Module 10: Finite State Machines with Gene Regulatory Networks

CSE 590: Molecular programming and neural computation

Guest Lecture: Kevin Oishi

Living Systems Perform Discrete Computation

Lindenmeyer Systems (1968)

Variables: A,B Start: A Rules: A→AB, B→A

Amorphous Computing (1996)

- Growing Point Language
- Origami Shape Language
- Morphogenesis Language

Motivation

Nondeterministic pushdown automata

Cellular Automata

Turing Machine

Example: Traffic Light Controller

Example: Traffic Light Controller

Objective:

Design traffic light controllers L_R and L_H that use sensors S_1 and S_2 to give a green light to highway traffic unless there are cars waiting to cross from the minor road.

Example: Traffic Light Controller

States: $L_R \times L_H$ $L_R, L_H \in \{R, Y, G\}$ Inputs: $\{S_1, S_2, \overline{S}_1, \overline{S}_2\}$

States: $L_R \times L_H$ $L_R, L_H \in \{R, Y, G\}$ Inputs: $\{S_1, S_2, \bar{S}_1, \bar{S}_2\}$

(G, R)

States: $L_R \times L_H$ $L_R, L_H \in \{R, Y, G\}$ Inputs: $\{S_1, S_2, \overline{S}_1, \overline{S}_2\}$

Example: Yeast-based Ultrasensitive Detector

Objective: Use yeast to detect a very small number of a particular type of molecule (eg. protein markers in the early stages of an infection).

Example: Yeast-based Ultrasensitive Detector

This is an engineered yeast strain USD001.

USD001 can produce and sense a small diffusible molecule, AHL.

USD001 can also sense a single protein associated with an infectious disease.

USD001 can express a green fluorescent protein.

Example: Yeast-based Ultrasensitive Detector

Syntax

$$M = (Q, \Sigma, \delta, q_0, F)$$

Symbol	Meaning
Q	set of <i>states</i>
Σ	set of <i>input symbols</i>
$\delta:Q\times\Sigma\to Q$	state transition function
$q_0 \in Q$	initial state
$F \subseteq Q$	set of <i>accepting states</i>

Semantics

Input: $w = \sigma_1 \sigma_2 ... \sigma_n \in \Sigma^*$ Output: Accept or Not Accept

The machine begins in state q_0 .

At each step *i* an input symbol σ_i is taken from the head of the input *w*.

The next state of the machine is $q_i = \delta(q_{i-1}, \sigma_i)$

The input w is accepted if and only if $q_n \in F.$

Syntax

$$M = (Q, \Sigma, \delta, q_0, F)$$

Symbol	Meaning
Q	set of <i>states</i>
Σ	set of <i>input symbols</i>
$\delta:Q\times\Sigma\to Q$	state transition function
$q_0 \in Q$	initial state
$F \subseteq Q$	set of <i>accepting states</i>

Semantics

Input: $w = \sigma_1 \sigma_2 ... \sigma_n \in \Sigma^*$ Output: Accept or Not Accept

The machine begins in state q_0 .

At each step *i* an input symbol σ_i is taken from the head of the input *w*.

The next state of the machine is $q_i = \delta(q_{i-1}, \sigma_i)$

The input w is accepted if and only if $q_n \in F.$

Syntax

$M = (Q, \Sigma, \delta, q_0, F)$

Symbol	Meaning
Q	set of <i>states</i>
Σ	set of <i>input symbols</i>
$\delta:Q\times\Sigma\to Q$	state transition function
$q_0 \in Q$	initial state
$F \subseteq Q$	set of accepting states

Input: $w = \sigma_1 \sigma_2 ... \sigma_n \in \Sigma^*$ Output: Accept or Not Accept

What strings does this machine accept?

A BBBB BABABA AAAABBBBA

Semantics

Syntax

$$M = (Q, \Sigma, \delta, q_0, F)$$

Symbol	Meaning
Q	set of <i>states</i>
Σ	set of <i>input symbols</i>
$\delta:Q\times\Sigma\to Q$	state transition function
$q_0 \in Q$	initial state
$F \subseteq Q$	set of accepting states

start $B \bigcirc 0$ $B \bigcirc 1$ A

Semantics

Input: $w = \sigma_1 \sigma_2 \dots \sigma_n \in \Sigma^*$ Output: Accept or Not Accept

What strings does this machine accept?

A BBBB BABABA AAABBBBA

This machine accepts strings that end in "A", i.e. the regular expression (A*B*)*A.

Transriptional I. repression domain

Fluorscent marker

III. Programmable DNA binding domain

Β.

- I. Transriptional repression domain
- II. Small molecule recognition site/ degron
- III. Programmable DNA binding domain

Gene Regulatory Networks

Syntax

$$G = (V, U, E_r, H_r)$$

Symbol	Meaning
\overline{V}	Set of gene products
U	Set of <i>inducers</i>
$E_r \subset V \times V$	repression relation
$H_r \subset U \times E_r$	inducible repression relation

Gene Regulatory Networks

Syntax

G =	(V,	U,	E_r ,	$H_r)$
-----	-----	----	---------	--------

Symbol	Meaning
V	Set of gene products
U	Set of <i>inducers</i>
$E_r \subset V \times V$	repression relation
$H_r \subset U \times E_r$	inducible repression relation

Semantics

Boolean Network Dynamics (Kauffman, 1969)

$$Y^t = f(Y^{t-1}, U^t)$$

Let Y^t be a time-varying state vector and U^t be a time-varying input vector, i.e.,

$$Y^{t} = \begin{bmatrix} R_{0}^{t} \\ R_{1}^{t} \\ S_{a}^{t} \\ S_{b}^{t} \\ T_{a,0}^{t} \\ T_{b,0}^{t} \\ T_{b,1}^{t} \end{bmatrix} \qquad U^{t} = \begin{bmatrix} a^{t} \\ b^{t} \end{bmatrix}$$

Component Type	Gene Regulatory Network	Boolean Network Equations	
Transcriptionally Unregulated Gene	Y	$Y^t = on$	
Singly Regulated Gene	U ── Y	$Y^{t+1} = \neg U^t$	
Doubly Regulated Gene	$U_{1} \xrightarrow{U_{2}} U_{2}$	$Y^{t+1} = \neg (U_1^t \lor U_1^t)$	$\left({{_2}t}{_2} \right)$
Small Molecule Sensor	$S_a \xrightarrow{a} Y$	$S_a^t = \neg a^t$ $Y^{t+1} = \neg S_a^t$	

Component Type	Gene Regulatory Network	Boolean Network Equations	
Transcriptionally Unregulated Gene	Y	$Y^t = on$	
Singly Regulated Gene	U −−− I Y	$Y^{t+1} = \neg U^t$	$\begin{array}{c c c} U^t & Y^{t+1} \\ \hline 0 \\ 1 \\ \end{array}$
Doubly Regulated Gene	$U_{1} \xrightarrow{U_{2}} U_{2}$	$Y^{t+1} = \neg (U_1^t \lor U_2^t)$	
Small Molecule Sensor	$S_a \xrightarrow{a} Y$	$S_a^t = \neg a^t$ $Y^{t+1} = \neg S_a^t$	

Component Type	Gene Regulatory Network	Boolean Network Equations	
Transcriptionally Unregulated Gene	Y	$Y^t = on$	
Singly Regulated Gene	U → Y	$Y^{t+1} = \neg U^t$	$\begin{array}{c c c} U^t & Y^{t+1} \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$
Doubly Regulated Gene	$U_{1} \xrightarrow{U_{2}} U_{1}$	$Y^{t+1} = \neg (U_1^t \lor U_2^t)$)
Small Molecule Sensor	$S_a \xrightarrow{a} Y$	$S_a^t = \neg a^t$ $Y^{t+1} = \neg S_a^t$	

Component Type	Gene Regulatory Network	Boolean Network Equations	What is the truth table for the Double Regulated Gene and Small Molecular Sensor?	
Transcriptionally Unregulated Gene	Y	$Y^t = on$		
Singly Regulated Gene	U −−− I Y	$Y^{t+1} = \neg U^t$	$\begin{array}{c c c} U^t & Y^{t+1} \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$	
Doubly Regulated Gene	U_{2} $U_{1} \rightarrow Y$	$Y^{t+1} = \neg (U_1^t \lor U_2^t)$) $\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Small Molecule Sensor	$S_a \xrightarrow{a} Y$	$S_a^t = \neg a^t$ $Y^{t+1} = \neg S_a^t$	$a^t \mid Y^{t+1}$	

Component Type	Gene Regulatory Network	Boolean Network Equations	What is the truth table for the Double Regulated Gene and	
Transcriptionally Unregulated Gene	Y	$Y^t = on$	Small Molecular Sensor?	
Singly Regulated Gene	U ── I Y	$Y^{t+1} = \neg U^t$	$\begin{array}{c c c} U^t & Y^{t+1} \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$	
Doubly Regulated Gene	$U_{1} \xrightarrow{U_{2}} U_{1}$	$Y^{t+1} = \neg (U_1^t \lor U_2^t)$	$\begin{array}{c ccc} U_1^t & U_2^t & Y^{t+1} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	
Small Molecule Sensor	$S_a \xrightarrow{a} Y$	$S_a^t = \neg a^t$ $Y^{t+1} = \neg S_a^t$	$\begin{array}{c cc} a^t & Y^{t+1} \\ \hline 0 & 0 \\ 1 & 1 \\ \end{array}$	

GRN General Construction Method

 $M = (Q, \Sigma, \delta, q_0, F)$

Symbol	Meaning
Q	set of <i>states</i>
Σ	set of <i>input symbols</i>
$\delta:Q\times\Sigma\to Q$	state transition function
$q_0 \in Q$	initial state
$F \subseteq Q$	set of accepting states

Objective:

Given a FSM M as a specification, construct a GRN g(M) that encodes the behavior the FSM.

GRN General Construction Method

For each q in Q, let Rq be a singly regulated **state gene**, and "wire" START to Rq_0

Each state q in Q, is represented by a gene expression profile where Rq is at a low level of expression, and all other state genes are at a high level of expression.

For each q in Q, let Rq be a singly regulated state gene, and "wire" START to Rq_0

What are the expression levels of R0 and R1 with START on? START off?

For each q in Q, let Rq be a singly regulated **state gene**, and "wire" START to Rq_0

For each (q, σ, q') in Q x Σ x Q, such that $\delta(q, \sigma) q'$, let T σq be a doubly regulated **transition gene**.

For each (q, σ, q') in Q x Σ x Q, such that $\delta(q, \sigma) q'$, wire Rq to T σq .

What is the Boolean function that describes the expression level of Ta0 at time t+1?

$$T_{a,0}^{t+1} = ???$$

What is the Boolean function that describes the expression level of Ta0 at time t+1?

$$T_{a,0}^{t+1} = \neg R_0^t$$
$$= START^{t-1}$$

For each (q, σ, q') in Q x Σ x Q, such that $\delta(q, \sigma) q'$, wire S σ to T σq .

What is the Boolean function that describes the expression level of each transition gene at time t+1?

$$T_{a,0}^{t+1} = f_1(R_0^t, R_1^t, a^t, b^t)$$
$$T_{b,0}^{t+1} = f_2(R_0^t, R_1^t, a^t, b^t)$$
$$T_{a,1}^{t+1} = f_3(R_0^t, R_1^t, a^t, b^t)$$
$$T_{b,1}^{t+1} = f_4(R_0^t, R_1^t, a^t, b^t)$$

What is the Boolean function that describes the expression level of each transition gene at time t+1?

$$T_{a,0}^{t+1} = \neg R_0^t \wedge a^t$$
$$T_{b,0}^{t+1} = \neg R_0^t \wedge b^t$$
$$T_{a,1}^{t+1} = \neg R_1^t \wedge a^t$$
$$T_{b,1}^{t+1} = \neg R_1^t \wedge b^t$$

For each (q, σ, q') in $Q \ge \Sigma \ge Q$, such that $\delta(q, \sigma) q'$, wire $T \sigma q$ to Rq'.

For each (q, σ, q') in Q x Σ x Q, such that $\delta(q, \sigma) q'$, wire T σq to Rq'.

For each (q, σ, q') in $Q \ge \Sigma \ge Q$, such that $\delta(q, \sigma) q'$, wire $T \sigma q$ to Rq'.

A B

For each (q, σ, q') in Q x Σ x Q, such that $\delta(q, \sigma) q'$, wire T σq to Rq'.

A B

For each (q, σ, q') in Q x Σ x Q, such that $\delta(q, \sigma) q'$, wire T σq to Rq'.

A B

For each (q, σ, q') in Q x Σ x Q, such that $\delta(q, \sigma) q'$, wire T σq to Rq'.

DONE! Almost...

An input sequence w in Σ^* is represented by a trajectory over START and the inducers, e.g.

Input trajectories for the BN Model of g(M)

Let $h_{BN}(w,t)$ be the input trajectory to g(M)where w= $\sigma_{c1}\sigma_{c2}...\sigma_{cm}$, START $h_{BN}(w,t) = \begin{bmatrix} START^t \\ \sigma_1^t \\ \sigma_2^t \\ \vdots \\ \sigma_\tau^t \end{bmatrix}$ **H** Ta0 a Sa Tb0Tb1 $START^{t} = \begin{cases} on, & t \in \{0, 1\} \\ off, & otherwise, \end{cases}$ Sb $\sigma_j^t = \begin{cases} on, & \exists c_i \text{ s.t } j = c_i \text{ and } t \in \{2i, 2i+1\} \\ off, & \text{otherwise.} \end{cases}$

What does the input trajectory for "AABB" look like?

	ŀ	4	А		В	В		
START								
Α								
В								
R 0								
R 1								
Tij								

	А	А	В	В	
START					_
А					
В					
R0					
R 1					
Tij	TA0				

Theorem. Given a finite state machine *M*, the GRN g(*M*) simulates *M* when modeled as a Boolean network.

Theorem. Assuming a Boolean network model, GRNs are computationally equivalent to FSMs.

Representations of the Two-State Machine

Gene expression levels are NOT generally binary.

Continuous time model.

Study the effects of: production rate degradation rate dilution rate binding affinity

Syntax

$$G = (V, E_r, E_a)$$

Symbol	Meaning
V	set of gene products
	or <i>inducers</i>
$E_r \subset V \times (V \cup E_r \cup E_a)$	repression relation
$E_a \subset V \times (V \cup E_r \cup E_a)$	$activation \ relation$

Semantics

Delay Differential Equations

$$\frac{d}{dt}Y(t) = f(Y(t-\tau), U(t))$$

Let Y(t) be a time-varying state vector and U(t) be a time-varying input vector, i.e.,

$$Y^{t} = \begin{bmatrix} R_{0}(t) \\ R_{1}(t) \\ S_{a}(t) \\ S_{b}(t) \\ T_{a,0}(t) \\ T_{b,0}(t) \\ T_{b,1}(t) \end{bmatrix} U(t) = \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}$$

V_{max},eta	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n'	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	au = 1

 $S_a \xrightarrow{u} Y$

V_{max},eta	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n'	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	$\tau = 1$

$$\frac{d}{dt}S_{a}(t) = \frac{V_{max}}{\swarrow} - \frac{(\beta + k_{p}a(t))S_{a}(t)}{\swarrow}$$
Production Degradation

Can you interpret this as a chemical reaction network?

V_{max},eta	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n'	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	$\tau = 1$

$$\frac{d}{dt}S_{a}(t) = \frac{V_{max}}{\swarrow} - \frac{(\beta + k_{p}a(t))S_{a}(t)}{\swarrow}$$
Production Degradation

Can you interpret this as a chemical reaction network?

$$\emptyset \xrightarrow{V_{max}} S_a \xrightarrow{\beta + k_p a(t)} \emptyset$$
V_{max},eta	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	$\tau = 1$

$$\frac{d}{dt}S_a(t) = V_{max} - (\beta + k_p a(t))S_a(t)$$

$$0 = V_{max} - (\beta + k_p a^*) S_a^*$$

 $\emptyset \xrightarrow{V_{max}} S_a \xrightarrow{\beta + k_p a(t)} \emptyset$

V_{max},eta	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n'	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	$\tau = 1$

$$\frac{d}{dt}S_a(t) = V_{max} - (\beta + k_p a(t))S_a(t)$$

$$0 = V_{max} - (\beta + k_p a^*) S_a^*$$

$$S_a^* = \frac{V_{max}}{\beta + k_p a^*} = \frac{\text{production}}{\text{degradation}}$$
$$\emptyset \xrightarrow{V_{max}} S_a \xrightarrow{\beta + k_p a(t)} \emptyset$$

V_{max},eta	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n'	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	au = 1

Original set of equations:

S

ΗY

$$\frac{d}{dt}S_a(t) = V_{max} - (\beta + k_p a(t))S_a(t)$$
$$\frac{d}{dt}Y(t) = \frac{V_{max}}{1 + \left(\frac{S_a(t-\tau)}{k_{1/2}}\right)^n} - \beta Y(t)$$

V_{max},eta	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
$n^{'}$	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	$\tau = 1$

V_{max}, β	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n'	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	$\tau = 1$

$$\frac{d}{dt}Y(t) = \frac{V_{max}}{1 + \left(\frac{S_a(t-\tau)}{k_{1/2}}\right)^n} - \beta Y(t)$$

V_{max},eta	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	$\tau = 1$

$$\frac{d}{dt}Y(t) = \frac{V_{max}}{1 + \left(\frac{S_a(t-\tau)}{k_{1/2}}\right)^n} - \beta Y(t)$$

V_{max},eta	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	$\tau = 1$

$$\frac{d}{dt}Y(t) = \frac{V_{max}}{1 + \left(\frac{S_a(t-\tau)}{k_{1/2}}\right)^n} - \beta Y(t)$$

V_{max},eta	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	$\tau = 1$

$$\frac{d}{dt}Y(t) = \frac{V_{max}}{1 + \left(\frac{S_a(t-\tau)}{k_{1/2}}\right)^n} - \beta Y(t)$$

V_{max},β	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	$\tau = 1$

$$\frac{d}{dt}Y(t) = \frac{V_{max}}{1 + \left(\frac{S_a(t-\tau)}{k_{1/2}}\right)^n} - \beta Y(t)$$

V_{max},eta	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	$\tau = 1$

$$\frac{d}{dt}Y(t) = \frac{V_{max}}{1 + \left(\frac{S_a(t-\tau)}{k_{1/2}}\right)^n} - \beta Y(t)$$

V_{max},β	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	-
n	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	$\tau = 1$

$$\frac{d}{dt}Y(t) = \frac{V_{max}}{1 + \left(\frac{S_a(t-\tau)}{k_{1/2}}\right)^n} - \beta Y(t)$$

V_{max},eta	protein production and degradation rates	$V_{max} = \beta$
k_p	small molecule binding affinity	$k_p \gg \beta$
$k_{1/2}$	input for half-maximum gene production	
n'	Hill coefficient	
au	time delay, approximates transcription/translation dynamics	au = 1

Input trajectories for the DDE Model of g(M)

Let $h_{DDE}(w, \Delta t, t)$ be the input trajectory to DDE model of g(M)with pulse width Δt , where $w = \sigma_{c1} \sigma_{c2} \dots \sigma_{cm}$,

$$h_{DDE}(w,t) = \begin{cases} START(t/\Delta t) \\ \sigma_1(t/\Delta t) \\ \sigma_2(t/\Delta t) \\ \vdots \\ \sigma_n(t/\Delta t) \end{cases}$$
$$START(t) = \begin{cases} 1, & t \in [0,1) \\ 0, & \text{otherwise} \end{cases}$$

$$\sigma_j(t) = \begin{cases} 1, & \exists c_i \text{ s.t. } j = c_i \text{ and } t \in [2i, 2i+1) \\ 0, & \text{otherwise.} \end{cases}$$

Example II: Modulo-Two Pulse Counter

 ε -symbol. Applied whenever another input symbol is not supplied.

Input	Final State
$aaaa\ldots aaaaaaaaaaa\ldots a\ldots$	q = 2
$a\ldots$	q = 2
$a \dots aaaaaaaaa \dots$	q = 0

Counter

 ε -symbol. Applied at any time step where another input symbol is not supplied

 ε -signal. Inducer that is present in the absence of any other inducers.

Input	Final State
$aaaa\ldots aaaaaaaaaaa\ldots a\ldots$	q = 2
$a\ldots$	q = 2
$a \dots aaaaaaaaa \dots$	q = 0

Example II: Modulo-Two Pulse Counter

Expression

Counter Comparing the DDE and BN

Counter Comparing the DDE and BN

FSMs for Cellular Information Processing

Objective:

Design a genetic circuit to detect the edge of a growing microcolony. Assume cells have the following sensing/communication capabilities:

Turns on expression of a gene stochastically.

stochastic pulse

generator

time

signal

Turns on expression of two different genes according to the concentration of a diffusible molecule.

Turns on expression of two different genes at times t_1 and t_2 after reset.

Can be reset by expressing a "reset" gene.

Objective:

Design a genetic circuit to detect the edge of a growing microcolony. Assume cells have the following sensing/communication capabilities:

gro paper examples/bullseye4.gro Cells: 1, t = 0.00