Announcements

Ed Discussion Board

Recitation sessions:

- Review of proof techniques and probability
- Location: Thursday, April 7, 7:30-8:30 PM, Zoom

Deadlines next Wed, 6 PM:

- HW1
- Colab 2 (You can submit many times and will get immediate feedback)

For office hours - please check our website
How to find teammates for project?

- Ed Discussion Board
- Make sure you have a good dataset accessible

If you cannot attend our final project presentations (Monday, June 6, 6:30-9:20pm), please email course staff. Attendance is required.

Please continue to give us feedback (Link to Google form on Ed)
Concern about workload: We respect everyone's time and responsibilities. Relative to the non-PMP version of the course we have reduced homework requirements. Most (theory) questions have partial credit opportunities. Nobody expects 100/100 homeworks. Grades will be curved in the end. What is most important to us, is to support your learning.

Finding Similar Items: Locality Sensitive Hashing

CSEP590A Machine Learning for Big Data
Tim Althoff

New thread: High dim. data

Pinterest Visual Search

Given a query image patch, find similar images

Visually similar results

tribeca franklin
chandeliers franklin tribeca

Tribeca Franklin
Tribeca Fran
Chandelier

Menu Tribeca
Series Franklin Series Franklin Chandelier

WOHNWUNDE

- LAMPEN.

Heidid Risku
Green or greenish walls

Carta Ve
Home
Nest.co.uk
Tansin Paola
Lighting

$\underset{\substack{\text { Karin Daar } \\ \text { Belysning }}}{ }$

How does it work?

- Collect billions of images
- Determine feature vector for each image (4k dim)
- Given a query Q, find nearest neighbors FAST

How does it work?

Application: Visual Search

Visually similar results

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
- Find near-neighbors in high-dimensional space
- Examples:
- Pages with similar words
- For duplicate detection, classification by topic
- Customers who purchased similar products
- Products with similar customer sets
- Images with similar features
- Image completion
- Recommendations and search

Problem for today's lecture

- Given: High dimensional data points x_{1}, x_{2}, \ldots
- For example:
- An image is a long vector of pixel colors
- A documents might be a bag-of-words or set of shingles
- And some distance function $d\left(x_{1}, x_{2}\right)$
" which quantifies the "distance" between x_{1} and x_{2}
- Goal: Find all pairs of data points $\left(x_{i}, x_{j}\right)$ that are within distance threshold $\boldsymbol{d}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right) \leq \boldsymbol{s}$
- Note: Naïve solution would take $\boldsymbol{O}\left(N^{2}\right)$ where \boldsymbol{N} is the number of data points
- MAGIC: This can be done in $O(N)!$! How??

LSH: Locality Sensitive Hashing

- LSH is really a family of related techniques
- In general, one throws items into buckets using several different hash functions
- You examine only those pairs of items that share a bucket for at least one of these hash functions
- Upside: Designed correctly, only a small fraction of pairs are ever examined
- Downside: There are false negatives - pairs of similar items that never even get considered general hashing locality-sensitive hashing

Motivating Application: Finding Similar Documents

Motivation for Min-Hash/LSH

- Suppose we need to find near-duplicate documents among $N=1$ million documents
- Naïvely, we would have to compute pairwise similarities for every pair of docs
- $N(N-1) / 2 \approx 5 * 10^{11}$ comparisons
- At 10^{5} secs/day and 10^{6} comparisons/sec, it would take 5 days
- For $\boldsymbol{N}=\mathbf{1 0}$ million, it takes more than a year...
- Similarly, we have a dataset of 3b images, quickly find the most similar to query image \mathbf{Q}

3 Essential Steps for Similar Docs

1. Shingling: Converts a document into a set representation (Boolean vector)
2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

- Candidate pairs!

The Big Picture

Step 1: Shingling:

Convert a document into a set

Documents as High-Dim Data

Step 1: Shingling: Converts a document into a set

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
- Tokens can be characters, words or something else, depending on the application
- Assume tokens = characters for lecture examples
- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its k-shingles

Compressing Shingles

- Example: $\mathbf{k}=\mathbf{2}$; document $\mathbf{D}_{\mathbf{1}}=$ abcab Set of 2-shingles: $\mathbf{S}\left(\mathrm{D}_{1}\right)=\{\mathrm{ab}, \mathrm{bc}, \mathrm{ca}\}$ Hash the shingles: $h\left(D_{1}\right)=\{1,5,7\}$
- $\boldsymbol{k}=8,9$, or 10 is often used in practice
- Benefits of shingles:
- Documents that are intuitively similar will have many shingles in common
- Changing a word only affects k-shingles within distance k -1 from the word

Similarity Metric for Shingles

- Document D_{1} is represented by a SET of its k shingles $\mathrm{C}_{1}=\mathrm{S}\left(\mathrm{D}_{1}\right)$
- A natural similarity measure is the Jaccard similarity:

$$
\operatorname{sim}\left(D_{1}, D_{2}\right)=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|
$$

Jaccard distance: $d\left(C_{1}, C_{2}\right)=1-\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|$

3 in intersection.
8 in union.
Jaccard similarity
$=3 / 8$

From Sets to Boolean Matrices

Encode sets using 0/1 (bit, Boolean) vectors

- Rows = elements (shingles)
- Columns = sets (documents)
- 1 in row \boldsymbol{e} and column s if and only if \boldsymbol{e} is a member of \boldsymbol{s}
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!
- Each document is a column:
- Example: $\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=$?
- Size of intersection = 3; size of union $=6$, Jaccard similarity (not distance) $=3 / 6$
- $d\left(C_{1}, C_{2}\right)=1$ - (Jaccard similarity) = 3/6

Documents

1	1	1	0
1	1	0	1
0	1	0	1
$\frac{\infty}{\infty}=0$	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

We don't really construct the matrix; just imagine it exists

Outline: Finding Similar Columns

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as Boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
- Similarity of columns == similarity of signatures
- Warnings:
- Comparing all pairs takes too much time: Job for LSH
- These methods can produce false negatives, and even false positives (if the optional check is not made)

Step 2: Min-Hashing: Convert large sets to short signatures, while preserving similarity

Hashing Columns (Signatures)

- Key idea: "hash" each column \boldsymbol{C} to a small signature $\boldsymbol{h}(\mathbf{C})$, such that:
" $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$
- Goal: Find a hash function $h(\cdot)$ such that:
- If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right)=h\left(C_{2}\right)$
- If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$
- Idea: Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing: Goal

- Goal: Find a hash function $h(\cdot)$ such that:
" if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$
" if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$
- Clearly, the hash function depends on the similarity metric:
- Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing: Overview

- Permute the rows of the Boolean matrix using some permutation π
- Thought experiment - not actually materialize
- Define minhash function for this permutation $\boldsymbol{\pi}, \mathbf{h}_{\pi}(\mathbf{C})$ = the number of the first (in the permuted order) row in which column C has value 1 .
- Denoted this as: $\boldsymbol{h}_{\pi}(\mathbf{C})=\boldsymbol{\operatorname { m i n }}_{\pi} \pi(\mathbf{C})$
- Here $\pi(C)$ refers to the set of row indices where column C has value 1 (after permutation mapping)
- Apply, to all columns, several randomly chosen permutations π to create a signature for each column
- Result is a signature matrix: Columns = sets, Rows = minhash values for each permutation π

Min-Hashing Example

Input matrix
(Shingles x Documents)
Permutation π

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

Signature matrix M

Min-Hashing Example

Input matrix
(Shingles x Documents)

Permutation π

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

Signature matrix M

2	1	2	1
2	1	4	1

Min-Hashing Example

Input matrix
(Shingles x Documents)
Permutation π

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

A Subtle Point

- Students sometimes ask whether the minhash value should be the original number of the row, or the number in the permuted order (as we did in our example)
- Answer: it doesn't matter
- We only need to be consistent, and assure that two columns get the same value if and only if their first 1's in the permuted order are in the same row

The Min-Hash Property

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- Why?
- Let \mathbf{X} be a doc (set of shingles), $\boldsymbol{z \in X}$ is a shingle
- Then: $\operatorname{Pr}[\pi(z)=\min (\pi(X))]=1 /|X|$

0	0
0	0
1	1
0	0
0	1
1	0

- It is equally likely that any $\boldsymbol{z} \in \boldsymbol{X}$ is mapped to the min element
- Let \boldsymbol{y} be s.t. $\pi(\mathrm{y})=\min \left(\pi\left(\mathrm{C}_{1} \cup \mathrm{C}_{2}\right)\right)$
- Then either: $\pi(y)=\min \left(\pi\left(C_{1}\right)\right)$ if $y \in C_{1}$, or

$$
\pi(y)=\min \left(\pi\left(C_{2}\right)\right) \text { if } y \in C_{2}
$$

- So the prob. that both are true is the prob. $\boldsymbol{y} \in \mathrm{C}_{1} \cap \mathrm{C}_{2}$
$=\operatorname{Pr}\left[\min \left(\pi\left(\mathrm{C}_{1}\right)\right)=\min \left(\pi\left(\mathrm{C}_{2}\right)\right)\right]=\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$

Four Types of Rows

- Given cols C_{1} and C_{2}, rows are classified as:

	\underline{C}_{1}	C_{2}
A	1	1
B	1	0
C	0	1
D	0	0

0	0
0	0
1	1
0	0
0	1
1	0

- Define: a = \# rows of type A, etc.
- Note: $\operatorname{sim}\left(C_{1}, C_{2}\right)=a /(a+b+c)$
- Then: $\operatorname{Pr}\left[h\left(C_{1}\right)=h\left(C_{2}\right)\right]=\operatorname{Sim}\left(C_{1}, C_{2}\right)=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|$
- Look down the permuted cols C_{1} and C_{2} until we see a 1
- If it's a type-A row, then $h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)$ If a type- B or type- C row, then not

Similarity for Signatures

- We know: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Thus, the expected similarity of two signatures equals the Jaccard similarity of the columns or sets that the signatures represent
- And the longer the signatures, the smaller will be the expected error

Min-Hashing Example

Permutation $\pi \quad$ Input matrix (Shingles x Documents)

| 2 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 4 |
| 7 | 1 | 7 |
| 6 | 3 | 2 |
| 1 | 6 | 6 |
| 5 | 7 | 1 |
| 4 | 5 | 5 |

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Similarities:

	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

Implementation Trick

- Permuting rows even once is prohibitive
- Row hashing!
- Pick $\mathbf{K}=\mathbf{1 0 0}$ hash functions $\boldsymbol{h}_{\boldsymbol{i}}$
- Ordering under $\boldsymbol{h}_{\boldsymbol{i}}$ gives a random permutation π of rows!
- One-pass implementation
" For each column \boldsymbol{c} and hash-func. $\boldsymbol{h}_{\boldsymbol{i}}$ keep a "slot" $M(i, c)$ for the min-hash value of
- Initialize all $M(i, c)=\infty$
- Scan rows looking for 1s
- Suppose row \boldsymbol{j} has 1 in column \boldsymbol{c}
- Then for each $\boldsymbol{h}_{\boldsymbol{i}}$:
- If $\boldsymbol{h}_{\boldsymbol{i}}(j)<M(i, c)$, then $M(i, c) \leftarrow \boldsymbol{h}_{i}(j)$

How to pick a random hash function $\mathrm{h}(\mathrm{x})$?
Universal hashing:
$h_{a, b}(x)=((a \cdot x+b) \bmod p) \bmod N$ where:
a,b ... random integers
p ... prime number ($p>N$)

Implementation

Initialize $M(i, c):=\infty$ for all i,c for each row r do begin
for each hash function h_{i} do compute $h_{i}(r)$; for each column c

Important: so you hash r only once per hash function, not once per 1 in row r.
for each hash function h_{i} do

$$
\text { if } h_{i}(r)<M(i, c) \text { then }
$$

$$
M(i, c):=h_{i}(r) ;
$$

end;

Example Implementation

					$\mathrm{M}\left(\mathrm{i}, \mathrm{C}_{1}\right)$	$\mathrm{M}\left(\mathrm{i}, \mathrm{C}_{2}\right)$
				$h(1)=1$	1	∞
				$g(1)=3$	3	∞
permutation						
$\mathrm{h}(\mathrm{x}) \mathrm{g}(\mathrm{x})$	Row	C_{1}	C_{2}	$h(2)=2$	1	2
13	1	1	0	$g(2)=0$	3	0
20	2	0	1			
32	3	1	1			
4	4	1	0	$h(3)=3$	1	2
01	5	0	1	$g(3)=2$	2	0
				$h(4)=4$	1	2
				$g(4)=4$	2	0
	$\begin{aligned} & h(x)=x \bmod 5 \\ & g(x)=(2 x+1) \bmod 5 \end{aligned}$			$h(5)=0$	1	0
				$g(5)=1$	2	0

Step 3: Locality Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

LSH: Overview

2	1	4	1
1	2	1	2
2	1	2	1

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)
- LSH - General idea: Use a hash function that tells whether \boldsymbol{x} and \boldsymbol{y} is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
- Hash columns of signature matrix M to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair

LSH: Overview

2	1	4	1
1	2	1	2
2	1	2	1

- Pick a similarity threshold $s(0<s<1)$
- Columns \boldsymbol{x} and \boldsymbol{y} of \boldsymbol{M} are a candidate pair if their signatures agree on at least fraction s of their rows:
$\boldsymbol{M}(\boldsymbol{i}, \boldsymbol{x})=\boldsymbol{M}(\boldsymbol{i}, \boldsymbol{y})$ for at least frac. \boldsymbol{s} values of \boldsymbol{i}
- We expect documents \boldsymbol{x} and \boldsymbol{y} to have the same (Jaccard) similarity as their signatures

LSH for Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

- Key idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition M into b Bands
 2
 14
 21
 21
 $$
\begin{array}{llll} 1 & 2 & 1 & 2 \end{array}
$$

Signature matrix M

Partition M into Bands

- Divide matrix \boldsymbol{M} into \boldsymbol{b} bands of \boldsymbol{r} rows
- For each band, hash its portion of each column to a hash table with \boldsymbol{k} buckets
- Make \boldsymbol{k} as large as possible
- Candidate column pairs are those that hash to the same bucket for $\geq \mathbf{1}$ band
- Tune \boldsymbol{b} and \boldsymbol{r} to catch most similar pairs, but few non-similar pairs

Hashing Bands

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of Bands

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case:

- Suppose 100,000 columns of \boldsymbol{M} (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40MB
- Goal: Find pairs of documents that are at least $\boldsymbol{s}=0.8$ similar
- Choose $\boldsymbol{b}=20$ bands of $\boldsymbol{r}=5$ integers/band

$\mathrm{C}_{1 /} \mathrm{C}_{2}$ are 80\% Similar

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.8$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right) \geq s$, we want C_{1}, C_{2} to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in one particular band: $(0.8)^{5}=0.328$
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ are not identical in all of the 20 bands: $(1-0.328)^{20}=0.00035$
- i.e., about $1 / 3000$ th of the 80%-similar column pairs are false negatives (we miss them)
- We would find 99.965\% pairs of truly similar documents
- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.3$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right)<s$ we want C_{1}, C_{2} to hash to NO common buckets (all bands should be different)
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in one particular band: $(0.3)^{5}=0.00243$
- Probability C_{1}, C_{2} identical in at least 1 of 20 bands: $1-(1-0.00243)^{20}=0.0474$
- In other words, approximately 4.74\% pairs of docs with similarity 0.3 end up becoming candidate pairs
- They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

2	1	4	1
1	2	1	2
2	1	2	1

- Pick:
- The number of Min-Hashes (rows of \boldsymbol{M})
- The number of bands \boldsymbol{b}, and
- The number of rows r per band to balance false positives/negatives
- Note, M=b*r
- Example: If we had only 10 bands of 10 rows, how would FP/FN change?
- Answer: The number of false positives would go down, but the number of false negatives would go up (it's harder to become a candidate pair in a bucket now).

Analysis of LSH - What We Want

Similarity $t=\operatorname{sim}\left(C_{1}, C_{2}\right)$ of two sets

What 1 Band of 1 Row Gives You

What 1 Band of 1 Row Gives You

Question: What is worse, false positives or false negatives?

6 bands, r rows/band

- Say columns C_{1} and C_{2} have similarity t
- Pick any band (r rows)
- Prob. that all rows in band equal $=t^{r}$
- Prob. that some row in band unequal =1-tr
- Prob. that no band identical $=\left(1-t^{r}\right)^{b}$
- Prob. that at least 1 band identical =

$$
1-\left(1-t^{r}\right)^{b}
$$

What b Bands of r Rows Gives You

Example: $b=20 ; r=5$

- Similarity threshold s
- Prob. that at least 1 band is identical:

\boldsymbol{s}	$\mathbf{1 - (1 - s r}^{\mathbf{r}} \mathbf{b}^{\mathbf{b}}$
0.2	0.006
0.3	0.047
0.4	0.186
0.5	0.470
0.6	0.802
0.7	0.975
0.8	0.9996

Picking r and b : The S-curve

- Picking r and b to get the best S-curve
- 50 hash-functions ($r=5, b=10$)

Blue area: False Negative rate Green area: False Positive rate

LSH Summary

- Tune $\boldsymbol{M}, \boldsymbol{b}, \boldsymbol{r}$ to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents to set representation
- We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
- We used similarity preserving hashing to generate signatures with property $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
- We used hashing to find candidate pairs of similarity $\geq \mathbf{s}$

10 minute break

