihood of visible data

$$E(L(x_1,...,x_n,z_{11},z_{12},...,z_{n2} \mid \theta)),$$

where expectation is over distribution of hidden data $(z_{ij}$'s)

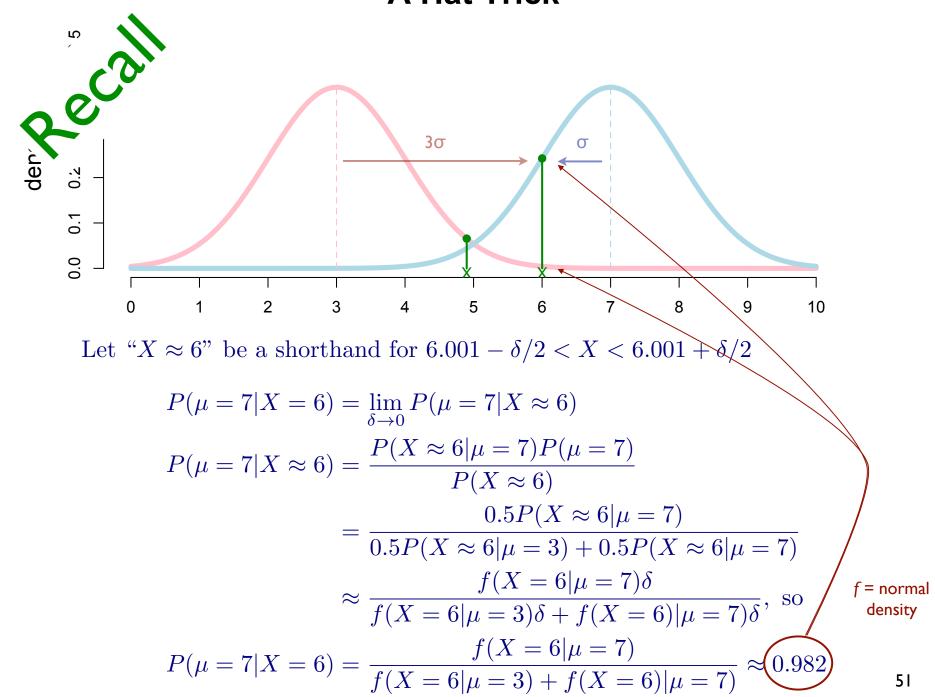
$$\begin{array}{l} \textbf{The E-step:}\\ Find E(z_{ij}), i.e., P(z_{ij}=1) \end{array}$$
Assume θ known & fixed
$$A (B): \text{ the event that } x_i \text{ was drawn from } f_1(f_2) \\ D: \text{ the observed datum } x_i \end{array}$$

$$\begin{array}{l} \textbf{Expected value of } z_{i1} \text{ is } P(A|D) \end{array} \xrightarrow{\textbf{E}_{=} 0.P(0) + 1.P(1)} \\ P(A|D) &= \frac{P(D|A)P(A)}{P(D)} \\ P(D) &= P(D|A)P(A) + P(D|B)P(B) \\ &= f_1(x_i|\theta_1) \tau_1 + f_2(x_i|\theta_2) \tau_2 \end{array}$$

$$\begin{array}{l} \textbf{Repeat for each} \\ \textbf{x}_i \end{array}$$

Note: denominator = sum of numerators - i.e. that which normalizes sum to 1 (typical Bayes)

A Hat Trick



Complete Data Likelihood

Recall:

$$z_{1j} = \begin{cases} 1 & \text{if } x_1 \text{ drawn from } f_j \\ 0 & \text{otherwise} \end{cases}$$

so, correspondingly,

$$L(x_1, z_{1j} \mid \theta) = \begin{cases} \tau_1 f_1(x_1 \mid \theta) & \text{if } z_{11} = 1 \\ \tau_2 f_2(x_1 \mid \theta) & \text{otherwise} \end{cases}$$

Formulas with "if's" are messy; can we blend more smoothly? Yes, many possibilities. Idea 1:

$$L(x_1, z_{1j} \mid \theta) = z_{11} \cdot \tau_1 f_1(x_1 \mid \theta) + z_{12} \cdot \tau_2 f_2(x_1 \mid \theta)$$

Idea 2 (Better):

$$L(x_1, z_{1j} \mid \theta) = (\tau_1 f_1(x_1 \mid \theta))^{z_{11}} \cdot (\tau_2 f_2(x_1 \mid \theta))^{z_{12}}$$

are 0/1

M-step:

Find θ maximizing E(log(Likelihood))

 $\begin{aligned} \text{(For simplicity, assume } \sigma_1 &= \sigma_2 = \sigma; \tau_1 = \tau_2 = .5 = \tau) \\ L(\vec{x}, \vec{z} \mid \theta) &= \prod_{1 \le i \le n} \underbrace{\frac{\tau}{\sqrt{2\pi\sigma^2}} \exp\left(-\sum_{1 \le j \le 2} z_{ij} \frac{(x_i - \mu_j)^2}{(2\sigma^2)}\right)}_{1 \le j \le 2} \\ E[\log L(\vec{x}, \vec{z} \mid \theta)] &= E\left[\sum_{1 \le i \le n} \left(\log \tau - \frac{1}{2}\log 2\pi\sigma^2 - \sum_{1 \le j \le 2} z_{ij} \frac{(x_i - \mu_j)^2}{2\sigma^2}\right)\right] \\ \text{wrt dist of } \mathbf{z}_{ij} \\ &= \sum_{1 \le i \le n} \left(\log \tau - \frac{1}{2}\log 2\pi\sigma^2 - \sum_{1 \le j \le 2} E[z_{ij}] \frac{(x_i - \mu_j)^2}{2\sigma^2}\right) \end{aligned}$

Find θ maximizing this as before, using $E[z_{ij}]$ found in E-step. Result:

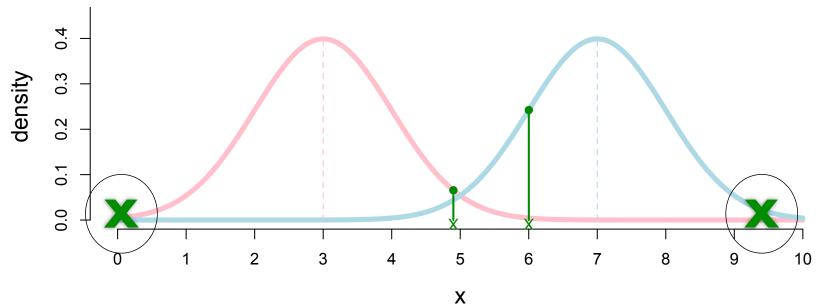
 $\mu_j = \sum_{i=1}^n E[z_{ij}]x_i / \sum_{i=1}^n E[z_{ij}]$ (intuit: avg, weighted by subpop prob)

Hat Trick 2 (cont.)

Note 2: red/blue separation is just like the M-step of EM if values of the hidden variables (z_{ij}) were known.

What if they're not? E.g., what would you do if some of the slips you pulled had coffee spilled on them, obscuring color?

If they were half way between means of the others? If they were on opposite sides of the means of the others



M-step: calculating mu's

$$\left| \mu_j = \sum_{i=1}^n E[z_{ij}] x_i / \sum_{i=1}^n E[z_{ij}] \right|$$
 (intuit

(intuit: avg, weighted by subpop prob)

								row sum	avg	
E's	$E[z_{i1}]$	0.99	0.98	0.7	0.2	0.03	0.01	2.91		
old	$E[z_{i2}]$	0.01	0.02	0.3	0.8	0.97	0.99	3.09		
	Xi	9	10	11	19	20	21	90	15	
	$E[z_{i1}]x_i$	8.9	9.8	7.7	3.8	0.6	0.2	31.0	10.66	
	$E[z_{i1}]x_i$	0.1	0.2	3.3	15.2	19.4	20.8	59.0	19.09	new

2 Component Mixture

 $\sigma_1 = \sigma_2 = 1; \ \tau = 0.5$

		m	1	-20.00		-6.00		-5.00		-4.99
		m	2	6.00		0.00		3.75		3.75
x1	-6	z1	1		5.11E-12		1.00E+00		1.00E+00	
x2	-5	z2	1		2.61E-23		1.00E+00		1.00E+00	
х3	-4	z3	1		1.33E-34		9.98E-01		1.00E+00	
x4	0	z4	1		9.09E-80		1.52E-08		4.11E-03	
x5	4	z5	1		6.19E-125		5.75E-19		2.64E-18	
x6	5	z6	1		3.16E-136		1.43E-21		4.20E-22	
x7	6	z7	1		1.62E-147		3.53E-24		6.69E-26	

Essentially converged in 2 iterations

(Excel spreadsheet on course web)

Applications

Clustering is a remarkably successful exploratory data analysis tool

- Web-search, information retrieval, gene-expression, ...
- Model-based approach above is one of the leading ways to do it

Gaussian mixture models widely used

- With many components, empirically match arbitrary distribution Often well-justified, due to "hidden parameters" driving the visible data
- EM is extremely widely used for "hidden-data" problems Hidden Markov Models – speech recognition, DNA analysis, ...

EM Summary

Fundamentally a maximum likelihood parameter estimation problem

Useful if 0/1 hidden data, and if analysis would be more tractable if hidden data z were known

Iterate:

E-step: estimate E(z) for each z, given θ M-step: estimate θ maximizing E[log likelihood] given E[z] [where "E[logL]" is wrt random z ~ E[z] = p(z=1)]

EM Issues

Under mild assumptions (DEKM sect 11.6), EM is guaranteed to increase likelihood with every E-M iteration, hence will converge. But it may converge to a *local*, not global, max. (Recall the 4-bump surface...) Issue is intrinsic (probably), since EM is often applied to NP-hard problems (including clustering, above and motif-discovery, soon) Nevertheless, widely used, often effective