CSEP 590 A Spring 2013

Phylogenies: Parsimony Plus a Tantalizing Taste of Likelihood

Phylogenies (aka Evolutionary Trees)

"Nothing in biology makes sense, except in the light of evolution"
-- Theodosius Dobzhansky, I973

Comb Jellies: Evolutionary enigma

http://www.sciencenews.org/view/feature/id/350l20/description/Evolutionary_enigmas

TREE OF LIFE

Diagrams depict the history of animal lineages as they evolved over time. Each branch represents a lineage that shares an ancestor with all of the animals that branch after the point where it splits from the tree. Biologists traditionally build trees by comparing species' anatomies; now they also compare DNA sequences.

	Comb jelly	Sponge	Cnidarian	Bilaterians
DNA polymerase important for cell replication	X	X	X	X
Wht hairpin 3 involved in embryonic development and cell division			X	X
HOX proteins pattern bodies during development and help form nerve cells			X	X
microRNA helps to regulate gene activity		X	X	X
Drosha cooperates with Pasha to make microRNA		X	X	X
Pasha cooperates with Drosha to make microRNA		X	X	X
Voltage gated channels (types L, N/P/Q and T) for nerve cell communication			X	X
PAX Homeobox proteins help embryos develop features such as eyes		X	X	X

A Complex Question:

Given data (sequences, anatomy, ...) infer the phylogeny

A Simpler Question:
Given data and a phylogeny, evaluate "how much change" is needed to fit data to tree
(The former question is usually tackled by sampling tree topologies \& comparing them by the later metric...)

Parsimony

General idea ~ Occam's Razor:
Given data where change is rare, prefer an explanation that requires few events

Human A T G A T ...
Chimp A T G A T ...
Gorilla A T G A G ...
Rat A T G C G ...
Mouse A T G C T ...

Parsimony

General idea ~ Occam's Razor:
Given data where change is rare, prefer an explanation that requires few events

Parsimony

General idea ~ Occam's Razor:
Given data where change is rare, prefer an explanation that requires few events

Parsimony

General idea ~ Occam's Razor:
Given data where change is rare, prefer an explanation that requires few events

Parsimony

General idea ~ Occam's Razor:
Given data where change is rare, prefer an explanation that requires few events

Parsimony

General idea ~ Occam's Razor:
Given data where change is rare, prefer an explanation that requires few events

Counting Events Parsimoniously

Lesson of example - no unique reconstruction
But there is a unique minimum number, of course How to find it?

Early solutions 1965-75

Sankoff \& Rousseau, ‘75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

Sankoff-Rousseau Recurrence

$P_{u}(s)=$ best parsimony score of subtree rooted at

 node u, assuming u is labeled by character sFor Leaf u :

$$
P_{u}(s)= \begin{cases}0 & \text { if } u \text { is a leaf labeled } s \\ \infty & \text { if } u \text { is a leaf not labeled } s\end{cases}
$$

For Internal node u :

$$
P_{u}(s)=\sum_{v \in \operatorname{child}(u)} \min _{t \in\{A, C, G, T\}} \operatorname{cost}(s, t)+P_{v}(t)
$$

Time: O (alphabet ${ }^{2} \times$ tree size)

Sankoff \& Rousseau,‘75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

Sankoff \& Rousseau,‘75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

$P_{u}(s)=\sum_{v \in \operatorname{child}(u)}$	$\operatorname{cost}(s, t)+P_{v}(t)$				
	s	v	t	$\operatorname{cost}(\mathrm{s}, \mathrm{t})+\mathrm{P}_{\mathrm{v}}(\mathrm{t})$	min
	A	v_{1}	A	$0+\infty$	I
			C	$1+\infty$	
			G	$1+\infty$	
U A C G T			T	$1+0$	
2 2 2 0		v_{2}	A	$0+\infty$	1
			C	$1+\infty$	
$A \subset C$ T A C G T			G	$1+\infty$	
∞ ∞ ∞ 0 ∞ ∞ ∞ 0			T	$1+0$	
$\begin{array}{lll}\mathrm{T} & \mathrm{T} & v_{2}\end{array}$				sum: $P_{u}(s)=$	2

Sankoff \& Rousseau,‘75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

Which tree is better?

Which has smaller parsimony score?
Which is more likely, assuming edge length proportional to evolutionary rate?

Parsimony - Generalities

Parsimony is not the best way to evaluate a phylogeny (maximum likelihood generally preferred - as previous slide suggests)

But it is a natural approach, works well in many cases, and is fast.

Finding the best tree: a much harder problem
Much is known about these problems; Inferring Phylogenies by Joe Felsenstein is a great resource.

Phylogenetic Footprinting

A lovely extension of the above ideas. E.g., suppose promoters of orthologous genes in multiple species all contain (variants of) a common k-base transcription factor binding site. Roughly as above, but 4^{k} table entries per node...
I. M Blanchette, B Schwikowski, M Tompa, Algorithms for

Phylogenetic Footprinting.J Comp Biol, vol. 9, no. 2, 2002, 2 II-223
2. M Blanchette and M Tompa, FootPrinter: a Program Designed for Phylogenetic Footprinting. Nucleic Acids Research, vol. 3I, no. 13, July 2003, 3840-3842

