CSE P 590B
 Spring Quarter 2006 Assignment 2 Due Thursday, April 13, 2006

All solutions should be neatly written or type set. All major steps in proofs and algorithms must be justified.

1. (10 points) In this problem you will show that the decidable languages are closed under Boolean operation. For this problem show how to design Turing machines to decide $L_{1} \cup L_{2}$ and $\overline{L_{1}}$ given Turing machines to decide to decide L_{1} and L_{2}. Use these results to show that the decidable languages are closed under intersection. Assume that the Turing machines to decide L_{1} and L_{2} are of the one tape variety. Your Turing machines can be of the multitape variety. Given M_{1} and M_{2} that accept L_{1} and L_{2}, respectively, your solutions should show the specific components of the machines that accept $L_{1} \cup L_{2}$ and $\overline{L_{1}}$.
2. (10 points) In this problem you will practice doing a diagonal argument. Consider the language

$$
H_{T M}=\{\langle M, w\rangle: M \text { halts on input } w\} .
$$

Use a diagonal argument to show that $H_{T M}$ is undecidable. Explain why $H_{T M}$ is Turing recognizable.
3. (10 points) A special form of Boolean formulas is called conjunctive normal form or simply CNF. For example,

$$
\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right)
$$

is such a CNF formula. You will want to review pages $14-15$ in the book. We say such a formula is satisfiable if there is some way to assign the Boolean variables to 1 (true) and 0 (false) so that the formula evaluates to true. For the example, the assignment $x_{1}=1, x_{2}=0, x_{3}=0$ satisfies the formula. So the formula is satisfiable. The following is called the CNF-SAT problem.

- Input: A CNF formula F.
- Property: F is satisfiable.
(a) Design an encoding for CNF formulas in a finite alphabet.
(b) Design a nondeterministic multitape Turing machine (using an implementation description, not a formal description) that accepts the set of encodings of satisfiable CNF formulas in your encoding. Use nondeterminism wisely to avoid having your Turing machine search through all possible assignments to find a satisfying one. You do not have give the details of the nondeterministic machine, just describe its behavior.

