Mining Data Streams (Part 2)

CSEP590A Machine Learning for Big Data
Tim Althoff

This Lecture

- More algorithms for streams:
- (1) Filtering a data stream: Bloom filters
- Select elements with property \mathbf{x} from stream
- (2) Counting distinct elements: Flajolet-Martin
- Number of distinct elements in the last \boldsymbol{k} elements of the stream
- (3) Estimating moments: AMS method
- Estimate std. dev. of last \boldsymbol{k} elements
(1) Filtering Data Streams

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which tuples of stream are in S
- Obvious solution: Hash table
- But suppose we do not have enough memory to store all of \boldsymbol{S} in a hash table
- E.g., we might be processing millions of filters on the same stream

Applications

- Example: Email spam filtering
" We know 1 billion "good" email addresses
- Or, each user has a list of trusted addresses
- If an email comes from one of these, it is NOT spam
- Publish-subscribe systems
- You are collecting lots of messages (news articles)
- People express interest in certain sets of keywords
- Determine whether each message matches user's interest
- Content filtering:
- You want to make sure the user does not see the same ad multiple times
- Web cache filtering:
- Has this piece of content been requested before? Then cache it now.

First Cut Solution (1)

Given a set of keys S that we want to filter

- Create a bit array B of \boldsymbol{n} bits, initially all 0 s
- Choose a hash function h with range $[0, n$)
- Hash each member of $s \in S$ to one of
n buckets, and set that bit to 1, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to 1
- Output \boldsymbol{a} if $\mathrm{B}[\mathrm{h}(\mathrm{a})]==1$

First Cut Solution (2)

Drop the item. It hashes to a bucket set to 0 so it is surely not in S.

- Creates false positives but no false negatives
- If the item is in \boldsymbol{S} we surely output it, if not we may still output it

First Cut Solution (3)

- |S| = 1 billion email addresses $|B|=1 G B=8$ billion bits
- If the email address is in S, then it surely hashes to a bucket that has the bit set to 1, so it always gets through (no false negatives)
- Approximately $\mathbf{1 / 8}$ of the bits are set to $\mathbf{1}$, so about $1 / 8^{\text {th }}$ of the addresses not in S get through to the output (false positives)
- Actually, less than $1 / 8^{\text {th }}$, because more than one address might hash to the same bit

Analysis: Throwing Darts (1)

- More accurate analysis for the number of false positives
- Consider: If we throw \boldsymbol{m} darts into \boldsymbol{n} equally likely targets, what is the probability that a target gets at least one dart?
- In our case:
- Targets = bits/buckets
- Darts = hash values of items

Analysis: Throwing Darts (2)

- We have \boldsymbol{m} darts, \boldsymbol{n} targets
- What is the probability that a target gets at least one dart?

Analysis: Throwing Darts (3)

- Fraction of 1 s in the array $\mathrm{B}=$
= probability of false positive $=\mathbf{1 - 4} \mathrm{e}^{-\mathrm{m} / \mathrm{n}}$
- Example: $\mathbf{1 0}^{9}$ darts, $\mathbf{8 \cdot 1 0 ^ { 9 }}$ targets
- Fraction of 1s in $\mathbf{B}=1-e^{-1 / 8}=0.1175$
- Compare with our earlier estimate: 1/8=0.125

Bloom Filter

- Consider: $|\mathbf{S}|=m,|\mathbf{B}|=n$
- Use \boldsymbol{k} independent hash functions $\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{\boldsymbol{k}}$
- Initialization:
- Set B to all Os
- Hash each element $\boldsymbol{s} \in \boldsymbol{S}$ using each hash function $\boldsymbol{h}_{\boldsymbol{i}}$, set $\mathrm{B}\left[h_{i}(s)\right]=1 \quad($ for each $\boldsymbol{i}=\mathbf{1}, . ., \boldsymbol{k})$
(note: we have a single array $B!$)
- Run-time:
- When a stream element with key \boldsymbol{x} arrives
- If $\mathrm{B}\left[h_{i}(x)\right]=\mathbf{1}$ for all $\boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{k}$ then declare that \boldsymbol{x} is in \boldsymbol{S}
- That is, \boldsymbol{x} hashes to a bucket set to $\mathbf{1}$ for every hash function $\boldsymbol{h}_{i}(\boldsymbol{x})$
- Otherwise discard the element \boldsymbol{x}

Bloom Filter - Analysis

- What fraction of the bit vector B are 1s?
- Throwing $\boldsymbol{k} \cdot \boldsymbol{m}$ darts at \boldsymbol{n} targets
- So fraction of 1 s is ($\left.1-e^{-k m / n}\right)$
- But we have \boldsymbol{k} independent hash functions and we only let the element \boldsymbol{x} through if all \boldsymbol{k} hash element \boldsymbol{x} to a bucket of value 1
- So, false positive probability = (1- $\left.e^{-k m / n}\right)^{k}$

Bloom Filter - Analysis (2)

- $m=1$ billion, $n=8$ billion
- $k=1:\left(1-e^{-1 / 8}\right)=0.1175$
- $\mathrm{k}=2:\left(1-\mathrm{e}^{-1 / 4}\right)^{2}=0.0493$
- What happens as we keep increasing k ?

- Optimal value of $k: n / m \ln (2)$
- In our case: Optimal $\mathbf{k}=8 \ln (2)=5.54 \approx 6$
- Error at $\mathbf{k}=6:\left(1-\mathrm{e}^{-3 / 4}\right)^{6}=0.0216$

Optimal \boldsymbol{k} : k which gives the lowest false positive probability

Bloom Filter: Wrap-up

- Bloom filters allow for filtering / set membership
- Bloom filters guarantee no false negatives, and use limited memory
- Great for pre-processing before more expensive checks
- Suitable for hardware implementation
- Hash function computations can be parallelized
- Is it better to have $\mathbf{1}$ big \mathbf{B} or \boldsymbol{k} small Bs?
- It is the same: $\left(1-e^{-k m / n}\right)^{k}$ vs. $\left(1-e^{-m /(n / k)}\right)^{k}$
- But keeping $\mathbf{1}$ big \mathbf{B} is simpler

(2) Counting Distinct Elements

Counting Distinct Elements

- Problem:
- Data stream consists of a universe of elements chosen from a set of size \mathbf{N}
- Maintain a count of the number of distinct elements seen so far
- Obvious approach:

Maintain the set of elements seen so far

- That is, keep a hash table of all the distinct elements seen so far

Applications

- How many different words are found among the Web pages being crawled at a site?
- Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?
- How many distinct products have we sold in the last week?

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function \boldsymbol{h} that maps each of the \mathbf{N} elements to at least $\log _{2} \mathbf{N}$ bits
- For each stream element \boldsymbol{a}, let $\boldsymbol{r}(\boldsymbol{a})$ be the number of trailing $\mathbf{0 s}$ in $\boldsymbol{h (a)}$
- $r(a)=$ position of first 1 counting from the right
- E.g., say $h(a)=12$, then 12 is 1100 in binary, so $r(a)=2$
- Record $R=$ the maximum $r(a)$ seen
- $R=\max _{\mathrm{a}} \mathrm{r}(\mathrm{a})$, over all the items \boldsymbol{a} seen so far
- Estimated number of distinct elements $=2^{R}$

Why It Works: Intuition

- Rough intuition why Flajolet-Martin works:
- $h(a)$ hashes a with equal prob. to any of N values
- Then $\boldsymbol{h}(a)$ is a sequence of $\log _{2} \mathbf{N}$ bits, where 2^{-r} fraction of all as have a tail of r zeros
- About 50% of as hash to ${ }^{* * *} 0$
- About 25\% of as hash to ${ }^{* *} 00$
- So, if we saw the longest tail of $r=2$ (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
- So, it takes to hash about 2^{r} items before we see one with zero-suffix of length r

Why It Works: More formally

- Now we show why Flajolet-Martin works
- Formally, we will show that probability of finding a tail of r zeros:
- Goes to 1 if $\boldsymbol{m} \gg \mathbf{2}^{r}$
- Goes to 0 if $\boldsymbol{m} \ll 2^{r}$
where m is the number of distinct elements seen so far in the stream
- Thus, 2^{R} will almost always be around m !

Why It Works: More formally

- What is the probability that a given $h(a)$ ends in at least r zeros? It is $\mathbf{2}^{-r}$
- $\mathbf{h}(\mathbf{a})$ hashes elements uniformly at random
- Probability that a random number ends in at least \boldsymbol{r} zeros is $\mathbf{2}^{-r}$
- Then, the probability of NOT seeing a tail of length r among m distinct elements:

Prob. all m elements end in fewer than r zeros.

Why It Works: More formally

- Note: $\left(1-2^{-r}\right)^{m}=\left(1-2^{-r}\right)^{2^{r}\left(m 2^{-r}\right)} \approx e^{-m 2^{-r}}$
- Prob. of NOT finding a tail of length r is:
- If $\boldsymbol{m} \ll \boldsymbol{2}^{r}$, then prob. tends to 1
- $\left(1-2^{-r}\right)^{m} \approx e^{-m 2^{-r}}=1$ as $\mathbf{m} / \mathbf{2}^{r} \rightarrow \mathbf{0}$
- So, the probability of finding a tail of length r tends to $\mathbf{0}$
- If $\boldsymbol{m} \gg \boldsymbol{2}^{r}$, then prob. tends to $\mathbf{0}$
$-\left(1-2^{-r}\right)^{m} \approx e^{-m 2^{-r}}=0 \quad$ as $m / 2^{r} \rightarrow \infty$
- So, the probability of finding a tail of length r tends to 1
- Thus, 2^{R} will almost always be around m !

Why It Doesn't Work

- $E\left[2^{R}\right]$ is actually infinite
- Observing R has some probability
- Probability halves when $\boldsymbol{R} \rightarrow \boldsymbol{R + 1}$, but value doubles
- Each possible large R contributes to exp. value
- Workaround involves using many hash functions h_{i} and getting many samples of R_{i}
- How are samples R_{i} combined?
- Average? What if one very large value $2^{R_{i}}$?
- Median? All estimates are a power of 2
- Solution:
- Partition your samples into small groups
- Take the median of groups
- Then take the average of the medians

(3) Computing Moments

Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values
- Let m_{i} be the number of times value i occurs in the stream
- The $\boldsymbol{k}^{\text {th }}$ (frequency) moment is

$$
\sum_{i \in A}\left(m_{i}\right)^{k}
$$

This is the same way as moments are defined in statistics. But there one typically "centers" the moment by subtracting the mean.

Special Cases

$$
\sum_{i \in A}\left(m_{i}\right)^{k}
$$

- $\mathbf{0}^{\text {th }}$ moment $=$ number of distinct elements
- The problem just considered
- $1^{\text {st }}$ moment $=$ count of the numbers of elements = length of the stream
- Easy to compute, so not particularly useful
- $2^{\text {nd }}$ moment $=$ surprise number $S=$
a measure of how uneven the distribution is
- Very useful

Moments

- Third Moment is Skew:

Negative Skew

Positive Skew

- Fourth moment: Kurtosis
- peakedness (width of peak), tail weight, and lack of shoulders (distribution primarily peak and tails, not in between).

Example: Surprise Number

- Measure of how uneven the distribution is
- Stream of length 100
- 11 distinct values
- Item counts $\mathrm{m}_{\mathrm{i}}: 10,9,9,9,9,9,9,9,9,9,9$ Surprise S = 910
- Item counts $\mathrm{m}_{\mathrm{i}}: \mathbf{9 0}, 1,1,1,1,1,1,1,1,1,1$ Surprise $S=8,110$
- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the $2^{\text {nd }}$ moment
- Will generalize later
- We pick and keep track of many variables X :
- For each variable \boldsymbol{X} we store $\boldsymbol{X} . \boldsymbol{e l}$ and $\boldsymbol{X} . \boldsymbol{v a l}$
- X.el corresponds to the item \boldsymbol{i}
- X.val corresponds to the count m_{i} of item \boldsymbol{i}
- Note this requires a count in main memory, so number of X s is limited
- Our goal is to compute $S=\sum_{i} m_{i}^{2}$

One Random Variable (X)

- How to set X.val and X.el?
- Assume stream has length \boldsymbol{n} (we relax this later)
- Pick some random time $\boldsymbol{t}(\boldsymbol{t}<\boldsymbol{n})$ to start, so that any time is equally likely
- Let at time t the stream have item i. We set X.el = i
- Then we maintain count $\boldsymbol{c}(X . \operatorname{val}=\boldsymbol{c})$ of the number of is in the stream starting from the chosen time t
- Then the estimate of the $2^{\text {nd }}$ moment $\left(\sum_{i} m_{i}^{2}\right)$ is:

$$
S=f(X)=n(2 \cdot c-1)
$$

- Note, we will keep track of multiple $\mathbf{X s},\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots \mathbf{X}_{\mathrm{k}}\right)$ and our final estimate will be $S=1 / k \sum_{j}^{k} f\left(X_{j}\right)$

Expectation Analysis

- $\mathbf{2}^{\text {nd }}$ moment is $S=\sum_{i} m_{i}^{2}$
- $c_{t} \ldots$ number of times item at time t appears from time t onwards ($\left.c_{1}=m_{a}, c_{2}=m_{a}-1, c_{3}=m_{b}\right)$
- $E[f(X)]=\frac{1}{n} \sum_{t=1}^{n} n\left(2 c_{t}-1\right)$

Group times
by the value seen

Time t when the last i is seen ($c_{t}=1$)
$\boldsymbol{m}_{\boldsymbol{i}} \ldots$ total count of item \boldsymbol{i} in the stream $=\frac{1}{n} \sum_{i} n\left(1+3+5+\cdots+2 m_{i}-1\right) \begin{array}{r}\text { item in the stream } \\ \text { (we are assuming } \\ \text { stream has length } n)\end{array}$

Time t when Time t when the first i is seen $\left(c_{t}=m_{i}\right)$

Expectation Analysis

- $E[f(X)]=\frac{1}{n} \sum_{i} n\left(1+3+5+\cdots+2 m_{i}-1\right)$
- Little side calculation: $\left(1+3+5+\cdots+2 m_{i}-1\right)=$

$$
\sum_{i=1}^{m_{i}}(2 i-1)=2 \frac{m_{i}\left(m_{i}+1\right)}{2}-m_{i}=\left(m_{i}\right)^{2}
$$

- Then $E[f(X)]=\frac{1}{n} \sum_{i} n\left(m_{i}\right)^{2}$

So, $\mathrm{E}[\mathrm{f}(\mathrm{X})]=\sum_{i}\left(\boldsymbol{m}_{\boldsymbol{i}}\right)^{2}=S$

- We have the second moment (in expectation)!

Higher-Order Moments

- For estimating $k^{\text {th }}$ moment we essentially use the same algorithm but change the estimate $f(X)$:
- For $\mathbf{k}=\mathbf{2}$ we used $n(2 \cdot c-1)$
- For $\mathbf{k}=\mathbf{3}$ we use: $\boldsymbol{n}\left(3 \cdot c^{2}-3 c+1\right) \quad$ (where $\mathbf{c = X . v a l) ~}$
- Why?
- For k=2: Remember we had $\left(1+3+5+\cdots+2 m_{i}-1\right)$ and we showed terms $\mathbf{2 c} \mathbf{c} \mathbf{1}$ (for $\mathbf{c = 1}, \ldots, \mathbf{m}$) sum to $\boldsymbol{m}^{\mathbf{2}}$
- $\sum_{c=1}^{m}(2 c-1)=\sum_{c=1}^{m} c^{2}-\sum_{c=1}^{m}(c-1)^{2}=m^{2}$
- So: $2 c-1=c^{2}-(c-1)^{2}$
- For $\mathbf{k}=3$: $\mathbf{c}^{3}-(\mathbf{c}-1)^{3}=3 c^{2}-3 \mathrm{c}+1$
- Generally: Estimate $\mathrm{f}(\mathrm{X})=n\left(c^{k}-(c-1)^{k}\right)$

Combining Samples

- In practice:
- Compute $f(X)=n(2 c-1)$ for as many variables \boldsymbol{X} as you can fit in memory
- Average them in groups
- Take median of averages
- Problem: Streams never end
- We assumed there was a number n, the number of positions in the stream
- But real streams go on forever, so \boldsymbol{n} is a variable - the number of inputs seen so far

Streams Never End: Fixups

(1) The variables \boldsymbol{X} have \boldsymbol{n} as a factor keep \boldsymbol{n} separately; just hold the count in \boldsymbol{X}
(2) Suppose we can only store \boldsymbol{k} counts. We must throw some \boldsymbol{X} s out as time goes on:

- Objective: Each starting time t is selected with probability k / n
- Solution: (fixed-size / reservoir sampling!)
- Choose the first \boldsymbol{k} times for \boldsymbol{k} variables
- When the $\boldsymbol{n}^{\text {th }}$ element arrives ($\boldsymbol{n} \boldsymbol{>} \boldsymbol{k}$), choose it with probability $\boldsymbol{k} / \boldsymbol{n}$
- If you choose it, throw one of the previously stored variables \mathbf{X} out, with equal probability

Problems on Data Streams

- Filtering a data stream
- Select elements with property \boldsymbol{x} from the stream
- Counting distinct elements
- Number of distinct elements in the stream
- Estimating moments
- Estimate avg./std. dev. of elements in stream

