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Recap: Finding similar documents

Task: Given a large number (N in the millions or
billions) of documents, find “near duplicates”

Problem:

Too many documents to compare all pairs

Solution: Hash documents so that similar
documents hash into the same bucket

Documents in the same bucket are then
candidate pairs whose similarity is then evaluated
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Recap: The Big Picture
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Recap: Shingles

A k-shingle (or k-gram) is a sequence of k
tokens that appears in the document
Example: k=2; D, = abcab
Set of 2-shingles: C, = S(D,) = {ab, bc, ca}
Represent a doc by a set of hash values of its
k-shingles
A natural similarity measure is then the

Jaccard similarity:
sim(D,, D,) = |C;NG,|/|C,UG, |
Similarity of two documents is the Jaccard similarity of
their shingles
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Recap: Minhashing

Min-Hashing: Convert large sets into short signatures,
while preserving similarity: Pr[h(C,) = h(C,)] = sim(D,, D,)

Permutationt Input matrix (Shingles x Documents)

Signature matrix M
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Recap: LSH

Hash columns of the signature matrix M:
Similar columns likely hash to same bucket
Divide matrix M into b bands of r rows (m=b-r)

Candidate column pairs are those that hash
to the same bucket for = 1 band

" |s Buckets| ~ ¢
‘. NERVAN

> 1 bucket
Threshold s

Prob. of sharing

v Similarity
Matrix M
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Today: Generalizing Min-hash

Signatures: short

integer signatures that _ ﬁ\andlda_te P?"‘S-'
Hash reflect point similarity | Locality- Os€ pairs o

Points f sensitive —— signaturesthat
unc. Hashing we need to test
for similarity
Design a locality sensitive Apply the

hash function (for a given «Bands” technique
distance metric)
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The S-Curve

The S-curve is where the “magic” happens

Remember:
Probability of
equal hash-values
= similarity

> 1 bucket

Probability of sharing

No chance
if {<s

AN

; /

O .

< Probability=
o if £>s
e

Similarity t of two sets

This is what 1 hash-code gives you
Pr[h.(Cy) = hi(Cy)] = sim(Dy, D)

Similarity t of two sets

1

This is what we want!
How to get a step-function?

By choosing r and b!
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How Do We Make the S-curve?

Remember: b bands, r rows/band
Let sim(C,, C,)=s

What'’s the prob. that at least 1 band is equal?
Pick some band (r rows)

Prob. that elements in a single row of
columns C; and C, are equal = s

Prob. that all rows in a band are equal = s"

Prob. that some row in a band is not equal =1 - s"
Prob. that all bands are not equal = (1 -s")?

Prob. that at least 1 band is equal =1 - (1 - s")°
P(C,C,isa candldate palr) : 1 - (1 s")b

Tim Althoff, UW C a, http://www.cs.washington.edu/csep59



Picking r and b: The S-curve

Picking r and b to get the best S-curve
= 50 hash-functions (r=5, b=10)
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S-curves as afunc.of bandr

Given a fixed
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We want choose
r and b such
that the
P(Candidate
pair) has a
“step” right
around s.

-

o o o
~ © ©

o
[=2)

o o o <
N w S
T

Prob(Candidate pair)

o
-

0 |
0 01 02 03 04 05 06 07 08 09 05T 02 03 04 05 06 07 08 09 |
1 1

~ 09l o_g*r - 10’ b - 1--50

=

@ osl 08l

o
o7l o7l

9
06l 06l

®

O os) 05

-8 04| 04

8 osl | 03

~ o2/ / 02

o)
o1lf — — 01

O o r=1,b=1..10

& (0] < S SN S S S S S S S 0 L L L L I
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

S|m||ar|ty Slmllarlt

rob =1 - (1 tr)b

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http: //www‘ ashington.edu/csep590a



Candidate
Localit pairs:
Min-Hash- ocanty” those pairs
. ,

sensitive

| in . of signatures
’ [ Aeiling that%/ve need
to test for
Signatures: similarity
short vectors
that represent
the sets, and
reflect their
similarity
Theory of LSH
general hashing locality-sensitive hashing
°o o o

/X ool

(o] o] | ® | ] 10\! | Jee] | J|e]e ] |




Theory of LSH

We have used LSH to find similar documents

More specifically, we found similar columns in
large sparse matrices with high Jaccard similarity

Can we use LSH for other distance measures?

e.g., Euclidean distances, Cosine distance
Let’s generalize what we’ve learned!
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Distance Metric

d() is a distance metric if it is a function from pairs of points
X,y to real numbers such that:

d(x,y) = 0
dx,y) =0 iff x =1y

d(x,y) = d(y,x)
d(x,y) < d(x,z) + d(z,vy) (triangle inequality)

Jaccard distance for sets = 1 - Jaccard similarity
Cosine distance for vectors = angle between the vectors
Euclidean distances:
L, norm: d(x,y) = square root of the sum of the squares of the
differences between x and y in each dimension
The most common notion of “distance”
L, norm: sum of absolute value of the differences in each dimension
Manhattan distance = distance if you travel along coordinates only
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Families of Hash Functions

For Min-Hashing signatures, we got a Min-Hash
function for each permutation of rows
A “hash function” is any function that allows us

to say whether two elements are “equal”
Shorthand: h(x) = h(y) means “h says x and y are equal”

A family of hash functions is any set of hash
functions from which we can pick one at
random efficiently

Example: The set of Min-Hash functions generated
from permutations of rows (e.g. Universal Hashing)

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a



Locality-Sensitive (LS) Families

Suppose we have a space S of points with
a distance metric d(x,y)

Critical assumption
KA family H of hash functions is said to be \

(d,, d,, p;, p,)-sensitive if for any x and y in S:

If d(x, y) < d,, then the probability over all he H,
that h(x) = h(y) is at least p,

If d(x, y) > d,, then the probability over all he H,
\ that h(x) = h(y) is at most p, /

With a LS Famlly we can do LSH'

Tim Althoff, UW CSEP 590A: Machin Big Data, http://www.cs.washington.edu/csep59




Ad,d,,p.,p.)-sensitive function

Forallhe H
P[h(x) = h(y,)] = p,
P[h(x) = h(y,)] < p,




Ad,d,,p.,p.)-sensitive function

Small distance,
high probability

= h(y)]

Pr[h(x)

P

Distance
threshold t

Notice distance on x-axis, not similarity,
hence the S-curve is mirrored!

____________________

Large distance,
low probability
of hashing to

the same value

v

Distance d(x,y)
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Example of LS Family: Min-Hash

Let:
S = space of all sets,
d = Jaccard distance,

H is family of Min-Hash functions for all
permutations of rows

Then for any hash function h e H.:
Pr[h(x) = h(y)] = 1-d(x,y)

Simply restates theorem about Min-Hashing
in terms of distances rather than similarities
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Example: LS Family - (2)

Claim: Min-hash H is a 2/3,2/3) 1/3)-

sensitive family for S and d. \
_ Then probability
It distance < 1/3 that Min-Hash values

For Jaccard similarity, Min-Hashing gives a
(d,d,(1-d,) (1-d,))-sensitive family for any d,<d,



Amplifying a LS-Family

o f_k
Can we reproduce the s
“S-curve” effect we saw 5 2
before for any LS family? st
Similarity t

The “bands” technique we learned for signature
matrices carries over to this more general setting
Can do LSH with any (d,, d,, p,, p,)-sensitive
family!

Two constructions:
AND construction like “rows in a band”
OR construction like “many bands”
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Amplifying Hash Functions:
AND and OR



AND of Hash Functions

Given family H, construct family H’ consisting
of r independent functions from H

For h = [h,,...,h.] in H’, we say

h(x) = h(y) if and only if h,(x) = h,(y) for all i

Note this corresponds to creating a band of size r

<i<r

Theorem: If His (d,, d,, p,, p,)-sensitive,
then H' is (d,d,, (p,), (p,)’)-sensitive

Proof: Useth/etaft that B,&{eindependent

Also lowers probability Lowers probability for
for small distances (Bad) large distances (Good)

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a



Subtlety Regarding Independence

Independence of hash functions (HFs) really
means that the prob. of two HFs saying “yes”
is the product of each saying “yes”

But two particular hash functions could be highly
correlated
For example, in Min-Hash if their permutations agree in
99% of entries
However, the probabilities in definition of a
LSH-family are over all possible members of H, H’
(i.e., average case and not the worst case)
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OR of Hash Functions

Given family H, construct family H’ consisting
of b independent functions from H

For h =[h,,...,h,] in H’,
h(x) = h(y) if and only if h,(x) = h(y) for atleast1 i

Theorem: If His (d,, d,, p,, p,)-sensitive,
then H’is (d,, d,, 1-(1-p,)®, 1-(1-p,)*)-sensitive
Proof: Use the fact that h/’s are f\\dependent

Raises probability for Raises probability for
small distances (Good) large distances (Bad)
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Effect of AND and OR Constructions

AND makes all probs. shrink, but by choosing r
correctly, we can make the lower prob. approach 0
while the higher does not

OR makes all probs. grow, but by choosing b correctly,
we can make the higher prob. approach 1 while the
lower does not

‘Ia)a 1 . - - - - - - - - _ 1.
X = AND %-: os}
3 *[r=1..10, b=1 S o
07| Q o7l
g 061 m 061
S o) 8) 05 R
E 04l S ol
Q 03 CQU 0.3L |
A = 5 OR
. 02 « 020
~8 S | I’=1, b=1..10
o ol QO o
Q T o
00 01 02 03 04 05 06 O.'7 O.'8 0.'9 Q 00 O.I1 O.[2 0.13 O.[4 0.15 O.IG 0.[7 0.[8 O.[9 1I

Similarity of a pair of items Similarity of a pair of items
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Combine AND and OR Constructions

By choosing b and r correctly, we can make
the lower probability approach 0 while the

higher approaches 1

As for the signature matrix, we can use the
AND construction followed by the OR

construction
Or vice-versa
Or any sequence of AND’s and OR’s alternating
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Composing Constructions

r-way AND followed by b-way OR construction

Exactly what we did with Min-Hashing
AND: If bands match in all r values hash to same bucket
OR: Cols that have > 1 common bucket = Candidate

Take points x and y s.t. Pr[h(x) = h(y)] =s
H will make (x,y) a candidate pair with prob. s
Construction makes (x,y) a candidate pair with
probability 1-(1-s")” The S-Curve!
Example: Take H and construct H’ by the AND

construction with r = 4. Then, from H’, construct H”
by the OR construction with b = 4
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Table for Function 1-(1-s4)4

—h

S p=1-(1-s4)4 EZZ

2 |.0064 8o

3 1.0320 T'Zf

4 1.0985 g O

5 |.2275 2.,

6 |.4260 o

./ |.6666 " 7 similarity s

8 8785 r=4,b =4 transforms a

9 |.9860 (25,5765, 0064) sensitno farmly
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How to choose rand b



Picking r and b: The S-curve

Picking r and b to get desired performance
50 hash-functions (r=5, b = 10)
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Prob(Candidate pair)
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Similarity s

Blue area X: False Negative rate
These are pairs with sim > s but the X
fraction won’t share a band and then
will never become candidates. This
means we will never consider these
pairs for (slow/exact) similarity
calculation!

Green area Y: False Positive rate
These are pairs with sim < s but

we will consider them as candidates.
This is not too bad, we will consider
them for (slow/exact) similarity
computation and discard them.
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Picking r and b: The S-curve

Picking r and b to get desired performance
= 50 hash-functions (r * b = 50)

1.

r=2, b=25
r=5, b=10
r=10, b=5
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OR-AND Composition

Apply a b-way OR construction followed by
an r-way AND construction
Transforms similarity s (probability p)
into (1-(1-s)°)
The same S-curve, mirrored horizontally and
vertically

Example: Take H and construct H’ by the OR

construction with b=4. Then, from H’,
construct H” by the AND construction

with r=4

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a



Table for Function (1-(1-5)%)4

s |p=(1-(1-s))*
1 ].0140
2 1215
3 ].3334
4 |.5740
5 |.7725
6 ].9015
7 ].9680
8  1.9936

Tim Althoff, UW CSEP 590A: Machine Lear

Prob(candidate pair)

°© o
N

o -
o 4 ] 1

0.2 _ 014_ _016 0.8 1
Similarity s

The example transforms a
(.2,.8,.8,.2)-sensitive family into a
(.2,.8,.9936,.1215)-sensitive family
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Cascading Constructions

Example: Apply the (4,4) OR-AND construction
followed by the (4,4) AND-OR construction

Transforms a (.2, .8, .8, .2)-sensitive family into
a(.2,.8,.9999996, .0008715)-sensitive family

Note this family uses 256 (=4*4*4*4) of the
original hash functions



Summary

Pick any two distances d; < d,

Start with a (d,, d,, (1- d,), (1- d,))-sensitive
family

Apply constructions to amplify
(d,, d,, p, p,)-sensitive family,
where p, is almost 1 and p, is almost O

The closer to 0 and 1 we want to get,
the more hash functions must be used!
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LSH for other distance metrics



LSH for other Distance Metrics

LSH methods for other distance metrics:
Cosine distance: Random hyperplanes
Euclidean distance: Project on lines

Signatures: short

\ integer signatures that | Candidate pairs:
Hash reflect their similarity Loca_lljcy- those pairs of
Points —— »| sensitive —— signaturesthat
func. Hashing we need to test
for similarity

Designa (d,, d., p., p.)-sensitive . .
. . Amplify the family
family of hash functions (for that using AND and OR

N particular distance metric)J
Y
Depends on the
distance function used
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Summary of what we will learn
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Hash reflect their similarity Loca_hjcy- those pairs o

— signatures that

Data —— o . > sensitive
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Cosine Distance

Cosine distance = angle between vectors
from the origin to the points in question

d(A, B) = 0 = arccos(A-B /

IAI-1B1)

B
>

AB —

Has range |0, r] (equivalently [0,180°]) 4——"5"

Can divide O by m to have distance in range [0,1]
Cosine similarity = 1-d(A,B)/

But often defined as cosine sim: cos(0) =

p

A-B

1AlllIBIl

- Has range -1...1 for
general vectors
- Range 0..1 for

Similar scores o Unrelated scores

Score Vectors i me direct Score Vectors are nearly orthogonal
Angle between then is near 0 deg. Angle between then is near 90 deg.
Cosine of angle is near 1i.e. 100% Cosine of angle is near 0 i.e. 0%

non-negative vectors
(angles up to 90°)

Opposite scores

Score Vectors in opposite direction
Angle between then is near 180 deg.
Cosine of angle is near -1 i.e. -100%
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LSH for Cosine Distance

For cosine distance, there is a technique
called Random Hyperplanes

Technique similar to Min-Hashing

Random Hyperplanes method is a
(d,, d,, (1-d,/m), (1-d,/T))-sensitive family for
any d, and d,

Reminder: (d,, d,, p,, p,)-sensitive
If d(x,y) < d,, then prob. that h(x) = h(y) is at least p,
If d(x,y) > d,, then prob. that h(x) = h(y) is at most p,
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Random Hyperplanes

Each vector v determines a hash function h,
with two buckets

h,(x)=+1ifvx=>0; =-1ifvx<0

LS-family H = set of all functions derived
from any vector

Claim: For points x and y,

Prih(x) =h(y)] = 1-d(x,y)/



Proof of Claim

Look in the

plane of x
and y. v
________________________ Hyperplane
_____________________ normal to v".
"""" Here h(x) # h(y)
Hyperplane y

normal to v.
Here h(x) = h(y)
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Proof of Claim

/" So: Prob[Red case]=0/m
/" Our claim follows: P[h(x)=h(y)] = 1- 6/m = 1-d(x,y)/n

/

/
Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a



Signatures for Cosine Distance

Pick some number of random vectors, and
hash your data for each vector

The result is a signature (sketch) of
+1’s and —1’s for each data point

Can be used for LSH like we used the
Min-Hash signatures for Jaccard distance

Amplify using AND/OR constructions



How to pick random vectors?

Expensive to pick a random vector in M
dimensions for large M

Would have to generate M random numbers

A more efficient approach

It suffices to consider only vectors v
consisting of +1 and —1 components

Why? Assuming data is random, then vectors of +/-1 cover
the entire space evenly (and does not bias in any way)
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LSH for Euclidean Distance

Idea: Hash functions correspond to lines
Partition the line into buckets of size a

Hash each point to the bucket containing its
projection onto the line

An element of the “Signature” is a bucket id for
that given projection line

Nearby points are always close;
distant points are rarely in same bucket
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Projection of Points

®
®
®
® 00 O
. @
P ®
Line
(X O
Buckets of size a ® ®
®
“Lucky” case: Two “unlucky” cases:
Points that are close Top: unlucky
hash in the same bucket guantization
Distant points end up in Bottom: unlucky

different buckets projection
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Multiple Projections
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Projection of Points

If d << a, then
the chance the
points are in the
same bucket is

Points at t loast 1 — d
: dat leas — ala.
o distance d
\O ‘
y exactly 1 — d/a when the
randomly chosen line is
parallel to the line from x
toy
O—dO
oO—o0
| : : 5 5 Randomly
) g chosen line
Bucket
width a
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Projection of Points

Points at
distance d

If d >> a, 6 must °
be close to 90° |
for there to be

any chance points ; °
go to the same dcos 9
bucket. ' ’
Then:dcosO =a
S S Randomly
— chosen line
Bucket
width a
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A LS-Family for Euclidean Distance

If points are distance d < a/2, prob.

they are in same bucket 2 1-d/a =%

If points are distance d > 2a apart, then they
can be in the same bucket only if dcos O £ a

cos0 <Y
60<08<90,i.e., at most 1/3 probability

Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of
hash functions for any a
Amplify using AND-OR cascades

T Ithoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a
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Data points

Summary

Designa (d,, d., p., p.)-sensitive
family of hash functions (for that
particular distance metric)

Signatures: short

integer signatures that _ f:ndlda?e p?lrs:
Hash reflect their similarity | Locality- NOS€ pairs o
»| sensitive —— signaturesthat
func. ]
Hashing we need to test
for similarity

Amplify the family
using AND and OR
constructions

“Bands” technique
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Two Important Points

Property P(h(C,)=h(C,))=sim(C,,C,) of
hash function h is the essential part of
LSH, without which we can’t do
anything

LS-hash functions transform data to
signatures so that the bands technique
(AND, OR constructions) can then be
applied



Announcements

Ed Discussion Board

Recitation sessions:
Review of proof techniques and probability

=  Location: Thursday, April 7, 7:30-8:30 PM, Zoom

Deadlines next Wed, 6 PM:
HW1
Colab 2 (You can submit many times and will get immediate feedback)

For office hours — please check our website

How to find teammates for project?
Ed Discussion Board
Make sure you have a good dataset accessible

If you cannot attend our final project presentations (Monday, June 7, 6:30-9:20pm), please email course
staff. Attendance is required.

Please give us feedback (Link to Google form on Ed)
Concern about workload: We respect everyone’s time and responsibilities. Relative to the non-PMP

version of the course we have reduced homework requirements. Most (theory) questions have partial
credit opportunities. Nobody expects 100/100 homeworks. Grades will be curved in the end. What is

most important to us, is to support your learning.
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