
Tadayoshi Kohno

CSE P 590 / CSE M 590 (Spring 2010)

Computer Security and Privacy

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

 Software Security (Continued)
• More attacks / issues
• Defensive directions

 Cryptography (Intro)
• Background / history / context / overview

 Research: IMDs

TOCTOU

 TOCTOU == Time of Check to Time of Use

 Goal: Open only regular files (not symlink, etc)
 Attacker can change meaning of path between stat

and open (and access files he or she shouldn’t)

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files!");
return -1;

}
return open(path, O_RDONLY);

}

Integer Overflow and Implicit Cast

 If len is negative, may copy huge amounts of input
into buf

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Integer Overflow and Implicit Cast

 What if len is large (e.g., len = 0xFFFFFFFF)?
 Then len + 5 = 4 (on many platforms)
 Result: Allocate a 4-byte buffer, then read a lot of

data into that buffer.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

Next

 Randomness
 Timing Attacks

Randomness issues

 Many applications (especially security ones) require
randomness

 Explicit uses:
• Generate secret cryptographic keys
• Generate random initialization vectors for encryption

 Other “non-obvious” uses:
• Generate passwords for new users
• Shuffle the order of votes (in an electronic voting

machine)
• Shuffle cards (for an online gambling site)

C’s rand() Function

 C has a built-in random function: rand()
unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed) {

next = seed;

}

 Problem: don’t use rand() for security-critical
applications!
• Given a few sample outputs, you can predict subsequent

ones

Problems in Practice

 One institution used (something like) rand() to
generate passwords for new users
• Given your password, you could predict the passwords of

other users

 Kerberos (1988 - 1996)
• Random number generator improperly seeded
• Possible to trivially break into machines that rely upon

Kerberos for authentication

 Online gambling websites
• Random numbers to shuffle cards
• Real money at stake
• But what if poor choice of random numbers?

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Big news... CNN, etc..

Other Problems

 Live CDs, diskless clients
• May boot up in same state every time

 Virtual Machines
• Save state: Opportunity for attacker to inspect the

pseudorandom number generator’s state
• Restart: May use same “psuedorandom” value more than

once

Obtaining Pseudorandom Numbers

 For security applications, want “cryptographically
secure pseudorandom numbers”

 Libraries include:
• OpenSSL
• Microsoft’s Crypto API

 Linux:
• /dev/random
• /dev/urandom

 Internally:
• Pool from multiple sources (interrupt timers,

keyboard, ...)
• Physical sources (radioactive decay, ...)

Timing Attacks

 Assume there are no “typical” bugs in the software
• No buffer overflow bugs
• No format string vulnerabilities
• Good choice of randomness
• Good design

 The software may still be vulnerable to timing
attacks
• Software exhibits input-dependent timings

 Complex and hard to fully protect against

Password Checker

 Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

– Return TRUE if RealPwd matches CandidatePwd
– Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long

 Implementation (like TENEX system)

 Clearly meets functional description

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

Attacker Model
PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Attacker can guess CandidatePwds through some
standard interface

 Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

Attacker Model
PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Attacker can guess CandidatePwds through some
standard interface

 Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

 Better: Time how long it takes to reject a
CandidatePasswd. Then try all possibilities for first
character, then second, then third,
• Total tries: 256*8 = 2048

Other Examples

 Plenty of other examples of timings attacks
• AES cache misses

– AES is the “Advanced Encryption Standard”
– It is used in SSH, SSL, IPsec, PGP, ...

• RSA exponentiation time
– RSA is a famous public-key encryption scheme
– It’s also used in many cryptographic protocols and products

Next

 Defensive directions

Toward Preventing Buffer Overflow

 Use safe programming languages, e.g., Java and C#
• What about legacy C code?

 Static/dynamic analysis of source code to find
overflows

 Black-box testing with long strings
 Mark stack as non-executable
 Randomize stack location or encrypt return address on

stack by XORing with random string
• Attacker won’t know what address to use in his or her string

 Run-time checking of array and buffer bounds
• StackGuard, libsafe, many other tools

 Example companies: Fortify, Coverity

Non-Executable Stack

 NX bit for pages in memory
• Modern Intel and AMD processors support
• Modern OS support as well

 Some applications need executable stack
• For example, LISP interpreters

 Does not defend against return-to-libc exploits
• Overwrite return address with the address of an existing

library function (can still be harmful)

 …nor against heap overflows
 …nor changing stack internal variables (auth flag, ...)

 Embed “canaries” in stack frames and verify their
integrity prior to function return
• Any overflow of local variables will damage the canary

 Choose random canary string on program start
• Attacker can’t guess what the value of canary will be

 Terminator canary: “\0”, newline, linefeed, EOF
• String functions like strcpy won’t copy beyond “\0”

buf

Run-Time Checking: StackGuard

ret/IPSaved FPbuf Caller’s stack frame

ret/IPSaved FP Caller’s stack frame0000canary

StackGuard Implementation

 StackGuard requires code recompilation
 Checking canary integrity prior to every function

return causes a performance penalty
 PointGuard also places canaries next to function

pointers and setjmp buffers
• Worse performance penalty

 StackGuard doesn’t completely solve the problem (can
be defeated)

Defeating StackGuard (Sketch)

 Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position strcpy will copy
BadPointer here

PointGuard

 Attack: overflow a function pointer so that it points to
attack code

 Idea: encrypt all pointers while in memory
• Generate a random key when program is executed
• Each pointer is XORed with this key when loaded from

memory to registers or stored back into memory
– Pointers cannot be overflown while in registers

 Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will

dereference to a “random” memory address

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference [Cowan]

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
 by corrupted pointer

Attack
code

CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer
 value

0x1234

2. Access data referenced by pointer

PointGuard Dereference [Cowan]

0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
 segmentation fault and crash

Attack
code

1. Fetch pointer
 value

0x9786

Decrypt

Decrypts to
random value

0x9786

Fuzz Testing

 Generate “random” inputs to program
 See if program crashes

• If crashes, found a bug
• Bug may be exploitable

 Surprisingly effective

 Now standard part of development lifecycle

 Sometimes conforming to input structures (file
formats, etc)

Principles

 Check inputs

Principles

 Least privilege

Principles

 Check all return values

Principles

 Securely clear memory (passwords, keys, etc)

Principles

 Failsafe defaults

Principles

 Defense in depth

Principles

 Reduce size of TCB

 Simplicity

 Modularity

Principles

 Open design? Open source?
 Maybe...

 Linux Kernel Backdoor Attempt: http://
www.freedom-to-tinker.com/?p=472

 PGP Corporation: http://www.pgp.com/developers/
sourcecode/index.html

Vulnerability Analysis and Disclosure

 What should you think about before analyzing the
security of a real system?

 What do you do if you’ve found a security problem
in a real system?

 Say
• Electronic voting machine?
• Airplane?
• iPhone?
• IRS website?
• Medical device?

Next

 Cryptography Overview

Cryptography and Security

• Art and science of protecting our information.

• Keeping it private, if we want privacy

• Protecting its integrity, if we want to avoid
forgeries.

Images from Wikipedia and Barnes and Noble

Some thoughts about cryptography
 Cryptography only one small piece of a larger system
 Must protect entire system

• Physical security

• Operating system security
• Network security

• Users

• Cryptography (following slides)

 “Security only as strong as the weakest link”
• Need to secure weak links
• But not always clear what the weakest link is (different adversaries

and resources, different adversarial goals)

• Crypto failures may not be (immediately) detected

 Cryptography helps after you’ve identified your threat model
and goals

Common Communication
Security Goals

Alice

Privacy of data
Prevent exposure of
information

Integrity of data
Prevent modification of
information

Bob

Adversary

pa
ssw

d =
 fo

ob
ar

; tr
an

sfe
r $

10
0

$1
00

,00
0

Alice
Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Symmetric Setting
Both communicating parties have access to a shared

random string K, called the key.

Adversary

pkB

pkA
Alice

Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Asymmetric Setting
Each party creates a public key pk and a secret key sk.

Alice
Bob

M C
Encrypt

K

Decrypt

K

M

Encryption schemes: A tool for protecting privacy.

K K

Adversary

.Message M

.Ciphertext C

Achieving Privacy (Symmetric)

Achieving Privacy (Asymmetric)

Alice
Bob

M C
Encrypt

pkB

Decrypt

skB

M

Encryption schemes: A tool for protecting privacy.

Adversary

.Message M

.Ciphertext C

pkA,skA pkB,skB

pkB

pkA

Achieving Integrity (Symmetric)

M

Alice
Bob

valid/
invalidT

MAC

K

(M,T)
Verify

K

Message authentication schemes: A tool for protecting
integrity.

(Also called message authentication codes or MACs.)

K K

Adversary

.Message M

. Tag T

Achieving Integrity (Asymmetric)

M

Alice
Bob

valid/
invalidT

Sign
(M,T)

Verify

Digital signature schemes: A tool for protecting
integrity and authenticity.

Adversary

.Message M

. Tag / Signature T

pkA,skA pkB,skB

pkB

pkA

skA pkA

Alice

PBKDF

Getting keys: PBKDF
Password-based Key Derivation Functions

Password K

(Key check value)

Getting keys: Key exchange
Key exchange protocols: A tool for establishing a share

symmetric key

Adversary

pkB

pkA
Alice

Bob

K.E.
K

K.E.
K

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

pkB, sign(skCA,B,pkB)

Alice
Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Getting keys: CAs
Each party creates a public key pk and a secret key sk.

(Public keys signed by a trusted third party: a certificate
authority.)

pkA, sign(skCA, A, pkA)

Alice

PRNG

“Random” Numbers
Pseudorandom Number Generators (PRNGs)

R1, R2, R3, R4, R5, ...

Machine State

User Input

... Adversary

Source: XKCD

Kerckhoff’s Principle

 Security of a cryptographic object should depend
only on the secrecy of the secret (private) key

 Security should not depend on the secrecy of the
algorithm itself.

 Why?

One-way Communications

Message encrypted under Bob’s public key

PGP is a good example

Interactive Communications

Let’s talk securely; here are the algorithms I
understand

I choose these algorithms; start key exchange

Continue key exchange

In many cases, it’s probably a good idea to just use a
standard protocol/system like SSH, SSL/TLS, etc...

Communicate using exchanged key

Let’s Dive a Bit Deeper

One-way Communications

6. Send D, C, T

(Informal example; ignoring, e.g., signatures)
1. Alice gets Bob’s public key; Alice verifies Bob’s public key (e.g., via CA)

2. Alice generates random symmetric keys K1 and K2

3. Alice encrypts the message M the key K1; call result C

4. Alice authenticates (MACs) C with key K2; call the result T

5. Alice encrypts K1 and K2 with Bob’s public key; call the result D

(Assume Bob’s private key is encrypted on Bob’s disk.)

7. Bob takes his password to derive key K3

8. Bob decrypts his private key with key K3

9. Bob uses private key to decrypt K1 and K2

10. Bob uses K2 to verify MAC tag T

11. Bob uses K1 to decrypt C

Interactive Communications
1. Alice and Bob exchange public keys and certificates

3. Alice and Bob take their passwords and derive symmetric keys
4. Alice and Bob use those symmetric keys to decrypt
and recover their asymmetric private keys.

5. Alice and Bob use their asymmetric private keys and a key
exchange algorithm to derive a shared symmetric key

(They key exchange process will require Alice and Bob to
generate new pseudorandom numbers)

6. Alice and Bob use shared symmetric key to encrypt
and authenticate messages

2. Alice and Bob use CA’s public keys to verify certificates and each other’s
public keys

(Informal example; details omitted)

(Last step will probably also use random numbers; will need to
rekey regularly; may need to avoid replay attacks,...)

Next

 Brief History

What cryptosystems
have you heard of?
(Past or present)

History

 Substitution Ciphers
• Caesar Cipher

 Transposition Ciphers
 Codebooks
 Machines

 Recommended Reading: The Codebreakers by
David Kahn and The Code Book by Simon Singh.
• Military uses
• Rumrunners
•

Classic Encryption

• Goal: To communicate a secret message

• Start with an algorithm

• Caesar cipher (substitution cipher):

	 	 ABCDEFGHIJKLMNOPQRSTUVWXYZ

 GHIJKLMNOPQRSTUVWXYZABCDEF

Then add a secret key

• Both parties know that the secret word is
“victory”:

 ABCDEFGHIJKLMNOPQRSTUVWXYZ

 VICTORYABDEFGHJKLMNPQSUWXZ

• “state of the art” for thousands of years

Cryptographers vs Cryptanalysts

• A battle that continues today

• Cryptographers try to devise more clever
algorithms and keys

• Cryptanalysts search for vulnerabilities

• Early cryptanalysts were linguists:

• frequency analysis

• properties of letters

Cryptanalysis and probabilities

From http://en.wikipedia.org/wiki/Letter_frequencies

• Visual Cryptography

• Take a black and white bitmap image

• Encode 0 as:

• Encode 1 as:

• 1 xor 0 = 0 xor 1 = 1:

• 1 xor 1 = 0 xor 0 = 0:

• Nice toolkit online here: http://www.cl.cam.ac.uk/
~fms27/vck/

Diversity in Modern Crypto

or

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html

Key Entry Pad (4-digit PIN)

• This is the key pad on my
office safe.

• Inside my safe is a copy of final
exam.

• How long would it take a you
to break in?

Image from profmason.com

✦ Answer (combinatorics):
✦ 104 tries maximum.
✦ 104 / 2 tries on average.

✦ Answer (unit conversion):
✦ 3 seconds per try --> 4

hours and 10 minutes on
average

Key Entry Pad (4-digit PIN)
• Now assume the safe

automatically calls police after
3 failed attempts.

• What is the probability that
you will guess the PIN within 3
tries?

• (Assume no repeat tries.)

Image from profmason.com

✦ Answer (combinatorics):
✦ 10000 choose 3 possible

choices for the 3 guesses
✦ 1 × (9999 choose 2)

possible choices contain the
correct PIN

✦ So success probability is 3 /
10000

Key Entry Pad (4-digit PIN)

• Could you do better at
guessing the PIN?

Image from profmason.com

✦ Answer (chemical combinatorics):
✦ Put different chemical on

each key (NaCl, KCl, LiCl, ...)

Idea from http://eprint.iacr.org/2003/217.ps

Key Entry Pad (4-digit PIN)

• Couldyou do better at
guessing the PIN?

Image from profmason.com

✦ Answer (chemical combinatorics):
✦ Put different chemical on

each key (NaCl, KCl, LiCl, ...)

Idea from http://eprint.iacr.org/2003/217.ps

✦ Observe residual patterns
after I access safe

Key Entry Pad (4-digit PIN)

• Could you do better at
guessing the PIN?

Image from profmason.com

✦ Answer (chemical combinatorics):
✦ Put different chemical on

each key (NaCl, KCl, LiCl, ...)

Idea from http://eprint.iacr.org/2003/217.ps

✦ Observe residual patterns
after I access safe

Key Entry Pad (4-digit PIN)

• Could you do better at
guessing the PIN?

Image from profmason.com

✦ Answer (chemical combinatorics):
✦ Put different chemical on

each key (NaCl, KCl, LiCl, ...)

Idea from http://eprint.iacr.org/2003/217.ps

✦ Observe residual patterns
after I access safe

Lesson: Consider the complete
system, physical security, etc

Lesson: Think outside the box

Thermal Patterns

Images from http://lcamtuf.coredump.cx/tsafe/

General approach for crypto today
 Layered approach:

• Cryptographic primitives, like block ciphers, stream ciphers,
hash functions, and one-way trapdoor permutations

• Cryptographic protocols, like CBC mode encryption, CTR mode
encryption, HMAC message authentication

 Public algorithms (Kerckhoff’s Principle)
 Security proofs based on assumptions (not this course)

block cipher hash functions

CBC encryption CTR encryption HMAC auth.

OCB auth. encryption CBC-MAC auth.

