CSE P 590 A

Markov Models and Hidden Markov Models

http://upload.wikimedia.org/wikipedia/commons/b/ba/Calico_cat

Dosage Compensation and X-Inactivation

2 copies (mom/dad) of each chromosome I-23
Mostly, both copies of each gene are expressed
E.g., A B O blood group defined by 2 alleles of I gene

Women (XX) get double dose of X genes (vs XY)?
So, early in embryogenesis:

- One X randomly inactivated in each cell
- Choice maintained in daughter cells

Calico: a major coat color gene is on X

Reminder: Proteins "Read" DNA

Down in the Groove

Different patterns of hydrophobic methyls, potential H bonds, etc. at edges of different base pairs. They're accessible, esp. in major groove

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

DNA Methylation

CpG - 2 adjacent nts, same strand (not Watson-Crick pair; " p " mnemonic for the phosphodiester bond of the DNA backbone)

cytosine

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

DNA Methylation-Why

In vertebrates, it generally silences transcription
(Epigenetics) X -inactivation, imprinting, repression of mobile elements, cancers, aging, and developmental differentiation
E.g., if a stem cell divides, one daughter fated
to be liver, other kidney, need to

(a) turn off liver genes in kidney \& vice versa,
(b) remember that through subsequent divisions

How? One way:
(a) Methylate genes, esp. promoters, to silence them
(b) after \div, DNA methyltransferases convert hemi- to fully-methylated (\& deletion of methyltransferase is embrionic-lethal in mice)
Major exception: promoters of housekeeping genes

"CpG Islands"

Methyl-C mutates to T relatively easily
Net: CpG is less common than expected genome-wide:

$$
f(C p G)<f(C) * f(G)
$$

cytosine

thymine

CpG Islands

CpG Islands

More CpG than elsewhere (say, $\mathrm{CpG} / \mathrm{GpC}>50 \%$)
More C \& G than elsewhere, too (say, C+G>50\%)
Typical length: few 100 to few 1000 bp
Questions
Is a short sequence (say, 200 bp) a CpG island or not?
Given long sequence (say, IO-IO0kb), find CpG islands?

Markov \& Hidden Markov Models

References (see also online reading page):
Eddy, "What is a hidden Markov model?" Nature Biotechnology, 22, \#I0 (2004) I3I5-6.
Durbin, Eddy, Krogh and Mitchison, "Biological Sequence Analysis", Cambridge, 1998 (esp. chs 3, 5)
Rabiner, "A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition," Proceedings of the IEEE, v 77 \#2,Feb 1989, 257-286

Independence

A key issue: Previous models we've talked about assume independence of nucleotides in different positions - definitely unrealistic.

Markov Chains

A sequence x_{1}, x_{2}, \ldots of random variables is a k-th order Markov chain if, for all $i, i^{\text {th }}$ value is independent of all but the previous k values:

$$
P\left(x_{i} \mid \underset{\text { i-i }}{x_{1}, x_{2}, \ldots, x_{i-1}} \longleftrightarrow \stackrel{L}{\longleftrightarrow}\right)=P\left(x_{i} \mid \underset{\text { k typically }<\mathrm{i}-1}{x_{i-k}, x_{i-k+1}, \ldots, x_{i-1}}\right)
$$

Example I: Uniform random ACGT
Example 2: Weight matrix model
Example 3: ACGT, but $\downarrow \operatorname{Pr}($ G following C)

A Markov Model (Ist order)

States: A,C,G,T
Emissions: corresponding letter
Transitions: $a_{s t}=P\left(x_{i}=t \mid x_{i-1}=s\right) \longleftarrow$ Ist order

A Markov Model (Ist order)

States: A,C,G,T
Emissions: corresponding letter
Transitions: $a_{s t}=P\left(x_{i}=t \mid x_{i-1}=s\right)$ Begin/End states

Pr of emitting sequence x

$$
\begin{aligned}
& x \quad=x_{1} x_{2} \ldots x_{n}
\end{aligned}
$$

$$
\begin{aligned}
& =P\left(x_{1}\right) \cdot P\left(x_{2} \mid x_{1}\right) \cdots P\left(x_{n} \mid x_{n-1}, \ldots, x_{1}\right) \\
& \left.=P\left(x_{1}\right) \cdot P\left(x_{2} \mid x_{1}\right) \cdots P\left(x_{n} \mid x_{n-1}\right)\right\rangle_{\text {if } 1 \text { ster }^{t} M C}^{\text {order }} \\
& =P\left(x_{1}\right) \prod_{i=1}^{n-1} a_{x_{i}, x_{i+1}} \\
& =\prod_{i=0}^{n-1} a_{x_{i}, x_{i+1}} \quad \text { (with Begin state) }
\end{aligned}
$$

Training

Max likelihood estimates for transition probabilities are just the frequencies of transitions when emitting the training sequences
E.g., from 48 CpG islands in 60 kbp :

+	A	C	G	T	-	A	C	G	T
A	0.180	0.274	0.426	0.120	A	0.300	0.205	0.285	0.210
C	0.171	0.368	0.274	0.188	C	0.322	0.298	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
T	0.079	0.355	0.384	0.182	T	0.177	0.239	0.292	0.292

Discrimination/Classification

Log likelihood ratio of $\mathrm{CpG}_{\mathrm{p}}$ model vs background model

CpG Island Scores

Figure 3.2 Histogram of length-normalized scores.

What does a 2nd order Markov Model look like?

3rd order?

Questions

Q1: Given a short sequence, is it more likely from feature model or background model? Above
Q2: Given a long sequence, where are the features in it (if any)

Approach I: score 100 bp (e.g.) windows
Pro: simple
Con: arbitrary, fixed length, inflexible
Approach 2: combine $+/$ models.

Combined Model

Emphasis is "Which (hidden) state?" not "Which model?"

Hidden Markov Models (HMMs; Claude Shannon, I948)

States:
Paths:
Transitions:
Emissions:
Observed data: emission sequence
Hidden data: state/transition sequence

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Rolls	
Die	FFFLLLLLLLLLLLLLLL
Viterbi	FFLLLLLLLLLLLL
Rolls	651166453132651245636664631636663162326455236266666625151631
Die	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi	FFFL
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLLFF
Viterbi	LLLLLLLLLLLLFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLEFFFFFFFFFF
Fite	

Figure 3.5

Rolls: Visible data-300 rolls of a die as described above.
Die: Hidden data-which die was actually used for that roll ($F=$ fair, $L=$ loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

Inferring hidden stuff

Joint probability of a given path $\pi \&$ emission sequence x :

$$
P(x, \pi)=a_{0, \pi_{1}} \prod_{i=1}^{n} e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i}, \pi_{i+1}}
$$

But π is hidden; what to do? Some alternatives:
Most probable single path

$$
\pi^{*}=\arg \max _{\pi} P(x, \pi)
$$

Sequence of most probable states

$$
\hat{\pi}_{i}=\arg \max _{k} P\left(\pi_{i}=k \mid x\right)
$$

Etc.

The Viterbi Algorithm: The most probable path

Viterbi finds: $\quad \pi^{*}=\arg \max _{\pi} P(x, \pi)$
Possibly there are 10^{99} paths of prob 10^{-99} (If so, non-Viterbi approaches may be preferable.)
More commonly, one path (+ slight variants) dominate others; Viterbi finds that

Key problem: exponentially many paths π

Unrolling an HMM

Conceptually, sometimes convenient
Note exponentially many paths

Viterbi

$v_{l}(i)=$ probability of the most probable path emitting $x_{1}, x_{2}, \ldots, x_{i}$ and ending in state l

Initialize:
$v_{l}(0)= \begin{cases}1 & \text { if } l=B \text { egin state } \\ 0 & \text { otherwise }\end{cases}$
(1) ${ }^{1} \cdot .$.

General case:
$v_{l}(i+1)=e_{l}\left(x_{i+1}\right) \cdot \max _{k}\left(v_{k}(i) a_{k, l}\right)$

HMM Casino Example

(Excel spreadsheet on web; download \& play...)

HMM Casino Example

(Excel spreadsheet on web; download \& play...)

Viterbi Traceback

Above finds probability of best path
To find the path itself, trace backward to the state k attaining the max at each stage

Rolls	
Die	FFFLLLLLLLLLLLLLLL
Viterbi	FFLLLLLLLLLLLL
Rolls	651166453132651245636664631636663162326455236266666625151631
Die	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi	FFFL
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLLFF
Viterbi	LLLLLLLLLLLLFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLEFFFFFFFFFF
Fite	

Figure 3.5

Rolls: Visible data-300 rolls of a die as described above.
Die: Hidden data-which die was actually used for that roll ($F=$ fair, $L=$ loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

Most probable path \neq Sequence of most probable states

Another example, based on casino dice again
Suppose p(fair \leftrightarrow loaded) transitions are 10^{-99} and roll sequence is IIIII...66666; then fair state is more likely all through I's \& well into the run of 6 's, but eventually loaded wins, and the improbable $\mathrm{F} \rightarrow \mathrm{L}$ transitions make Viterbi $=$ all L .

$$
\begin{aligned}
* & =\text { max prob } \\
\square & =\text { Viterbi }
\end{aligned}
$$

Is Viterbi "best"?

Viterbi finds $\pi^{*}=\arg \max _{\pi} P(x, \pi)$

Most probable (Viterbi) path goes through 5, but most probable state at 2 nd step is 6 (l.e., Viterbi is not the only interesting answer.)

An HMM (unrolled)

Emissions/sequence positions \longrightarrow

Viterbi: best path to each state

Viterbi score:
Viterbi path ${ }^{R}$:

$$
v_{l}(i+1)=e_{l}\left(x_{i+1}\right) \cdot \max _{k}\left(v_{k}(i) a_{k, l}\right)
$$

$$
\operatorname{back}_{l}(i+1)=\arg \max _{k}\left(v_{k}(i) a_{k, l}\right)
$$

The Forward Algorithm

For each state/time, want total probability of all paths leading to it, with given emissions

$$
\begin{aligned}
f_{k}(i) & \triangleq P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) \\
f_{l}(i+1) & =e_{l}\left(x_{i+1}\right) \sum_{k} f_{k}(i) a_{k, l} \\
P(x) & =\sum_{\pi} P(x, \pi)=\sum_{k} f_{k}(n) a_{k, 0}
\end{aligned}
$$

The Backward Algorithm

Similar: for each state/time, want total probability of all paths from it, with given emissions, conditional on that state.

In state k at step i ?

$$
\begin{aligned}
& P\left(x, \pi_{i}=k\right) \\
& \quad=P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right) \cdot P\left(x_{i+1}, \ldots, x_{n} \mid x_{1}, \ldots, x_{i}, \pi_{i}=k\right) \\
& \quad=P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right) \cdot P\left(x_{i+1}, \ldots, x_{n} \mid \pi_{i}=k\right) \\
& \quad=f_{k}(i) \cdot b_{k}(i) \\
& P\left(\pi_{i}=k \mid x\right)=\frac{P\left(x, \pi_{i}=k\right)}{P(x)}=\frac{f_{k}(i) \cdot b_{k}(i)}{P(x)}
\end{aligned}
$$

Posterior Decoding,

Alternative 1: what's the most likely state at step i?

$$
\hat{\pi}_{i}=\arg \max _{k} P\left(\pi_{i}=k \mid x\right)
$$

Note: the sequence of most likely states \neq the most likely sequence of states. May not even be legal!

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Rolls	
Die	FFFLLLLLLLLLLLLLLL
Viterbi	FFLLLLLLLLLLLL
Rolls	651166453132651245636664631636663162326455236266666625151631
Die	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi	FFFL
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLLFF
Viterbi	LLLLLLLLLLLLFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLEFFFFFFFFFF
Fite	

Figure 3.5

Rolls: Visible data-300 rolls of a die as described above.
Die: Hidden data-which die was actually used for that roll ($F=$ fair, $L=$ loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

Posterior Decoding

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

Posterior Decoding, II

Alternative 1: what's most likely state at step i ?

$$
\hat{\pi}_{i}=\arg \max _{k} P\left(\pi_{i}=k \mid x\right)
$$

Alternative 2: given some function $g(k)$ on states, what's its expectation. E.g., what's probability of " + " model in CpG HMM ($g(k)=1$ iff k is " + " state)?

$$
G(i \mid x)=\sum_{k} P\left(\pi_{i}=k \mid x\right) \cdot g(k)
$$

CpG Islands again

Data: 4 I human sequences, totaling 60 kbp , including 48 CpG islands of about Ikbp each

Viterbi:
Found 46 of 48
plus I2I "false positives"
Posterior Decoding: same 2 false negatives plus 236 false positives

Post-process: 46/48
67 false pos

46/48
83 false pos

Post-process: merge within
500; discard < 500

Training

Given model topology \& training sequences, learn transition and emission probabilities

If π known, then MLE is just frequency observed in training data

$$
\begin{array}{ll}
a_{k, l} & =\quad \frac{\text { count of } k \rightarrow l \text { transitions }}{\text { count of } k \rightarrow \text { anywhere transitions }} \\
e_{k}(b) & =\ldots
\end{array}
$$

If π hidden, then use EM :
given π, estimate θ; given θ estimate π; repeat $\}^{2}$ ways

Viterbi Training
 given π, estimate θ; given θ estimate π; repeat

Make initial estimates of parameters θ
Find Viterbi path π for each training sequence
Count transitions/emissions on those paths, getting new θ
Repeat
Not rigorously optimizing desired likelihood, but still useful \& commonly used.
(Arguably good if you're doing Viterbi decoding.)

Baum-Welch Training namems backward alg"

EM: given θ, estimate π ensemble; then re-estimate θ

$$
\begin{aligned}
& P\left(\pi_{i}=k, \pi_{i+1}=l \mid x, \theta\right) \\
& \quad=\frac{f_{k}(i \mid \theta) a_{k, l} e_{l}\left(x_{i+1}\right) b_{l}(i+1 \mid \theta)}{P(x \mid \theta)}
\end{aligned}
$$

Estimated \# of $k \rightarrow l$ transitions $\hat{A}_{k, l}$

$$
=\sum_{\text {training seqs } x^{j}} \sum_{i} P\left(\pi_{i}=k, \pi_{i+1}=l \mid x^{j}, \theta\right)
$$

New estimate $\hat{a}_{k, l}=\frac{\hat{A}_{k, l}}{\sum_{l} \hat{A}_{k, l}}$
Emissions: similar

Log-odds (vs all F) per roll True model 0.101 bits 300-roll est. 0.097 bits 30k-roll est. 0.100 bits (NB: overestimated)

B-W Learned Model

From DEKM

HMMs in Action: Pfam http://pfam.sanger.ac.uk/

Proteins fall into families, both across \& within species
Ex: Globins, GPCRs, Zinc fingers, Leucine zippers,...
Identifying family very useful: suggests function, etc.

So, search \& alignment are both important One very successful approach: profile HMMs

Helix HBA_HUMAN HBB_HUMAN MYG_PHYCA GLB3_CHITP GLB5_PETMA LGB2_LUPLU GLB1_GLYDI Consensus

Helix
HBA_HUMAN HBB_HUMAN MYG_PHYCA GLB3_CHITP GLB5_PETMA LGB2__LUPLU GLB1_GLYDI Consensus

Helix
HBA_HUMAN HBB__HUMAN MYG_PHYCA GLB3_CHITP GLB5_PETMA LGB2_LUPLU GLB1_GLYDI Consensus

AAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBCCCCCCCCCCC ----------VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
---------VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVYPWTQRFFESF
---------VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRF
----------LSADQISTVQASFDKVKG------DPVGILYAVFKADPSIMAKFTQF PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF -------GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F ---------GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F Ls... v a W kv . . g . L. . f. P . F F

DDDDDDDEEEEEEEEEEEEEEEEEEEEE
FFFFFFFFFFFF -DLS-----HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL-GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-K̈GLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF-LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN
t .. . v..Hg kv. a a...l d . a 1. 1 H
FFGGGGGGGGGGGGGGGGGGG
нНннннНннннНнннннннннннннн

Alignment of 7 globins. A-H mark 8 alpha helices. Consensus line: upper case $=6 / 7$, lower $=4 / 7$, dot $=3 / 7$. Could we have a profile (aka weight matrix) w/ indels?

Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM.
$\mathrm{M} \mathrm{j}: \quad$ Match states (20 emission probabilities)
l : \quad Insert states (Background emission probabilities)
$\mathrm{D}_{\mathrm{j}}: \quad$ Delete states (silent - no emission)

Silent States

Example: chain of states, can skip some

Problem: many parameters.
A solution: chain of "silent" states; fewer parameters (but less detailed control)

Algorithms: basically the same.

Using Profile HMM's

Search

Forward or Viterbi
Scoring
Log likelihood (length adjusted)
Log odds vs background
Z scores from either

Alignment
Viterbi

Likelihood vs Odds Scores

Figure 5.5 To the left the length-normalized LL score is shown as a function of sequence length. The right plot shows the same for the log-odds score.

Z-Scores

Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).

Pfam Model Building

Hand-curated "seed" multiple alignments
Train profile HMM from seed alignment Hand-chosen score threshold(s)
Automatic classification/alignment of all other protein sequences
Pfam 25.0 (March 20II, I2273 families; covers
~75\% of human proteins)
Pfam 27.0 (March 2013, I483I families; $\approx 90 \%$)

Model-building refinements

Pseudocounts (count $=0$ common when training with 20 aa's)

$$
e_{i}(a)=\frac{C_{i, a}+A \cdot q_{a}}{\sum_{a} C_{i, a}+A}, \quad A \sim 20, q_{a}=\text { background }
$$

Pseudocount "mixtures", e.g. separate pseudocount vectors for various contexts (hydrophobic regions, buried regions,...)
(~10-20 training sequences)

More refinements

Weighting: may need to down weight highly similar sequences to reflect phylogenetic or sampling biases, etc.
Match/insert assignment: Simple threshold, e.g. " $>50 \%$ gap \Rightarrow insert", may be suboptimal. Can use forward-algorithm-like dynamic programming to compute max a posteriori assignment.

Numerical Issues

Products of many probabilities $\rightarrow 0$
For Viterbi: just add logs
For forward/backward: also work with logs, but you need sums of products, so need "log-of-sum-of-product-of-exp-of-logs", e.g., by table/interpolation

Keep high precision and perhaps scale factor Working with log-odds also helps.

Model structure

Define it as well as you can.
In principle, you can allow all transitions and hope to learn their probabilities from data, but it usually works poorly - too many local optima

Duration Modeling

Self-loop duration: geometric $p^{n}(1-p)$
min, then geometric

"negative binomial"

More general: possible (but slower)

HMM Summary

Inference
Viterbi - best single path
Forward - sum over all paths
Backward - similar
Posterior decoding
Model building
Semi-supervised - typically fix architecture (e.g. profile HMM), then learn parameters
Baum-Welch - training via EM and forward/backward (aka the forward/backward algorithm)
Viterbi training - also "EM", but Viterbi-based

HMM Summary (cont.)

Search:
Viterbi or forward
Scoring:
Odds ratio to background
Z-score
E-values, etc., too
Excellent tools available (SAM, HMMer, Pfam, ...)
A very widely used tool for biosequence analysis

Caenorhabditis elegans

Cell Fate /

Differentiation

Differentiation

Once a cell differentiates, how does it know to stay that way?
"Epigenetics"
Methylation is a large part of the story
Chromatin modification is another part

Chromatin

Figure 4-22 Molecular Biology of the Cell 5/e (© Garland Science 2008)

side view
histone H2A \square histone H2Bhistone H3 \square histone H4

Figure 4-24 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Histone Codes

Figure 4-44a Molecular Biology of the Cell 5/e (\odot Garland Science 2008)
modification state

Differentiation

Once a cell differentiates, how does it know to stay that way?
Methylation is a large part of the story
Chromatin modification is another part
Positive autoregulation of genes is another TF A turns self on (+ others) maintaining A identity
Consequences:
Can't regrow body parts (but salamanders can...)
Can't clone (easily)

Stem Cells

Reservoirs of partially undifferentiated cells in many tissues in the body
Replenish/replace dead/damaged cells
Huge therapeutic potential
Best source? Embryonic tissue
\Rightarrow ethical issues
What about cell cultures
\Rightarrow many are basically tumors

Cloning

Need to "undo" all the epigenetic marking added during differentiation, quench the feedback markers, etc.
Dolly the sheep

OCT 3/4 (Octamer binding transcription factor 3/4)
Transcription factor that binds to the octamer motif (5 '-ATTTGCAT-3'). Forms a trimeric complex with SOX2 on DNA and controls the expression of a number of genes involved in embryonic development such as YESI, FGF4, UTFI and ZFP206. Critical for early embryogenesis and for embryonic stem cell pluripotency.
http://www.uniprot.org/uniprot/Q01860

SOX2 (SRY-related high-mobility-group (HMG)-box protein 2)
Transcription factor that forms a trimeric complex with OCT4 on DNA and controls the expression of a number of genes involved in embryonic development such as YESI, FGF4, UTFI and ZFP206. Critical for early embryogenesis and for embryonic stem cell pluripotency
http://www.uniprot.org/uniprot/P4843I

Klf4 (kruppel-like factor 4)

Zinc-finger transcription factor. Contains 3 C 2 H 2 -type zinc fingers. May act as a transcriptional activator. Binds the CACCC core sequence. May be involved in the differentiation of epithelial cells and may also function in the development of the skeleton and kidney.
http://www.uniprot.org/uniprot/O43474

MYC (Myc proto-oncogene)
Basic helix-loop-helix transcription factor. Binds DNA both in a non-specific manner and also specifically recognizes the core sequence 5'-CAC[GA]TG-3'. Seems to activate the transcription of growth-related genes. Efficient DNA binding requires dimerization with another bHLH protein. Binds DNA as a heterodimer with MAX. Interacts with TAFIC, SPAG9, PARPI0, JARIDIA and JARIDIB.
http://www.uniprot.org/uniprot/POI IO6

Stem Cells Again

Great recent progress in making equiv of embryonic stem cells from adult tissues

Takahashi \& Yamanaka, Cell, 2006

Key? Transfect genes for those 4 transcription factors!

Issues

Myc is a proto-oncogene
Long term stability of derived cells with unnatural expression of these genes is unclear
Delivery: Retro virus
may do damage during integration

Recent Progress

2007: Some other gene combinations work, without Myc

2008: Can use adenoviruses
E.g., Stadtfeld, Nagaya, Utikal, Weir, Hochedlinger, Science, Sept 2008.

Coat color pattern reflects "chimeric" animals otherwise normal, but mosaic of "induced pluripotent stem cells" \& normal cells, grown from embryonic fusion

Stadtfeld, et al.,

Ditto in brain section

