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¡ Task: Given a large number (N in the millions or 
billions) of documents, find “near duplicates”

¡ Problem:
§ Too many documents to compare all pairs

¡ Solution: Hash documents so that similar 
documents hash into the same bucket
§ Documents in the same bucket are then 

candidate pairs whose similarity is then evaluated

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a



Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Min-Hash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity



¡ A k-shingle (or k-gram) is a sequence of k 
tokens that appears in the document
§ Example: k=2; D1 = abcab

Set of 2-shingles: C1 = S(D1) = {ab, bc, ca}
¡ Represent a doc by a set of hash values of its 

k-shingles
¡ A natural similarity measure is then the 

Jaccard similarity:
sim(D1, D2) = |C1ÇC2|/|C1ÈC2|
§ Similarity of two documents is the Jaccard similarity of 

their shingles
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¡ Min-Hashing: Convert large sets into short signatures, 
while preserving similarity: Pr[h(C1) = h(C2)] = sim(D1, D2) 
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¡ Hash columns of the signature matrix M:
Similar columns likely hash to same bucket
§ Divide matrix M into b bands of r rows (m=b·r)
§ Candidate column pairs are those that hash 

to the same bucket for ≥ 1 band
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¡ The S-curve is where the “magic” happens
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¡ Remember: b bands, r rows/band
¡ Let sim(C1 , C2) = s
What’s the prob. that at least 1 band is equal?
¡ Pick some band (r rows)
§ Prob. that elements in a single row of 

columns C1 and C2 are equal = s
§ Prob. that all rows in a band are equal = sr

§ Prob. that some row in a band is not equal = 1 - sr

¡ Prob. that all bands are not equal  = (1 - sr)b
¡ Prob. that at least 1 band is equal = 1 - (1 - sr)b
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P(C1, C2 is a candidate pair) = 1 - (1 - sr)b



¡ Picking r and b to get the best S-curve
§ 50 hash-functions (r=5, b=10)
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¡ We have used LSH to find similar documents
§ More specifically, we found similar columns in 

large sparse matrices with high Jaccard similarity

¡ Can we use LSH for other distance measures?
§ e.g., Euclidean distances, Cosine distance 
§ Let’s generalize what we’ve learned!
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¡ d() is a distance metric if it is a function from pairs of points 
x,y to real numbers such that:
§ 𝑑 𝑥, 𝑦 ≥ 0
§ 𝑑 𝑥, 𝑦 = 0 𝑖𝑓𝑓 𝑥 = 𝑦
§ 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
§ 𝑑 𝑥, 𝑦 ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (triangle inequality)

¡ Jaccard distance for sets = 1 - Jaccard similarity
¡ Cosine distance for vectors = angle between the vectors
¡ Euclidean distances:

§ L2 norm: d(x,y) = square root of the sum of the squares of the 
differences between x and y in each dimension
§ The most common notion of “distance”

§ L1 norm: sum of absolute value of the differences in each dimension
§ Manhattan distance = distance if you travel along coordinates only
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¡ For Min-Hashing signatures, we got a Min-Hash 
function for each permutation of rows

¡ A “hash function” is any function that allows us 
to say whether two elements are “equal”

§ Shorthand: h(x) = h(y) means “h  says x and y are equal”

¡ A family of hash functions is any set of hash 
functions from which we can pick one at 
random efficiently
§ Example: The set of Min-Hash functions generated 

from permutations of rows (e.g. Universal Hashing)
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¡ Suppose we have a space S of points with 
a distance metric d(x,y)

¡ A family H of hash functions is said to be 
(d1, d2, p1, p2)-sensitive if for any x and y in S:

1. If d(x, y) < d1, then the probability over all hÎ H, 
that h(x) = h(y) is at least p1

2. If d(x, y) > d2, then the probability over all hÎ H, 
that h(x) = h(y) is at most p2
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With a LS Family we can do LSH!

Critical assumption
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¡ Let:
§ S = space of all sets, 
§ d = Jaccard distance, 
§ H is family of Min-Hash functions for all 

permutations of rows
¡ Then for any hash function hÎ H:

Pr[h(x) = h(y)]  =  1 - d(x, y)

§ Simply restates theorem about Min-Hashing 
in terms of distances rather than similarities
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¡ Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)-
sensitive family for S and d.

¡ For Jaccard similarity, Min-Hashing gives a 
(d1,d2,(1-d1),(1-d2))-sensitive family for any d1<d2
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If distance < 1/3
(so similarity ≥ 2/3)
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that Min-Hash values
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¡ Can we reproduce the 
“S-curve” effect we saw 
before for any LS family?

¡ The “bands” technique we learned for signature 
matrices carries over to this more general setting

¡ Can do LSH with any (d1, d2, p1, p2)-sensitive
family!

¡ Two constructions:
§ AND construction like “rows in a band”
§ OR construction like “many bands”
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¡ Given family H, construct family H’ consisting 
of r independent functions from H

¡ For h = [h1,…,hr] in H’, we say
h(x) = h(y) if and only if hi(x) = hi(y) for all i
§ Note this corresponds to creating a band of size r

¡ Theorem: If H is (d1, d2, p1, p2)-sensitive, 
then H’ is (d1,d2, (p1)r, (p2)r)-sensitive

¡ Proof: Use the fact that hi ’s are independent
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¡ Independence of hash functions (HFs) really 
means that the prob. of two HFs saying “yes” 
is the product of each saying “yes”
§ But two particular hash functions could be highly 

correlated
§ For example, in Min-Hash if their permutations agree in 

99% of entries

§ However, the probabilities in definition of a 
LSH-family are over all possible members of H, H’ 
(i.e., average case and not the worst case)
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¡ Given family H, construct family H’ consisting 
of b independent functions from H

¡ For h = [h1,…,hb] in H’, 
h(x) = h(y) if and only if hi(x) = hi(y) for at least 1  i

¡ Theorem: If H is (d1, d2, p1, p2)-sensitive, 
then H’ is (d1, d2, 1-(1-p1)b, 1-(1-p2)b)-sensitive

¡ Proof: Use the fact that hi’s are independent

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Raises probability for
small distances (Good)

Raises probability for
large distances (Bad)



¡ AND makes all probs. shrink, but by choosing r
correctly, we can make the lower prob. approach 0 
while the higher does not

¡ OR makes all probs. grow, but by choosing b correctly, 
we can make the higher prob. approach 1 while the 
lower does not
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¡ By choosing b and r correctly, we can make 
the lower probability approach 0 while the 
higher approaches 1

¡ As for the signature matrix, we can use the 
AND construction followed by the OR 
construction
§ Or vice-versa
§ Or any sequence of AND’s and OR’s alternating
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¡ r-way AND followed by b-way OR construction
§ Exactly what we did with Min-Hashing

§ AND: If bands match in all r values hash to same bucket
§ OR: Cols that have ³ 1 common bucket à Candidate

¡ Take points x and y s.t.  Pr[h(x) = h(y)] = s
§ H will make (x,y) a candidate pair with prob. s

¡ Construction makes (x,y) a candidate pair with 
probability 1-(1-sr)b The S-Curve!
§ Example: Take H and construct H’ by the AND

construction with r = 4.  Then, from H’, construct H’’
by the OR construction with b = 4

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a



Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

s p=1-(1-s4)4
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.6 .4260
.7 .6666
.8 .8785
.9 .9860

r = 4, b = 4  transforms a 
(.2,.8,.8,.2)-sensitive family into a 
(.2,.8,.8785,.0064)-sensitive family.
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¡ Picking r and b to get desired performance
§ 50 hash-functions (r = 5, b = 10)
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¡ Picking r and b to get desired performance
§ 50 hash-functions (r * b = 50)
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¡ Apply a b-way OR construction followed by 
an r-way AND construction

¡ Transforms similarity s (probability p)
into (1-(1-s)b)r
§ The same S-curve, mirrored horizontally and 

vertically

¡ Example: Take H and construct H’ by the OR
construction with b = 4.  Then, from H’, 
construct H’’ by the AND construction 
with r = 4
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s p=(1-(1-s)4)4
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The example transforms a 
(.2,.8,.8,.2)-sensitive family into a 
(.2,.8,.9936,.1215)-sensitive family
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¡ Example: Apply the (4,4) OR-AND construction 
followed by the (4,4) AND-OR construction

¡ Transforms a (.2, .8, .8, .2)-sensitive family into 
a (.2, .8, .9999996, .0008715)-sensitive family

§ Note this family uses 256 (=4*4*4*4) of the 
original hash functions
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¡ Pick any two distances d1 < d2

¡ Start with a (d1, d2, (1- d1), (1- d2))-sensitive 
family

¡ Apply constructions to amplify
(d1, d2, p1, p2)-sensitive family, 
where p1 is almost 1 and p2 is almost 0

¡ The closer to 0 and 1 we want to get, 
the more hash functions must be used!
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¡ LSH methods for other distance metrics:
§ Cosine distance: Random hyperplanes
§ Euclidean distance: Project on lines
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¡ Cosine distance = angle between vectors 
from the origin to the points in question
d(A, B) = q = arccos(A×B / ǁAǁ·ǁBǁ)
§ Has range [𝟎, 𝝅] (equivalently [0,180°])
§ Can divide q by 𝝅 to have distance in range [0,1]

¡ Cosine similarity = 1-d(A,B)/ 𝝅
§ But often defined as cosine sim: cos(𝜃) = !⋅#

! #
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¡ For cosine distance, there is a technique 
called Random Hyperplanes
§ Technique similar to Min-Hashing 

¡ Random Hyperplanes method is a 
(d1, d2, (1-d1/𝝅), (1-d2/𝝅))-sensitive family for 
any d1 and d2

¡ Reminder: (d1, d2, p1, p2)-sensitive
1. If d(x,y) < d1, then prob. that h(x) = h(y) is at least p1

2. If d(x,y) > d2, then prob. that h(x) = h(y) is at most p2
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¡ Each vector v determines a hash function hv
with two buckets

¡ hv(x) = +1 if v×x ³ 0;  = -1 if v×x < 0

¡ LS-family H = set of all functions derived 
from any vector

¡ Claim: For points x and y, 
Pr[h(x) = h(y)]  =  1 – d(x,y) / 𝝅
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So: Prob[Red case] = θ / 𝝅
Our claim follows: P[h(x)=h(y)] = 1- θ/𝜋 = 1-d(x,y)/𝜋



¡ Pick some number of random vectors, and 
hash your data for each vector

¡ The result is a signature (sketch) of 
+1’s and –1’s for each data point

¡ Can be used for LSH like we used the 
Min-Hash signatures for Jaccard distance

¡ Amplify using AND/OR constructions
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¡ Expensive to pick a random vector in M
dimensions for large M
§ Would have to generate M random numbers

¡ A more efficient approach
§ It suffices to consider only vectors v

consisting of +1 and –1 components
§ Why? Assuming data is random, then vectors of +/-1 cover 

the entire space evenly (and does not bias in any way)

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a



¡ Idea: Hash functions correspond to lines

¡ Partition the line into buckets of size a

¡ Hash each point to the bucket containing its 
projection onto the line
§ An element of the “Signature” is a bucket id for 

that given projection line

¡ Nearby points are always close; 
distant points are rarely in same bucket
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¡ “Lucky” case:
§ Points that are close 

hash in the same bucket
§ Distant points end up in 

different buckets

¡ Two “unlucky” cases:
§ Top: unlucky 

quantization
§ Bottom: unlucky 

projection
Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a
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Bucket
width a

Randomly
chosen line

Points at
distance d

If d << a, then
the chance the
points are in the
same bucket is
at least 1 – d/a.

exactly 1 – d/a when the 
randomly chosen line is 
parallel to the line from x 
to y

x

y

d
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Bucket
width a

Points at
distance d

θ

d cos θ

If d >> a, θ must
be close to 90o
for there to be
any chance points
go to the same
bucket.
Then: d cos θ ≤ a 

Randomly
chosen line



¡ If points are distance  d < a/2, prob. 
they are in same bucket  ≥ 1- d/a = ½

¡ If points are distance d > 2a apart, then they 
can be in the same bucket only if  d cos θ ≤ a
§ cos θ ≤ ½ 
§ 60 < θ < 90, i.e., at most 1/3 probability

¡ Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of 
hash functions for any a

¡ Amplify using AND-OR cascades
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Data
Hash 
func.

Signatures: short 
integer signatures that 
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of 
signatures that 
we need to test 
for similarity

Design a (d1, d2, p1, p2)-sensitive
family of hash functions (for that 

particular distance metric)

Amplify the family 
using AND and OR 

constructions

MinHash 1 5 1 5
2 3 1 3
6 4 6 4

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

Random
Hyperplanes -1 +1 -1 -1

+1 +1 +1 -1
-1 -1 -1 -1

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

D
oc

um
en

ts
D

at
a 

po
in

ts

Candidate pairs

Candidate pairs



¡ Property P(h(C1)=h(C2))=sim(C1,C2) of 
hash function h is the essential part of 
LSH, without which we can’t do 
anything

¡ LS-hash functions transform data to 
signatures so that the bands technique 
(AND, OR constructions) can then be 
applied
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Ed Discussion Board

Recitation sessions:
¡ Review of proof techniques and probability

§ Location: Thursday, April 7, 7:30-8:30 PM, Zoom

Deadlines next Wed, 6 PM:
¡ HW1
¡ Colab 2 (You can submit many times and will get immediate feedback)

For office hours – please check our website

How to find teammates for project?
¡ Ed Discussion Board
¡ Make sure you have a good dataset accessible

If you cannot attend our final project presentations (Monday, June 7, 6:30-9:20pm), please email course 
staff. Attendance is required.

Please give us feedback (Link to Google form on Ed)

Concern about workload: We respect everyone’s time and responsibilities. Relative to the non-PMP 
version of the course we have reduced homework requirements. Most (theory) questions have partial 
credit opportunities. Nobody expects 100/100 homeworks. Grades will be curved in the end. What is 
most important to us, is to support your learning.

4/5/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 67


