CSEP 590A Spring 2013

5 - Motifs: Representation \& Discovery

Outline

Previously: Learning from data
MLE: Max Likelihood Estimators
EM: Expectation Maximization (MLE w/hidden data)
These Slides:
Bio: Expression \& regulation
Expression: creation of gene products
Regulation: when/where/how much of each gene product; complex and critical
Comp: using MLE/EM to find regulatory motifs in biological sequence data

Gene Expression \& Regulation

Gene Expression

Recall a gene is a DNA sequence for a protein To say a gene is expressed means that it is transcribed from DNA to RNA the mRNA is processed in various ways is exported from the nucleus (eukaryotes) is translated into protein
A key point: not all genes are expressed all the time, in all cells, or at equal levels

Figure 6-9 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Regulation

In most cells, pro- or eukaryote, easily a 10,000 -fold difference between least- and most-highly expressed genes
Regulation happens at all steps. E.g., some genes are highly transcribed, some are not transcribed at all, some transcripts can be sequestered then released, or rapidly degraded, some are weakly translated, some are very actively translated, ...
Below, focus on Ist step only:

+ transcriptional regulation

E. coli growth on glucose + lactose

The lac Operon and its Control Elements

1965 Nobel Prize

Physiology or Medicine

François Jacob, Jacques Monod, André Lwoff

1920-2013
1910-I976
I902-I994

Sea Urchin - Endol6

DNA Binding Proteins

A variety of DNA binding proteins (so-called "transcription factors"; a significant fraction, perhaps $5-10 \%$, of all human proteins) modulate transcription of protein coding genes

The Double Helix

(a) Computer-generated Image of DNA
(by Mel Prueitt)
(b) Uncoiled DNA Fragment

As shown, the two strands coil
about each other in a fashion such that all the bases project inward toward the helix axis. The two strands are held together by hydrogen bonds (pink rods) linking each base projecting from one backbone to its so-called complementary base projecting from the other backbone. The base A always bonds to T (A and T are comple-

Shown in (b)
is an uncoiled fragment of (a three complementary base pai chemist's viewpoint, each stra a polymer made up of four re called deoxyribonucleotides

Figure 7-7 Molecular Biology of the Cell 5/e (@ Garland Science 2008)

Helix-Turn-Helix DNA Binding Motif

H-T-H Dimers

Figure 7-11 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Bind 2 DNA patches, \sim I turn apart Increases both specificity and affinity

Leucine Zipper Motif

Homo-/hetero-dimers and combinatorial control

We understand some Protein/DNA interactions

Figure 7-25 Molecular Biology of the Cell 5/e (© Garland Science 2008)

But the overall DNA binding "code" still defies prediction

TTK finger 1
igure $7-26$ part 1 of 3 Molecular Biology of the Cell $5 /$ ($(1$ Garland Science 2008)

$$
\begin{aligned}
& \text { GLI finger } 4
\end{aligned}
$$

TTK finger 2

GLI finger 5

Summary

Proteins can bind DNA to regulate gene expression (i.e., production of other proteins \& themselves)

This is widespread
Complex combinatorial control is possible

Sequence Motifs

Motif: "a recurring salient thematic element"
Last few slides described structural motifs in proteins

Equally interesting are the sequence motifs in DNA to which these proteins bind - e.g., one leucine zipper dimer might bind (with varying affinities) to dozens or hundreds of similar sequences

DNA binding site summary

Complex "code"
Short patches (4-8 bp)
Often near each other (1 turn $=10 \mathrm{bp}$)
Often reverse-complements (dimer symmetry)
Not perfect matches

E. coli Promoters

"TATA Box" ~ IObp upstream of transcription start How to define it?
Consensus is TATAAT BUT all differ from it Allow k mismatches?
Equally weighted?
TACGAT
TAAAAT
TATACT
GATAAT
TATGAT
TATGTT
Wildcards like R, Y ? ($\{\mathrm{A}, \mathrm{G}\},\{\mathrm{C}, \mathrm{T}\}$, resp.)

E. coli Promoters

"TATA Box" - consensus TATAAT
~ I Obp upstream of transcription start
Not exact: of 168 studied (mid 80's)

- nearly all had $2 / 3$ of TAxyzT
- 80-90\% had all 3
- 50\% agreed in each of x, y, z
- no perfect match

Other common features at -35 , etc.

TATA Box Frequencies

pos base	1	2	3	4	5	6
A	2	95	26	59	51	1
C	9	2	14	13	20	3
G	10	1	16	15	13	0
T	79	3	44	13	17	96

TATA Scores

A "Weight Matrix Model" or "WMM"

pos base	1	2	3	4	5	6
A	-36	19	1	12	10	-46
C	-15	-36	-8	-9	-3	-31
G	-13	-46	-6	-7	-9	-46
T	17	-31	8	-9	-6	19

score $=10 \log _{2}$ foreground:background odds ratio, rounded

Scanning for TATA

Scanning for TATA

See also slide 58

TATA Scan at 2 genes

Score Distribution
 (Simulated)

10^{4} random 6-mers from foreground (green) or uniform background (red)

Weight Matrices: Statistics

Assume:
$f_{b, i}=$ frequency of base b in position i in TATA
$f_{b}=$ frequency of base b in all sequences

Log likelihood ratio, given $S=B_{1} B_{2} \ldots B_{6}$:

$$
\log \left(\frac{P\left(\left.S\right|^{\text {"tata" }}\right)}{P(S \mid \text { "non-tata" })}\right)=\log \frac{\prod_{i=1}^{6} f_{B_{i}, i}}{\prod_{i=1}^{6} f_{B_{i}}}=\sum_{i=1}^{6} \log \frac{f_{B_{i}, i}}{f_{B_{i}}}
$$

Assumes independence

Neyman-Pearson

Given a sample $x_{1}, x_{2}, \ldots, x_{n}$, from a distribution $f(\ldots \mid \Theta)$ with parameter Θ, want to test hypothesis $\Theta=\theta_{1}$ vs $\Theta=\theta_{2}$.

Might as well look at likelihood ratio:

$$
\frac{f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}\right)}{f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{2}\right)}>\tau
$$

(or log likelihood ratio)

Score Distribution (Simulated)

10^{4} random 6-mers from foreground (green) or uniform background (red)

What's best WMM?

Given, say, 168 sequences $s_{1}, s_{2}, \ldots, s_{k}$ of length 6, assumed to be generated at random according to a WMM defined by $6 \times(4-I)$ parameters θ, what's the best θ ?
E.g., what's MLE for θ given data $s_{1}, s_{2}, \ldots, s_{k}$?

Answer: like coin flips or dice rolls, count frequencies per position (see HW?)

Weight Matrices: Chemistry

Experiments show $\sim 80 \%$ correlation of log likelihood weight matrix scores to measured binding energy of RNA polymerase to variations on TATAAT consensus
[Stormo \& Fields]

Another WMM example

8 Sequences:
ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG
Log-Likelihood Ratio:

$$
\log _{2} \frac{f_{x_{i}, i}}{f_{x_{i}}}, f_{x_{i}}=\frac{1}{4} \quad \text { (uniform } \quad \square
$$

Freq.	Col I	Col 2	Col 3
A	0.625	0	0
C	0	0	0
G	0.250	0	I
T	0.125	I	0

LLR	Col I	Col 2	Col 3
A	1.32	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	0	$-\infty$	2.00
T	-1.00	2.00	$-\infty$

Non-uniform Background

- E. coli - DNA approximately 25% A, C, G,T
- M. jannaschi - 68\% A-T, 32\% G-C

LLR from previous example, assuming

$$
\begin{aligned}
& f_{A}=f_{T}=3 / 8 \\
& f_{C}=f_{G}=1 / 8
\end{aligned}
$$

LLR	Col I	Col 2	Col 3
A	0.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	1.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$

e.g., G in col 3 is $8 \times$ more likely via WMM than background, so ($\log _{2}$) score $=3$ (bits).

Relative Entropy

AKA Kullback-Liebler Divergence, Intuitively"distance", AKA Information Content $\quad \begin{aligned} & \text { but technically not } \\ & \text { since its asymmetric }\end{aligned}$

Given distributions P, Q

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)} \geq 0
$$

Notes:

$$
\begin{aligned}
& \text { Let } P(x) \log \frac{P(x)}{Q(x)}=0 \text { if } P(x)=0\left[\text { since } \lim _{y \rightarrow 0} y \log y=0\right] \\
& \text { Undefined if } 0=Q(x)<P(x)
\end{aligned}
$$

WMM: How "Informative"? Mean score of site vs bkg?

For any fixed length sequence x, let
$P(x)=$ Prob. of x according to WMM
$Q(x)=$ Prob. of x according to background Relative Entropy:

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$

$H(P \| Q)$ is expected log likelihood score of a sequence randomly chosen from WMM (wrt background);
$-H(Q \| P)$ is expected score of Background (wrt WMM)
Expected score difference: $H(P \| Q)+H(Q| | P)$

WMM Scores vs Relative Entropy

On average, foreground model scores > background by II. 8 bits (score difference of II8 on I0x scale used in examples above).

For a WMM:

$$
H(P \| Q)=\sum_{i} H\left(P_{i} \| Q_{i}\right)
$$

where P_{i} and Q_{i} are the WMM/background distributions for column \mathbf{i}.

Proof: exercise
Hint: Use the assumption of independence between WMM columns

WMM Example, cont.

Freq.	Col I	Col 2	Col 3
A	0.625	0	0
C	0	0	0
G	0.250	0	1
T	0.125	I	0

Uniform

LLR	Col I	Col 2	Col 3
A	I.32	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	0	$-\infty$	2.00
T	-1.00	2.00	$-\infty$
RelEnt	0.70	2.00	2.00

LLR	Col I	Col 2	Col 3
A	0.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	1.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$
RelEnt	0.51	1.42	3.00

Pseudocounts

Are the $-\infty$'s a problem?
Certain that a given residue never occurs
in a given position? Then $-\infty$ just right.
Else, it may be a small-sample artifact
Typical fix: add a pseudocount to each observed count-small constant (e.g.,.5, I)
Sounds ad hoc; there is a Bayesian justification

WMM Summary

Weight Matrix Model (aka Position Weight Matrix, PWM, Position Specific Scoring Matrix, PSSM,"possum", Oth order Markov model)
Simple statistical model assuming independence between adjacent positions
To build: count (+ pseudocount) letter frequency per position, log likelihood ratio to background
To scan: add LLRs per position, compare to threshold
Generalizations to higher order models (i.e., letter frequency per position, conditional on neighbor) also possible, with enough training data

How-to Questions

Given aligned motif instances, build model?
Frequency counts (above, maybe w/ pseudocounts)
Given a model, find (probable) instances
Scanning, as above
Given unaligned strings thought to contain a motif, find it? (e.g., upstream regions of coexpressed genes)

Hard ... rest of lecture.

Motif Discovery

Unfortunately, finding a site of max relative entropy in a set of unaligned sequences is NPhard [Akutsu]

Motif Discovery: 4 example approaches

Brute Force
Greedy search
Expectation Maximization
Gibbs sampler

Brute Force

Input:
Motif length L, plus sequences $s_{I}, s_{2}, \ldots, s_{k}$ (all of length $n+L-I$, say), each with one instance of an unknown motif
Algorithm:
Build all k-tuples of length L subsequences, one from each of $s_{1}, s_{2}, \ldots, s_{k}$ (n^{k} such tuples)
Compute relative entropy of each
Pick best

Brute Force, II

Input:
Motif length L, plus seqs $s_{1}, s_{2}, \ldots, s_{k}$ (all of length $n+L-I$, say), each with one instance of an unknown motif
Algorithm in more detail:
Build singletons: each len L subseq of each $s_{l}, s_{2}, \ldots, s_{k}$ (nk sets)
Extend to pairs: len L subseqs of each pair of seqs $\left(n^{2}\binom{k}{2}\right.$ sets $)$
Then triples: len L subseqs of each triple of seqs $\left(n^{3}\binom{k}{3}\right.$ sets)
Repeat until all have k sequences ($n^{k}\binom{k}{k}$ sets)
$(n+1)^{k}$ in total; compute relative entropy of each; pick best

Example

Three sequences (A, B, C), each with two possible motif positions (0,I)

Greedy Best-First

[Hertz, Hartzell \& Stormo, 1989, 1990]

Input:
Sequences $s_{1}, s_{2}, \ldots, s_{k} ;$ motif length L;
"breadth" d, say d=1000
Algorithm:
As in brute, but discard all but best d relative entropies at each stage

Expectation Maximization [MEME, Bailey \& Elkan, 1995]

Input (as above):
Sequence $s_{l}, s_{2}, \ldots, s_{k}$; motif length l; background model; again assume one instance per sequence (variants possible)
Algorithm: EM
Visible data: the sequences
Hidden data: where's the motif

$$
Y_{i, j}= \begin{cases}1 & \text { if motif in sequence } i \text { begins at position } j \\ 0 & \text { otherwise }\end{cases}
$$

Parameters θ : The WMM

MEME Outline

Typical EM algorithm:
Parameters θ^{t} at $t^{\text {th }}$ iteration, used to estimate where the motif instances are (the hidden variables)
Use those estimates to re-estimate the parameters θ to maximize likelihood of observed data, giving θ^{t+1}
Repeat
Key: given a few good matches to best motif, expect to pick more

Expectation Step

(where are the motif instances?)

$$
\begin{aligned}
& \widehat{Y}_{i, j}=E\left(Y_{i, j} \mid s_{i}, \theta^{t}\right) \longrightarrow P\left(Y_{i, j}=1 \mid s_{i}, \theta^{t}\right) \\
&=P\left(s_{i} \mid Y_{i, j}=1, \theta^{t}\right) \frac{P\left(Y_{i, j}=1 \mid \theta^{t}\right)}{P\left(s_{i} \mid \theta^{t}\right)} \\
&=c P\left(s_{i} \mid Y_{i, j}=1, \theta^{t}\right) \\
&=c^{\prime} \prod_{k=1}^{l} P\left(s_{i, j+k-1} \mid \theta^{t}\right) \\
& \text { where } c^{\prime} \text { is chosen so that } \sum_{j} \widehat{Y}_{i, j}=1 .
\end{aligned}
$$

Maximization Step (what is the motif?)

Find θ maximizing expected log likelihood:

$$
\begin{aligned}
Q\left(\theta \mid \theta^{t}\right) & =E_{Y \sim \theta^{t}}[\log P(s, Y \mid \theta)] \\
& =E_{Y \sim \theta^{t}}\left[\log \prod_{i=1}^{k} P\left(s_{i}, Y_{i} \mid \theta\right)\right] \\
& =E_{Y \sim \theta^{t}}\left[\sum_{i=1}^{k} \log P\left(s_{i}, Y_{i} \mid \theta\right)\right] \\
& =E_{Y \sim \theta^{t}}\left[\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} Y_{i, j} \log P\left(s_{i}, Y_{i, j}=1 \mid \theta\right)\right] \\
& =E_{Y \sim \theta^{t}}\left[\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} Y_{i, j} \log \left(P\left(s_{i} \mid Y_{i, j}=1, \theta\right) P\left(Y_{i, j}=1 \mid \theta\right)\right)\right] \\
& =\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} E_{Y \sim \theta^{t}}\left[Y_{i, j}\right] \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C \\
& =\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} \widehat{Y}_{i, j} \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C
\end{aligned}
$$

M-Step (cont.)

$Q\left(\theta \mid \theta^{t}\right)=\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} \widehat{Y}_{i, j} \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C$

Exercise: Show this is maximized by "counting" letter frequencies over all possible motif instances, with counts weighted by $\widehat{Y}_{i, j}$, again the "obvious" thing.
s_{1} : ACGGATT...
$s_{k}:$ GC....TCGGAC

$\widehat{Y}_{1,1}$	ACGG
$\widehat{Y}_{1,2}$	CGGA
$\widehat{Y}_{1,3}$	GGAT
\vdots	\vdots
$\widehat{Y}_{k, l-1}$	CGGA
$\widehat{Y}_{k, l}$	GGAC

Initialization

I. Try every motif-length substring, and use as initial θ a WMM with, say, 80% of weight on that sequence, rest uniform
2. Run a few iterations of each
3. Run best few to convergence
(Having a supercomputer helps):
http://meme.sdsc.edu/

Another Motif Discovery Approach The Gibbs Sampler

Lawrence, et al. "Detecting Subtle Sequence Signals: A
Gibbs Sampling Strategy for Multiple Sequence Alignment," Science 1993

Sigma-37
SpoIIIC
NahR
Antennapedia
NtrC (Brady.)
DicA
MerD
Fis
MAT a1
Lambda cII
Crp (CAP)
Lambda Cro
P22 Cro
AraC
Fnr
HtpR
NtrC (K.a.)
CytR
Deor
GalR
LacI
TetR
TrpR
NifA
SpoIIG
Pin
PurR
EbgR
LexA
P22 cI

223 IIDLTYIQNK SQKETDILGISQMHVSR LQRKAVKKLR
240
111
39
343
466
39
22
90
LDMVMQYTRG NQTRA LMMGINRGTLRK KLKKYGMN
116
42
186
32
29
213
213
269
461
28
40
20
22
43
84
512
495 LIAALEKAGW VQAKAARLIGMTPRQVAY RIQIMDITMP
160 QAGRLIAAGT PRQKYA IIYDVGVSTLLYK TFPAGDK
3 MA TIKDVAKRANVSTTTVSH VINKTRFVAE
3
27 DHISQTGMPP TRAEIAQRLGFRSPNAAE EHLKALARKG
25 SSILNRIAIR GQRKVADALGINESQISR WKGDFIPKMG

222
177
20
20
20
44
42

A25944
A28627
A32837
A23450
B2 6499
B24328 (BVECDA)
C29010
A32142 (DNECFS)
A90983 (JEBY1)
A03579 (QCBP2L)
A03553 (QRECC)
A03577 (RCBPL)
A25867 (RGBP22)
A03554 (RGECA)
A03552 (RGECF)
A00700 (RGECH)
A03564 (RGKBCP)
A24963 (RPECCT)
A24076 (RPECDO)
A03559 (RPECG)
A03558 (RPECL)
A03576 (RPECTN)
A03568 (RPECW)
S02513
S07337
S07958
S08477
S09205
S11945
B25867 (Z1BPC2)

B	Position in site																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Arg	94	222	265	137	9	9	137	137	9	9	9	52	222	94	94	9	265	606
Lys	9	133	442	380	9	71	380	194	9	133	9	9	71	9	9	9	71	256
Glu	53	9	96	401	9	9	140	140	9	9	9	53	140	140	9	9	9	53
Asp	67	9	9	473	9	9	299	125	9	67	9	67	67	9	9	9	9	67
Gln	9	600	224	9	9	9	224	9	9	9	9	9	278	63	278	9	9	170
His	240	9	9	9	9	9	125	125	9	9	9	9	125	125	125	9	9	240
Asn	168	9	9	9	9	9	168	89	9	89	9	248	9	168	89	9	89	89
Ser	117	9	117	117	9	9	9	9	9	9	9	819	63	387	63	9	819	9
Gly	151	9	56	9	9	151	9	9	9	1141	9	151	9	56	9	9	56	9
Ala	9	9	112	43	181	901	43	181	215	9	43	9	43	181	112	- 43	78	9
Thr	915	130	130	9	251	9	9	9	9	9	9	311	130	70	855	9	130	9
Pro	76	9	9	9	9	9	9	9	9	9	9	9	210	210	9	9	9.	9
Cys	9	9	9	9	9	9	9	9	295	581	295	9	9	9	9	9	. 9	9
Val	58	107	9	9	500	9	9	9	156	9	598	9	205	58	9	746	9	58
Leu	9	121	9	9	149	9	93	149	458	9	149	9	37	37	9	177	9	9
Ile	9	166	114	61	323	9	114	166	9	9	427	9.	61	9	61	427	9	61
Met	9	104	9	9	9	9	9	198	198	9	104	9	9	198	9	9	9	9
Tyr	9	9	136	9	9	9	9	262	262	9	9	136	136	9	262	9	262	136
Phe	9	9	9	9	9	9	9	9	9	9	108	9	9	9	9	9	9	9
Trp	9	9	9	9	9	9	9	9	9	9	366	9	9	9	9	9	9	366
						6				10								

Some History

Geman \& Geman, IEEE PAMI I984
Hastings, Biometrika, 1970
Metropolis, Rosenbluth, Rosenbluth, Teller \& Teller,"Equations of State Calculations by Fast Computing Machines,"'J. Chem. Phys. I953

Josiah Williard Gibbs, I839-I903, American physicist, a pioneer of thermodynamics

How to Average

An old problem:
n random variables: $\quad x_{1}, x_{2}, \ldots, x_{k}$
Joint distribution (p.d.f.): $\quad P\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
Some function:
$f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
Want Expected Value:
$E\left(f\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)$

How to Average

$$
E\left(f\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)=
$$

$$
\int_{x_{1}} \int_{x_{2}} \cdots \int_{x_{k}} f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \cdot P\left(x_{1}, x_{2}, \ldots, x_{k}\right) d x_{1} d x_{2} \ldots d x_{k}
$$

Approach I: direct integration
(rarely solvable analytically, esp. in high dim)
Approach 2: numerical integration
(often difficult, e.g., unstable, esp. in high dim)
Approach 3: Monte Carlo integration
sample $\vec{x}^{(1)}, \vec{x}^{(2)}, \ldots \vec{x}^{(n)} \sim P(\vec{x})$ and average:

$$
E(f(\vec{x})) \approx \frac{1}{n} \sum_{i=1}^{n} f\left(\vec{x}^{(i)}\right)
$$

Markov Chain Monte Carlo (MCMC)

- Independent sampling also often hard, but not required for expectation
- MCMC $\vec{X}_{t+1} \sim P\left(\vec{X}_{t+1} \mid \vec{X}_{t}\right)$ w/stationary dist $=p$
- Simplest \& most common: Gibbs Sampling

$$
\dot{P}\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

- Algorithm

$$
\begin{aligned}
& \text { for } \mathrm{t}=\mathrm{I} \text { to } \mathbf{\infty} \\
& \text { for } \mathbf{i}=\mathrm{I} \text { to } \mathrm{k} \text { do : } \\
& x_{t+1, i} \sim P\left(x_{t+1, i} \mid\right. \\
& x_{t+1,1}, x_{t+1,2}, \ldots, x_{t+1, i-1}
\end{aligned}, \frac{t}{\left.x_{t, i+1}, \ldots, x_{t, k}\right)}
$$

家

Input: again assume sequences $s_{1}, s_{2}, \ldots, s_{k}$

 with one length w motif per sequence
Motif model: WMM

Parameters: Where are the motifs?
for $1 \leq i \leq k$, have $1 \leq x_{i} \leq\left|s_{i}\right|-w+1$
"Full conditional": to calc

$$
P\left(x_{i}=j \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

build WMM from motifs in all sequences except i, then calc prob that motif in $i^{\text {th }}$ seq occurs at j by usual "scanning" alg.

Overall Gibbs Alg

Randomly initialize x_{i} 's

for $t=1$ to ∞
for $i=1$ to k discard motif instance from s_{i}; recalc WMM from rest

Similar to

$$
\text { for } j=1 \ldots\left|s_{i}\right|-w+1
$$

MEME, but it
would
calculate prob that $i^{\text {th }}$ motif is at j :
average over, rather than sample from

$$
\Longrightarrow P\left(x_{i}=j \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

pick new x_{i} according to that distribution

Issues

Burnin - how long must we run the chain to reach stationarity?

Mixing - how long a post-burnin sample must we take to get a good sample of the stationary distribution? In particular:

Samples are not independent; may not "move" freely through the sample space
Many isolated modes

Variants \& Extensions

"Phase Shift" - may settle on suboptimal solution that overlaps part of motif.
Periodically try moving all motif instances a few spaces left or right.

Algorithmic adjustment of pattern width: Periodically add/remove flanking positions to maximize (roughly) average relative entropy per position

Multiple patterns per string

Assessing computational tools for the discovery of transcription factor binding sites

Martin Tompa ${ }^{1,2}$, Nan Li 1, Timothy L Bailey ${ }^{3}$, George M Church ${ }^{4}$, Bart De Moor ${ }^{5}$, Eleazar Eskin ${ }^{6}$, Alexander V Favorov ${ }^{7,8}$, Martin C Frith ${ }^{9}$, Yutao Fu ${ }^{9}$, W James Kent ${ }^{10}$, Vsevolod J Makeev ${ }^{7,8}$, Andrei A Mironov ${ }^{7,11}$, William Stafford Noble ${ }^{1,2}$, Giulio Pavesi ${ }^{12}$, Graziano Pesole ${ }^{13}$, Mireille Régnier ${ }^{14}$, Nicolas Simonis ${ }^{15}$, Saurabh Sinha ${ }^{16}$, Gert Thijs ${ }^{5}$, Jacques van Helden ${ }^{15}$, Mathias Vandenbogaert ${ }^{14}$, Zhiping Weng ${ }^{9}$, Christopher Workman ${ }^{17}$, Chun Ye^{18} \& Zhou Zhu ${ }^{4}$

Methodology

13 tools
Real 'motifs' (Transfac)
56 data sets (human, mouse, fly, yeast)
'Real','generic','Markov’
Expert users, top prediction only
"Blind" - sort of

Lessons

Evaluation is hard (esp. when "truth" is unknown)
Accuracy low
partly reflects limitations in evaluation methodology (e.g. \leq I prediction per data set; results better in synth data)
partly reflects difficult task, limited knowledge (e.g. yeast > others)
No clear winner re methods or models

Motif Discovery

Summary

Important problem: a key to understanding gene regulation Hard problem: short, degenerate signals amidst much noise Many variants have been tried, for representation, search, and discovery. We looked at only a few:

Weight matrix models for representation \& search
Greedy, MEME and Gibbs for discovery
Still much room for improvement. Comparative genomics, i.e. cross-species comparison is very promising

