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BLAST: 
Basic Local Alignment Search Tool 
Altschul, Gish, Miller, Myers, Lipman, J Mol Biol 1990 

The most widely used comp bio tool 
Which is better: long mediocre match or a few nearby, 
short, strong matches with the same total score?  

score-wise, exactly equivalent 
biologically, later may be more interesting, & is common 
at least, if must miss some, rather miss the former   

BLAST is a heuristic emphasizing the later 
speed/sensitivity tradeoff: BLAST may miss former, but gains 
greatly in speed 
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BLAST: What 

Input:  
A query sequence (say, 300 residues) 
A data base to search for other sequences similar to the query 
(say, 106 - 109 residues) 
A score matrix σ(r,s), giving cost of substituting r for s (& perhaps 
gap costs) 
Various score thresholds & tuning parameters 

Output: 
“All” matches in data base above threshold 
“E-value” of each 
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Blast: demo 

E.g.  
 http://expasy.org/sprot  
 (or  http://www.ncbi.nlm.nih.gov/blast/  ) 
 look up MyoD 
 go to blast tab 
 paste in ID or seq for human MyoD 
 set params (gapped=yes, blosum62,…) 
 get top 100 (or 1000) hits 
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BLAST: How 

Idea: most interesting parts of the DB have a good 
ungapped match to some short subword of the query 

Break query into overlapping words wi of small fixed 
length (e.g. 3 aa or 11 nt) 

For each wi, find (empirically, ~50) “similar” words vij with 
score σ(wi, vij) > thresh1 (say, 1, 2, … letters different) 

Look up each vij in database (via prebuilt index) --  
i.e., exact match to short, high-scoring word 

Grow each such “seed match” bidirectionally 
Report those scoring > thresh2, calculate E-values 
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BLAST: Example 

deadly!
de     (11) -> de ee dd dq dk!
 ea    ( 9) -> ea!
  ad   (10) -> ad sd!
   dl  (10) -> dl di dm dv!
    ly (11) -> ly my iy vy fy lf!

ddgearlyk . . .!

ddge! !10!
   early!18 !!

≥ 7 (thresh1) 
 
 
 

 
 

vij 

query 
 
 
 
wi 
 
 
 
DB 
 
hits ≥ 10 (thresh2) 7 



BLOSUM 62 (the “σ” scores) 
A R N D C Q E G H I L K M F P S T W Y V

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 8 



BLAST Refinements 

“Two hit heuristic” -- need 2 nearby, nonoverlapping, 
gapless hits before trying to extend either 

“Gapped BLAST” -- run heuristic version of Smith-
Waterman, bi-directional from hit, until score drops by 
fixed amount below max 

PSI-BLAST -- For proteins, iterated search, using 
“weight matrix” (next week?) pattern from initial pass to 
find weaker matches in subsequent passes 

Many others 
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Significance of alignment scores 
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Significance of Alignments 

Is “42” a good score? 
Compared to what? 
 
Usual approach: compared to a specific “null model”, 
such as “random sequences” 
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Brief Review of Probability 
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random variables 
Discrete random variable: takes values in a finite or 
countable set, e.g.  

X ∈ {1,2, ..., 6} with equal probability 
X is positive integer i with probability 2-i 

 
Continuous random variable: takes values in an 
uncountable set, e.g.  

X is the weight of a random person (a real number) 
X is a randomly selected point inside a unit square 
X is the waiting time until the next packet arrives at 
the server 
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pdf and cdf 

f(x) 

F(a) = ∫   f(x) dx a 
−∞ a 

f(x) =     F(x), since F(a) = ∫   f(x) dx, a 
−∞ 

d 
dx 

Need ∫    f(x) dx  (= F(+∞))  = 1 -∞ 
+∞ 

f(x) : the probability density function (or simply “density”) 

P(X < a) = F(x): the cumulative distribution function 

A key relationship: 

P(a < X < b) = F(b) - F(a) 

1	

	

	

0	




Densities are not probabilities; e.g. may be > 1	

	

P(x = a) = 0	

	

P(a - ε/2 ≤ X ≤ a + ε/2) = 	

    F(a + ε/2) - F(a - ε/2) 	

    ≈ ε• f(a) 	

I.e., the probability that a continuous random variable 
falls at a specified point is zero	


The probability that it falls near that point is 
proportional to the density; in a large random 
sample, expect more samples where density is higher 
(hence the name “density”).	
15 

densities 

a-ε/e  a  a+ε/2            



 X is a normal (aka Gaussian) random variable  X ~ N(µ, σ2) 

normal random variable 
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changing µ, σ 

density at µ is ≈ .399/σ 



Z-scores 

Z = (X-µ)/σ = (X - mean)/standard deviation 
 
e.g. 
   Z = +3 means “3 standard deviations above the mean” 
 
Applicable to any distribution, and gives a rough sense 
of how usual/unusual the datum is. 
If X is normal(µ, σ2) then Z is normal(0,1), and you can 
easily calculate (or look up in a table) just how unusual 
E.g., if normal, P(Z-score ≥ +3) ≈ 0.001 
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Central Limit Theorem 

If a random variable X is the sum of many independent 
random variables, then X will be approximately normally 
distributed. 
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Hypothesis Tests and P-values 
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Hypothesis Tests 

Competing models might explain some data 
E.g., you’ve flipped a coin 5 times, seeing  HHHTH 
 
Model 0 (The “null” model):  P(H) = 1/2 
Model 1 (The “alternate” model):  P(H) = 2/3 
 
Which is right? 
A possible decision rule: reject the null if you see 4 or 
more heads in 5 tries 
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p-values 

The p-value of such a test is the probability, assuming that the null 
model is true, of seeing data as extreme or more extreme than 
what you actually observed 
E.g., we observed 4 heads; p-value is prob of seeing 4 or 5 heads 
in 5 tosses of a fair coin 
Why interesting?  It measures probability that we would be making 
a mistake in rejecting null. 
Can analytically find p-value for simple problems like coins; often 
turn to simulation/permutation tests (introduced earlier) or to 
approximation (coming soon) for more complex situations 
Usual scientific convention is to reject null only if p-value is < 0.05; 
sometimes demand p ≪ 0.05 (esp. if estimates are inaccurate) 
 

obs 

p-value 
null 
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Alignment Scores 
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some confusion 
here as to local 
vs global 
scores.   
perhaps do this: 
to blast slide 26, 
add normal with 
mean, var 
exactly 
determined by 
random align as 
scored by 
blosum62;  i.e. 
S-W pushed 
curve right, AND 
made it non-
normal. 

Distribution of alignment scores 

A straw man: suppose I want a simple null model for alignment 
scores of, say MyoD versus random proteins of similar lengths.  
Consider this: Write letters of MyoD in one row; make a random 
alignment by filling 2nd row with random permutation of the other 
sequence plus gaps. 

!MELLSPPLR…!
!uv---wxyz… 

Score for column 1 is a random number from the M row of 
BLOSUM 62 table, column 2 is random from E row, etc. 
 
By central limit theorem, total score would be approximately normal 
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Permutation Score Histogram vs Gaussian

score
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Smith-Waterman alignments of 
MyoD vs permuted versions of 
C. elegans Lin32.  
 
Looks roughly normal! 
 

       And real Lin32  
           scores well above  
     highest permuted seq. 

** 
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Permutation Score Histogram vs Gaussian
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And, we can try to estimate p-
value: from mean/variance of the 
data, true Lin32 has z-score = 7.9, 
corresponding p-value is 1.4x10-15. 

But something is fishy: 
a) Histogram is skewed w.r.t. blue 

curve, and, especially, 
b)  Is above it in right tail (e.g. 111 

scores ≥ 80, when only 27 expected; 
highest permuted score is z=5.7, p = 
6x10-9, very unlikely in only 20k 
samples) 

norm
al 



Rethinking score distribution 

Strawman above is ok: random permutation of letters & 
gaps should give normally distributed scores.   
 
But S-W doesn’t stop there; it then slides the gaps 
around so as to maximize score, in effect taking the 
maximum over a huge number of alignments with same 
sequence but different gap placements. 
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Overall Alignment Significance, I 
A Theoretical Approach: EVD 

Let Xi, 1 ≤ i ≤ N, be indp. random variables drawn from some (non-
pathological) distribution 
Q. what can you say about distribution of y = sum{ Xi }?   
A. y is approximately normally distributed (central limit theorem) 
Q. what can you say about distribution of y = max{ Xi }? 
A. it’s approximately an Extreme Value Distribution (EVD) 
    [one of only 3 kinds; for our purposes, the relevant one is:] 
 
 
For ungapped local alignment of seqs x, y, N ~ |x|*|y| 
λ, K depend on score table & gap costs, or can be estimated by 
curve-fitting random scores to (*).  (cf. reading) 

€ 

P(y ≤ z) ≈ exp(−KNe−λ(z−µ )) (*) 
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Permutation Score Histogram vs Gaussian

score
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Red curve is approx fit of EVD to 
score histogram – fit looks better, 
esp. in tail.  Max permuted score 
has probability ~10-4, about what 
you’d expect in 2x104 trials. 
 

True score is still moderately 
unlikely, < one tenth the above. 



EVD Pro/Con 

Pro: 
Gives p-values for alignment scores 

Con: 
It’s only approximate 
You must estimate parameters 
Theory may not apply.  E.g., known to hold for ungapped local 
alignments (like BLAST seeds).  It is NOT proven to hold for 
gapped alignments, although there is strong empirical support. 
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Overall Alignment Significance, II 
Empirical (via randomization) 

You just searched with x, found “good” score for x:y 
Generate N random “y-like” sequences (say N = 103 - 106) 
Align x to each & score 
If k of them have better score than alignment of x to y, 
then the (empirical) probability of a chance alignment as 
good as observed x:y alignment is (k+1)/(N+1) 

e.g., if 0 of 99 are better, you can say “estimated p < .01” 
How to generate “random y-like” seqs? Scores depend on:  

Length, so use same length as y 
Sequence composition, so uniform 1/20 or 1/4 is a bad idea; even 
background pi can be dangerous 
Better idea: permute y N times 
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Generating Random Permutations 

for (i = n-1; i > 0; i--){ 
    j = random(0..i); 
    swap X[i] <-> X[j]; 
} 

All n! permutations of the original data equally likely: A 
specific element will be last with prob 1/n; given that, a 
specific other element will be next-to-last with prob  
1/(n-1), …; overall: 1/(n!) 

0 
1 
2 
3 
4 
5 

.  .   . 

33 
C.f. http://en.wikipedia.org/wiki/Fisher–Yates_shuffle and (for subtle way to go 
wrong) http://www.codinghorror.com/blog/2007/12/the-danger-of-naivete.html 



Permutation Pro/Con 

Pro: 
Gives empirical p-values for alignments with characteristics like 

sequence of interest, e.g. residue frequencies 
Largely free of modeling assumptions (e.g., ok for gapped…) 

Con: 
Can be inaccurate if your method of generating random 

sequences is unrepresentative 
E.g., probably better to preserve di-, tri-residue statistics and/or 

other higher-order characteristics, but increasingly hard to 
know exactly what to model & how 

Slow 
Especially if you want to assess low-probability p-values 
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Summary 

BLAST is a highly successful search/alignment 
heuristic.  It looks for alignments anchored by short, 
strong, ungapped “seed” alignments 
Assessing statistical significance of alignment scores is 
crucial to practical applications 

Score matrices derived from “likelihood ratio” test of trusted 
alignments vs random “null” model 
For gapless alignments, Extreme Value Distribution (EVD) is 
theoretically justified for overall significance of alignment scores; 
empirically ok in other contexts, too, e.g., for gapped alignments 
Permutation tests are a simple (but brute force) alternative 

35 



Bio(tech) Interlude 

3 Nobel Prizes: 
PCR: Kary Mullis, 1993 

Electrophoresis: A.W.K. Tiselius,  1948 
DNA Sequencing: Frederick Sanger, 1980 
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Hot spring, near Great Fountain 
Geyser, Yellowstone National Park 
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PCR  

Ingredients: 
many copies of deoxy nucleotide triphosphates 
many copies of two primer sequences (~20 nt each) 

readily synthesized 
many copies of Taq polymerase (Thermus aquaticus),  

readily available commercialy 
as little as 1 strand of template DNA 
a programmable “thermal cycler” 

Amplification: million to billion fold 
Range: up to 2k bp routinely; 50k with other enzymes & care 
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Why PCR? 

 
PCR is important for all the reasons that filters and 

amplifiers are important in electronics, e.g., sample 
size is reduced from grams of tissue to a few cells, 
can pull out small signal amidst “noisy” background 

 
Very widely used; forensics, archeology, cloning, 

sequencing, … 
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DNA Forensics 

E.g. FBI “CODIS” (combined DNA  
indexing system) data base 

As of 1/2013, over 10,142,600  
offender profiles 

Picked 13 “short tandem repeats”, i.e., variable-length 
regions of human genome flanked by (essentially) 
invariant sequences (primer targets), several alleles 
common at each locus, of which you have 2 

Amplify each from, e.g., small spot of dried blood 
Measure product lengths (next slides) 
http://www.fbi.gov/about-us/lab/biometric-analysis/codis 
http://www.dna.gov/solving-crimes/cold-cases/howdatabasesaid/codis/ 
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Gel Electrophoresis 

DNA/RNA backbone is negatively charged (they’re acids) 
Molecules moves slowly in gels under an electric field 

agarose gels for large molecules 
polyacrylamide gels for smaller ones 

Smaller molecules move faster 
 
So, you can separate DNAs & RNAs by size 
 
Nobel Chem prize, 1948 Arne Wilhelm Kaurin Tiselius 
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lane 1     lane 2    lane 3     lane 4     lane 5 

10,000 bp 
 

  3,000 bp 
 
 
 
 
 
 

500 bp 

- 
 
 
 
 
 
 
 
 
 
 
 
 
+ 
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5’ 

3’ 

DNA Sequencing – Sanger Method 

Like one-cycle, one-primer PCR 
Suppose 0.1% of A’s: 

are di-deoxy adenosine’s; 
backbone can’t extend 
carry a green florescent dye 

Separate by capillary gel electrophoresis 
If frags of length 42, 49, 50, 55 … glow green, 
those positions are A’s 
Ditto C’s (blue), G’s (yellow), T’s (red) 

OH 
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DNA Sequencing 
Sanger with capillary electrophoresis 

+     - 

sample 
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Highly automated 
Typical Sanger “read” about 600 nt 
“Whole Genome Shotgun” approach:  

randomly fragment (many copies of) genome 
sequence many, enough to cover each base 10x or more times 
reassemble by computer  
 
 
 

Complications: repeated region, missed regions, 
sequencing errors, chimeric DNA fragments, … 
But overall accuracy  ~10-4, if careful 

Sequencing A Genome 

a 
b 

c 
d 

e 
f 

g 

E.g., human 
genome project:  
≈ 30Gbases and  
≈ 3x109/600x10 
= 5x107 reads 
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“Next Generation” Sequencing 

Many technical improvements to Sanger approach over many 
years, culminating in highly automated machines used for the HGP 
Since then, many innovative new ideas/products: 

•  Helicos: single molecule flourescence tethered to flow cell 
•  Illumina: colony PCR; reversible dye terminator 
•  Ion Torrent: semiconductor detection of ions released by polymerase 
•  Roche 454: emulsion PCR; pyro sequencing 
•  Oxford Nanopore 
•  Pacific Biosciences: single tethered polymerases in “zero mode 

waveguide” nano-wells, circularized DNA, “real time” 
•  ABI SOLiD: emulsion PCR, sequence by ligation, “color-space” 
•  Complete Genomics: rolling circle replication/DNA nanoballs 

Technology is changing rapidly! 
47 



“Next Generation” Sequencing 

~1 billion microscopic PCR “colonies” on 1x2” slide 
“Read” ~50-150bp of sequence from (1 or 2) ends of each 
Ends fluorescently labeled, blocked, chemically cycled 
Automated: takes a few days; ~ 100 G bases/day 
Costs a few thousand dollars 
Generates terabytes of data (mostly images) 
I,e., ~ 30x human genome/day (you need 25x-50x to assemble) 
 
Other approaches: long reads, single molecules,… 
Technology is changing rapidly! 
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Illumina Sequencing 

~1 billion microscopic PCR “colonies” on 1x2” slide 
“Read” ~50-150bp of sequence from (1 or 2) ends of each 
Reversible dye terminators 
Automated: takes a few days; ~ 100 G bases/day 
Costs a few thousand dollars 
Generates terabytes of data (mostly images) 
I,e., ~ 30x human genome/day  

 (you need 25x-50x to assemble) 
 (equal to all of pre-2008 Genbank) 
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(that is, consecutive instances of the same base, such as AAA or GGG). 
Because there is no terminating moiety preventing multiple consecu-
tive incorporations at a given cycle, the length of all homopolymers 
must be inferred from the signal intensity. This is prone to a greater 
error rate than the discrimination of incorporation versus nonincor-
poration. As a consequence, the dominant error type for the 454 plat-
form is insertion-deletion, rather than substitution. Relative to other 
next-generation platforms, the key advantage of the 454 platform is 
read-length. For example, the 454 FLX instrument generates ~400,000 
reads per instrument-run at lengths of 200 to 300 bp. Currently, the 

per-base cost of sequencing with the 454 plat-
form is much greater than that of other plat-
forms (e.g., SOLiD and Solexa) but it may be 
the method of choice for certain applications 
where long read-lengths are critical (e.g., de 
novo assembly and metagenomics).

Illumina Genome Analyzer. Commonly 
referred to as ‘the Solexa’, this platform has its 
origins in work by Turcatti and colleages22,23 
and the merger of four companies—Solexa 
(Essex, UK), Lynx Therapeutics (Hayward, 
CA, USA), Manteia Predictive Medicine 
(Coinsins, Switzerland) and Illumina. 
Libraries can be constructed by any method 
that gives rise to a mixture of adaptor-flanked 
fragments up to several hundred base-pairs 
(bp) in length. Amplified sequencing features 
are generated by bridge PCR21,22 (Fig. 2b). In 
this approach, both forward and reverse PCR 
primers are tethered to a solid substrate by a 
flexible linker, such that all amplicons arising 
from any single template molecule during the 
amplification remain immobilized and clus-
tered to a single physical location on an array. 
On the Illumina platform, the bridge PCR 
is somewhat unconventional in relying on 
alternating cycles of extension with Bst poly-
merase and denaturation with formamide. 
The resulting ‘clusters’ each consist of ~1,000 
clonal amplicons. Several million clusters can 
be amplified to distinguishable locations 
within each of eight independent ‘lanes’ that 

by the CCD as corresponding to the array coordinates of specific wells. 
In contrast with other platforms, therefore, the sequencing by synthe-
sis must be monitored ‘live (that is, the camera does not move relative 
to the array). Across multiple cycles (e.g., A-G-C-T-A-G-C-T…), the 
pattern of detected incorporation events reveals the sequence of tem-
plates represented by individual beads. Like the HeliScope (discussed 
below), the sequencing is ‘asynchronous’ in that some features may get 
ahead or behind other features depending on their sequence relative 
to the order of base addition.

A major limitation of the 454 technology relates to homopolymers 

Several academic groups and companies are working on 
technologies for ultra-fast DNA sequencing that are substantially 
different from the current crop of available next-generation 
platforms. One approach is nanopore sequencing, in which 
nucleic acids are driven through a nanopore (either a biological 
membrane protein such as alpha-hemolysin or a synthetic pore)92. 
Fluctuations in DNA conductance through the pore, or, potentially, 
the detection of interactions of individual bases with the pore, 
are used to infer the nucleotide sequence. Although progress has 
been made in achieving early proof-of-concept demonstrations 
with such methods11,12,93,94, major technical challenges remain 
along the path to a truly practical nanopore-based sequencing 
platform. Another approach involves the real-time monitoring of 
DNA polymerase activity. Nucleotide incorporations can potentially 

be detected through FRET (fluorescence resonance energy transfer) 
interactions between a fluorophore-bearing polymerase and gamma 
phosphate-labeled nucleotides (Visigen; Houston), or with zero-
mode waveguides (Pacific Biosciences; Menlo Park, CA, USA), with 
which illumination can be restricted to a zeptoliter-scale volume 
around a surface-tethered polymerase such that incorporation of 
nucleotides (with fluorescent labels on phosphate groups) can 
be observed with low background95. Pacific Biosciences recently 
demonstrated substantial progress toward a working technology, 
including the potential for longer reads than Sanger sequencing, 
in several presentations and publications96,97. Although technical 
hurdles remain and the bar has been raised by cyclic-array 
methods, we are also unlikely to run out of nucleotides to sequence 
anytime soon.

a

b

Figure 2  Clonal amplification of sequencing features. (a) The 454, the Polonator and SOLiD platforms 
rely on emulsion PCR20 to amplify clonal sequencing features. In brief, an in vitro–constructed adaptor-
flanked shotgun library (shown as gold and turquoise adaptors flanking unique inserts) is PCR amplified 
(that is, multi-template PCR, not multiplex PCR, as only a single primer pair is used, corresponding to 
the gold and turquoise adaptors) in the context of a water-in-oil emulsion. One of the PCR primers is 
tethered to the surface (5 -attached) of micron-scale beads that are also included in the reaction.  
A low template concentration results in most bead-containing compartments having either zero or one 
template molecule present. In productive emulsion compartments (where both a bead and template 
molecule is present), PCR amplicons are captured to the surface of the bead. After breaking the 
emulsion, beads bearing amplification products can be selectively enriched. Each clonally amplified 
bead will bear on its surface PCR products corresponding to amplification of a single molecule from 
the template library. (b) The Solexa technology relies on bridge PCR21,22 (aka ‘cluster PCR’) to amplify 
clonal sequencing features. In brief, an in vitro–constructed adaptor-flanked shotgun library is PCR 
amplified, but both primers densely coat the surface of a solid substrate, attached at their 5  ends 
by a flexible linker. As a consequence, amplification products originating from any given member of 
the template library remain locally tethered near the point of origin. At the conclusion of the PCR, 
each clonal cluster contains ~1,000 copies of a single member of the template library. Accurate 
measurement of the concentration of the template library is critical to maximize the cluster density 
while simultaneously avoiding overcrowding.

Box 3  Sequencing in real time
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http://www.technologyreview.com/sites/default/files/legacy/pgenome_x220.jpghttp://bioinformatics.oxfordjournals.org/content/25/17/2194/F1.large.jpg 
http://bioinformatics.oxfordjournals.org/content/25/17/2194/F1.large.jpg 
Fig from: Shendure and Ji 2008. “Next-Generation DNA Sequencing..” Nature Biotechnol 26 (10) (October): 1135–1145. doi:10.1038/nbt1486. 
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Illumina HiSeq (1500/2500, as of Spring 2013) 

!

Source: http://www.illumina.com/systems/hiseq_2500_1500/performance_specifications.ilmn (downloaded 5/9/13) 

 

 HIGH OUTPUT RUN MODE* RAPID RUN MODE* 

Read 
Length 

Dual Flow Cell 
(2500 only) 

Single Flow Cell 
(1500 or 2500) 

Dual Flow Cell 
Run Time 

Dual Flow Cell 
(2500 only) 

Single Flow Cell 
(1500 or 2500) 

Dual Flow Cell 
Run Time 

1 x 36 95-105 Gb 47-52 Gb 2 days 18-22 Gb 9-11 Gb 7 hr 

2 × 50 270-300 Gb 135-150 Gb 5.5 days 50-60 Gb 25-30 Gb 16 hr 

2 x 100 540-600 Gb 270-300 Gb 11 days 100-120 Gb   50-60 Gb 27 hr 

2 x 150 N/A N/A N/A 150-180 Gb   75-90 Gb 40 hr 

Reads 
Passing 
Filter 

Up to 3 billion 
single reads or 
6 billion paired-

end reads 

Up to 1.5 billion 
single reads or 
3 billion paired-

end reads 

 Up to 600 million 
single reads or 

1.2 billion 
paired-end reads 

Up to 300 million 
single reads or 

600 million 
paired-end reads 

 

Quality > 85% of bases above Q30 at 2 ×  50 bp  
> 80% of bases above Q30 at 2 × 100 bp 

> 85% of bases above Q30 at 2 ×  50 bp 
> 80% of bases above Q30 at 2 × 100 bp 
> 75% of bases above Q30 at 2 × 150 bp 

*Install specifications based on Illumina PhiX control library at supported cluster densities (between 610-678 K clusters/mm2 
passing filter using TruSeq v3 Kits or 700-820 clusters/mm2 passing filter using TruSeq Rapid Kits. Run times for rapid run 
mode correspond to on-board cluster generation (1.5 hr) and sequencing; for high output mode, run times correspond to 
sequencing only. Performance may vary based on sample quality, cluster density, and other experimental factors. Early HiSeq 
2000 instruments will run slightly slower when upgraded to a HiSeq 2500. 
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Modern DNA Sequencing 

A table-top box the size of 
your oven (but costs a bit 
more … ;-) can generate  
~100 billion BP of DNA 
seq/day; i.e.  
= 2008 genbank, 
= 30x your genome 
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http://www.globenewswire.com/NewsRoom/Attachment/18068 

Pacific Biosciences 

http://files.pacb.com/pdf/PacBio_RS_II_Brochure.pdf 

Products and Workflow

Library Preparation Instrument Run Data Analysis

DNA Template Prep Kit
DNA Polymerase Binding Kit

MagBead Kit

PacBio RS II with touch screen
RS Remote for run design

SMRT Cells
DNA Sequencing Kit

SMRT Analysis
SMRT Portal
SMRT View

Sequencing time
30 to 120 min per SMRT Cell

Results in as few as 10 hours

No amplification 
required

Open source, 
open standards

The PacBio® RS II system, consumables and software provide a simple, fast, end-to-end workflow.

SMRT® Technology
The PacBio RS II is based on novel Single-Molecule, Real-Time (SMRT) technology which enables the observation 
of natural DNA synthesis by a DNA polymerase in real time.   Sequencing occurs on SMRT Cells, each containing 
thousands of  Zero-Mode Waveguides (ZMWs) in which polymerases are immobilized.  The ZMWs provide a 
window for watching the DNA polymerase as it performs sequencing by synthesis. 

SMRT® Cells Phospholinked 
Nucleotides

Zero-Mode 
Waveguides

Primer

Template
Polymerase

Phospholinked 
nucleotides 

Products and Workflow

Library Preparation Instrument Run Data Analysis

DNA Template Prep Kit
DNA Polymerase Binding Kit

MagBead Kit

PacBio RS II with touch screen
RS Remote for run design

SMRT Cells
DNA Sequencing Kit

SMRT Analysis
SMRT Portal
SMRT View

Sequencing time
30 to 120 min per SMRT Cell

Results in as few as 10 hours

No amplification 
required

Open source, 
open standards

The PacBio® RS II system, consumables and software provide a simple, fast, end-to-end workflow.

SMRT® Technology
The PacBio RS II is based on novel Single-Molecule, Real-Time (SMRT) technology which enables the observation 
of natural DNA synthesis by a DNA polymerase in real time.   Sequencing occurs on SMRT Cells, each containing 
thousands of  Zero-Mode Waveguides (ZMWs) in which polymerases are immobilized.  The ZMWs provide a 
window for watching the DNA polymerase as it performs sequencing by synthesis. 

SMRT® Cells Phospholinked 
Nucleotides

Zero-Mode 
Waveguides

Primer

Template
Polymerase

Zero-Mode 
Waveguides 
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Pacific Biosciences 

http://www.pacificbiosciences.com/img/assets/smrt_sequencing_advantage_readlength_lg.png 

Advantages: 
single molecules 
long reads 
direct CH3 detection 

Disadvantages: 
 throughput 
error rate; (circularize?) 
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Oxford Nanopore 

http://www.nanoporetech.com/uploads/Technology_New/Introduction_To_Nanopore_Sensing/Nanopore_sensing_101_0_rs.jpg 

http://www.nanoporetech.com/uploads/Technology_New/MinION/MinION_117.jpg 

Prerelease claims ≈ 
100k read lengths, 

150Mb in 6 hrs, $1000 
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Personal Genomes 

2001: ~$2.7 billion (Human Genome Project) 
2003: ~$300 million 
2007: ~$1 million 
2008: ~$60 thousand 
2009: ~$4400  bioinformatics not included… 
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Figure 3: Illumina Sequencing Technology 
Outpaces Moore’s Law for the Price of Whole 
Human Genome Sequencing
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Summary 

PCR allows simple in vitro amplification of minute 
quantities of DNA (having pre-specified boundaries) 
Sanger sequencing uses  

a PCR-like setup with modified chemistry to generate varying 
length prefixes of a DNA template with the last nucleotide of each 
color-coded  
gel electrophoresis to separate DNA by size, giving sequence 

Sequencing random overlapping fragments allows 
genome sequencing (and many other applications) 
“Next Gen” sequencing: many innovations 

throughput up, cost down (lots!) 
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More on p-values and  
hypothesis testing 
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P-values & E-values 

p-value:  P(s,n) = probability of a score more extreme than s in a 
random target data base of size n 
E-value: E(s,n) = expected number of such matches 
They Are Related: 

E(s,n) = pn (where p = P(s,1) ) 
P(s,n) = 1-(1-p)n = 1-(1-1/(1/p))(1/p)(pn) ≈ 1-exp(-pn) = 1-exp(-E(s,n)) 
E big ⇔ P big 

E =   5  ⇔  P  ≈ .993 
E = 10  ⇔  P  ≈ .99995 

E small ⇔ P small 
E = .01 ⇔  P  ≈ E - E2/2 + E3/3!  … ≈  E  

Both equally valid; E-value is perhaps more intuitively interpretable 
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Hypothesis Testing: 
A Very Simple Example 

Given: A coin, either fair (p(H)=1/2) or biased (p(H)=2/3) 
Decide: which 
How?  Flip it 5 times.  Suppose outcome D = HHHTH 
Null Model/Null Hypothesis M0: p(H)=1/2 
Alternative Model/Alt Hypothesis M1: p(H)=2/3 
Likelihoods: 

P(D | M0) = (1/2) (1/2) (1/2) (1/2) (1/2) =   1/32 
P(D | M1) = (2/3) (2/3) (2/3) (1/3) (2/3) = 16/243 
 

Likelihood Ratio:   
 
I.e., given data is ≈ 2.1x more likely under alt model than null model 

€ 

p(D |M 1 )
p(D |M 0 )

= 16 / 243
1/ 32 = 512

243 ≈ 2.1
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Hypothesis Testing, II 

Log of likelihood ratio is equivalent, often more 
convenient 
add logs instead of multiplying… 

“Likelihood Ratio Tests”: reject null if LLR > threshold 
LLR > 0 disfavors null, but higher threshold gives stronger 
evidence against  

Neyman-Pearson Theorem: For a given error rate, LRT 
is as good a test as any (subject to some fine print). 
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A Likelihood Ratio 

Defn: two proteins are homologous if they are alike because of shared 
ancestry; similarity by descent 

 
Suppose among proteins overall, residue x occurs with frequency px 
Then in a random alignment of 2 random proteins, you would expect to 

find x aligned to y with prob pxpy 
Suppose among homologs, x & y align with prob pxy 
Are seqs X & Y homologous? Which is  

more likely, that the alignment reflects 
chance or homology?  Use a likelihood 
ratio test. 

 

€ 

log
pxi yi
pxi pyii

∑
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Non-ad hoc Alignment Scores 

Take alignments of homologs and look at frequency of 
x-y alignments vs freq of x, y overall 

Issues 
biased samples  
evolutionary distance 
 

BLOSUM approach 
Large collection of trusted alignments 

(the BLOCKS DB)  
Subset by similarity  

BLOSUM62 ⇒ ≥ 62% identity 
e.g. http://blocks.fhcrc.org/blocks-bin/getblock.pl?IPB002546 
 
 

€ 

1
λ
log2

px y
px py

65 



BLOSUM 62 
A R N D C Q E G H I L K M F P S T W Y V

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 66 



ad hoc Alignment Scores? 

Make up any scoring matrix you like 
Somewhat surprisingly, under pretty general 
assumptions**, it is equivalent to the scores constructed 
as above from some set of probabilities pxy, so you 
might as well understand what they are 

NCBI-BLAST: +1/-2  tuned for ~ 95% sequence identity 
WU-BLAST:   +5/-4  tuned for ~ 66% identity (“twilight zone”) 

 

** e.g., average scores should be negative, but you probably want 
that anyway, otherwise local alignments turn into global ones, and 
some score must be > 0, else best match is empty 
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