
Tadayoshi Kohno

CSE P 590 / CSE M 590 (Spring 2010)

Computer Security and Privacy

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

 Cryptography (Continued)
• Symmetric cryptography

 Research:
• Self-destructing data

First

 Under the hood: Symmetric encryption

Alice
Bob

M C
Encrypt

K

Decrypt

K

M

Encryption schemes: A tool for protecting privacy.

K K

Adversary

.Message M

.Ciphertext C

Achieving Privacy (Symmetric)

Attack Scenarios for Encryption

 Ciphertext-Only
 Known Plaintext
 Chosen Plaintext
 Chosen Ciphertext (and Chosen Plaintext)

 (General advice: Target strongest level of privacy
possible -- even if not clear why -- for extra
“safety”)

Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

encrypt(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value

Alice
Bob

M C
Encrypt

K

Decrypt

K

M

Encryption schemes: A tool for protecting privacy.

K K

Adversary

.Message M

.Ciphertext C

Achieving Privacy (Symmetric)

Achieving Integrity (Symmetric)

M

Alice
Bob

valid/
invalidT

MAC

K

(M,T)
Verify

K

Message authentication schemes: A tool for protecting
integrity.

(Also called message authentication codes or MACs.)

K K

Adversary

.Message M

. Tag T

Attack Scenarios for Integrity

What do you think these scenarios should be?

Achieving Integrity (Symmetric)

M

Alice
Bob

valid/
invalidT

MAC

K

(M,T)
Verify

K

Message authentication schemes: A tool for protecting
integrity.

(Also called message authentication codes or MACs.)

K K

Adversary

.Message M

. Tag T

One-Time Pad

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, and
every key is equally likely (Claude Shannon)

Advantages of One-Time Pad

 Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

 As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, regardless

of attacker’s computational resources
• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #1: Keys as long as messages.
Impractical in most scenarios
(Supposedly still used by intelligence communities)

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #2: No integrity protection

0

0

Disadvantages

= 00000000…---------------

= 00110010…
 00110010… ⊕

00110010… =
 ⊕

 00000000…

Disadvantage #3: Keys cannot be reused

= 11111111…---------------

= 00110010…
 11001101… ⊕

00110010… =
 ⊕

 11111111…

P1

P2

C1

C2

Learn relationship between plaintexts:
C1⊕C2 = (P1⊕K)⊕(P2⊕K) = (P1⊕P2)⊕(K⊕K) = P1⊕P2

Reducing Keysize

What do we do when we can’t pre-share huge
keys?
• When OTP is unrealistic

We use special cryptographic primitives
• Single key can be reused (with some restrictions)
• But no longer provable secure (in the sense of the OTP)

 Examples: Block ciphers, stream ciphers

Background: Permutation

1
2
3

4

1
2
3

4

 For N values, N! possible permutations
 For N-bit inputs, 2N! possible permutations!
 Idea for how to use: split plaintext into blocks; for

each block use secret key to pick a permutation
• Without the key, permutation should “look random”

Block Ciphers

 Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES
• Same key is reused for each block (can use short keys)

Plaintext

Ciphertext

block
cipherKey

Block Cipher Security

 Result should look like a random permutation
• “As if” plaintext bits were randomly shuffled

 Only computational guarantee of secrecy
• Not impossible to break, just very expensive

– If there is no efficient algorithm (unproven assumption!), then can
only break by brute-force, try-every-possible-key search

• Time and cost of breaking the cipher exceed the value and/
or useful lifetime of protected information

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible

(for decryption)

Feistel Structure (Stallings Fig 2.2)

⊕

⊕

DES

 Feistel structure
• “Ladder” structure: split input in half, put one half through

the round and XOR with the other half
• After 3 random rounds, ciphertext indistinguishable from a

random permutation if internal F function is a
pseudorandom function (Luby & Rackoff)

– Theoretical results: Evidence that the “ladder” structure is a solid
design

– In practice: Use more than 3 rounds

 DES: Data Encryption Standard
• Feistel structure
• Invented by IBM, issued as federal standard in 1977
• 64-bit blocks, 56-bit key + 8 bits for parity

DES and 56 bit keys (Stallings Tab 2.2)

 56 bit keys are quite short

 1999: EFF DES Crack + distibuted machines
• < 24 hours to find DES key

 DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Advanced Encryption Standard (AES)

 New federal standard as of 2001
 Based on the Rijndael algorithm
 128-bit blocks, keys can be 128, 192 or 256 bits
 Unlike DES, does not use Feistel structure

• The entire block is processed during each round

 Design uses some very nice mathematics

Basic Structure of Rijndael

128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit key

⊕

S byte substitution

Shift rows shift array rows
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round⊕

Expand key

repeat 10 times

Mix columns
mix 4 bytes in each column
(each new byte depends on all bytes in old column)

Encrypting a Large Message

 So, we’ve got a good block cipher, but our plaintext is
larger than 128-bit block size

 Electronic Code Book (ECB) mode
• Split plaintext into blocks, encrypt each one

separately using the block cipher

 Cipher Block Chaining (CBC) mode
• Split plaintext into blocks, XOR each block with the result of

encrypting previous blocks

 Counter (CTR) mode
• Use block cipher to generate keystream, like a stream cipher

 ...

ECB Mode

 Identical blocks of plaintext produce identical blocks
of ciphertext

 No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

Key Key Key Key Key

CBC Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

⊕
Initialization
vector
(random)

⊕ ⊕ ⊕Key Key Key Key

CBC Mode: Decryption

plaintext

ciphertext

decrypt decrypt decrypt decrypt

⊕Initialization
vector ⊕ ⊕ ⊕Key Key Key Key

ECB vs. CBC

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]

Information Leakage in ECB Mode
[Wikipedia]

Encrypt in ECB mode

CBC and Electronic Voting

Initialization
vector
(supposed to
 be random)

plaintext

ciphertext

DES DES DES DES

⊕ ⊕ ⊕ ⊕

Found in the source code for Diebold voting machines:

DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,
 totalSize, DESKEY, NULL, DES_ENCRYPT)

Key Key Key Key

CTR Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Still does not guarantee integrity
 Fragile if ctr repeats

ctr ctr+1 ctr+2 ctr+3

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr
(random)

⊕ ⊕ ⊕ ⊕ptpt pt pt

Key Key Key Key

ct ct ctct

CTR Mode: Decryption

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr

⊕ ⊕ ⊕ ⊕

pt pt pt pt

Key Key Key Key

Next

 Defining security for symmetric encryption

When Is a Cipher “Secure”?

 Hard to recover the key?
• What if attacker can learn plaintext without learning the

key?

 Hard to recover plaintext from ciphertext?
• What if attacker learns some bits or some function of bits?

 Fixed mapping from plaintexts to ciphertexts?
• What if attacker sees two identical ciphertexts and infers

that the corresponding plaintexts are identical?
• (Implication: encryption must be randomized or stateful)

How Can a Cipher Be Attacked?
 Assume that the attacker knows the encryption

algorithm and wants to decrypt some ciphertext
 Main question: what else does attacker know?

• Depends on the application in which cipher is used!
 Ciphertext-only attack
 Known-plaintext attack (stronger)

• Knows some plaintext-ciphertext pairs
 Chosen-plaintext attack (even stronger)

• Can obtain ciphertext for any plaintext of his choice
 Chosen-ciphertext attack (very strong)

• Can decrypt any ciphertext except the target
• Sometimes very realistic model

Defining Security (Not Required)

 Attacker does not know the key
 He chooses as many plaintexts as he wants, and

learns the corresponding ciphertexts
When ready, he picks two plaintexts M0 and M1

• He is even allowed to pick plaintexts for which he previously
learned ciphertexts!

 He receives either a ciphertext of M0, or a ciphertext
of M1

 He wins if he guesses correctly which one it is

Defining Security (Not Required)

 Idea: attacker should not be able to learn
 even a single bit of the encrypted plaintext
 Define Enc(M0,M1,b) to be a function that returns

encrypted Mb

• Given two plaintexts, Enc returns a ciphertext of one or the
other depending on the value of bit b

• Think of Enc as a magic box that computes ciphertexts on
attacker’s demand. He can obtain a ciphertext of any
plaintext M by submitting M0=M1=M, or he can try to learn
even more by submitting M0≠M1.

 Attacker’s goal is to learn just one bit b

0 or 1

Chosen-Plaintext Security (Not
Required)

 Consider two experiments (A is the attacker)
 Experiment 0 Experiment 1

 A interacts with Enc(-,-,0) A interacts with Enc(-,-,1)
 and outputs bit d and outputs bit d

• Identical except for the value of the secret bit

• d is attacker’s guess of the secret bit

 Attacker’s advantage is defined as

| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) |

 Encryption scheme is chosen-plaintext secure if this
advantage is negligible for any efficient A

If A “knows” secret bit, he
should be able to make his
output depend on it

“Simple” Example (Not Required)

 Any deterministic, stateless symmetric encryption
scheme is insecure
• Attacker can easily distinguish encryptions of different

plaintexts from encryptions of identical plaintexts
• This includes ECB mode of common block ciphers!

 Attacker A interacts with Enc(-,-,b)

 Let X,Y be any two different plaintexts

 C1 ← Enc(X,Y,b); C2 ← Enc(Y,Y,b);

 If C1=C2 then b=1 else say b=0

 The advantage of this attacker A is 1

Prob(A outputs 1 if b=0)=0 Prob(A outputs 1 if b=1)=1

Why Hide Everything?
 Leaking even a little bit of information about the

plaintext can be disastrous
 Electronic voting

• 2 candidates on the ballot (1 bit to encode the vote)
• If ciphertext leaks the parity bit of the encrypted plaintext,

eavesdropper learns the entire vote

 Also, want a strong definition that implies others

Birthday attacks

 Are there two people in this classroom that have the
same birthday?
• Yes?
• No?

Birthday attacks

Why is this important for cryptography?
• 365 days in a year (366 some years)

– Pick one person. To find another person with same birthday would
take on the order of 365/2 = 182.5 people

– Expect “collision” -- two people with same birthday -- with a room
of only 23 people

– For simplicity, approximate when we expect a collision as the
square root of 365.

• 2128 different 128-bit keys
– Pick one key at random. To exhaustively search for this key

requires trying on average 2127 keys.
– Expect a “collision” after selecting approximately 264 random keys.
– 64 bits of security against collision attacks, not 128 bits.

Next

 Under the hood: Hash functions and MACs

Integrity

goodFile

Software manufacturer wants to ensure that the executable file
 is received by users without modification.
It sends out the file to users and publishes its hash in NY Times.
The goal is integrity, not secrecy

Idea: given goodFile and hash(goodFile),
 very hard to find badFile such that hash(goodFile)=hash(badFile)

BigFirm™ User

VIRUS

badFile

The Times

hash(goodFile)

Integrity vs. Secrecy

 Integrity: attacker cannot tamper with message
 Encryption does not always guarantee integrity

• Intuition: attacker may able to modify message under
encryption without learning what it is

– One-time pad: given key K, encrypt M as M⊕K

– This guarantees perfect secrecy, but attacker can easily change
unknown M under encryption to M⊕M’ for any M’

– Online auction: halve competitor’s bid without learning its value

• This is recognized by industry standards (e.g., PKCS)
– “RSA encryption is intended primarily to provide confidentiality… It is

not intended to provide integrity” (from RSA Labs Bulletin)

Hash Functions: Main Idea

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

 H is a lossy compression function
• Collisions: h(x)=h(x’) for distinct inputs x, x’

• Result of hashing should “look random” (make this precise later)
– Intuition: half of digest bits are “1”; any bit in digest is “1” half the time

 Cryptographic hash function needs a few properties…

message
“digest”

message

One-Way

 Intuition: hash should be hard to invert
• “Preimage resistance”

• Let h(x’)=y∈{0,1}n for a random x’

• Given y, it should be hard to find any x such that h(x)=y

 How hard?
• Brute-force: try every possible x, see if h(x)=y
• SHA-1 (common hash function) has 160-bit output

– Expect to try 2159 inputs before finding one that hashes to y.

Collision Resistance

 Should be hard to find distinct x, x’ such that
h(x)=h(x’)
• Brute-force collision search is only O(2n/2), not O(2n)
• For SHA-1, this means O(280) vs. O(2160)

 Birthday paradox (informal)
• Let t be the number of values x,x’,x’’… we need to look at

before finding the first pair x,x’ s.t. h(x)=h(x’)
• What is probability of collision for each pair x,x’?
• How many pairs would we need to look at before finding the

first collision?

• How many pairs x,x’ total?

• What is t?

1/2n

O(2n)

2n/2

Choose(t,2)=t(t-1)/2 ∼ O(t2)

One-Way vs. Collision Resistance

 One-wayness does not imply collision resistance
• Suppose g is one-way
• Define h(x) as g(x’) where x’ is x except the last bit

– h is one-way (to invert h, must invert g)
– Collisions for h are easy to find: for any x, h(x0)=h(x1)

 Collision resistance does not imply one-wayness
• Suppose g is collision-resistant
• Define h(x) to be 0x if x is n-bit long, 1g(x) otherwise

– Collisions for h are hard to find: if y starts with 0, then there are no
collisions, if y starts with 1, then must find collisions in g

– h is not one way: half of all y’s (those whose first bit is 0) are easy to
invert (how?); random y is invertible with probab. 1/2

Weak Collision Resistance

 Given randomly chosen x, hard to find x’ such
that h(x)=h(x’)
• Attacker must find collision for a specific x. By contrast,

to break collision resistance, enough to find any
collision.

• Brute-force attack requires O(2n) time
• AKA second-preimage collision resistance

Weak collision resistance does not imply collision
resistance

Which Property Do We Need?

 UNIX passwords stored as hash(password)
• One-wayness: hard to recover password
• Second-preimage resistance: hard to recover “equivalent” passwd

 Integrity of software distribution
• Weak collision resistance
• But software images are not really random… maybe need full

collision resistance

 Auction bidding
• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B
• Collision resistance: Alice should not be able to change her mind to

bid B’ such that H(B)=H(B’)

Common Hash Functions
 MD5

• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

 RIPEMD-160
• 160-bit variant of MD5

 SHA-1 (Secure Hash Algorithm)
• 160-bit output
• US government (NIST) standard as of 1993-95
• Also recently broken! (Theoretically -- not practical.)

 SHA-256, SHA-512, SHA-224, SHA-384
 SHA-3: Forthcoming.

Basic Structure of SHA-1 (Not Required)
Against padding attacks

Split message into 512-bit blocks

Compression function
• Applied to each 512-bit block
 and current 160-bit buffer
• This is the heart of SHA-1

160-bit buffer (5 registers)
initialized with magic values

How Strong Is SHA-1?

 Every bit of output depends on every bit of input
• Very important property for collision-resistance

 Brute-force inversion requires O(2160) ops, birthday
attack on collision resistance requires O(280) ops

 Some very recent weaknesses (2005)
• Collisions can be found in 263 ops

Common Hash Functions
 MD5

• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

 RIPEMD-160
• 160-bit variant of MD5

 SHA-1 (Secure Hash Algorithm)
• 160-bit output
• US government (NIST) standard as of 1993-95
• Also recently broken! (Theoretically -- not practical.)

 SHA-256, SHA-512, SHA-224, SHA-384
 SHA-3: Forthcoming.

International Criminal Tribunal for Rwanda
(Which Properties of Hash Functions?)

 http://www.nytimes.com/2009/01/27/science/
27arch.html?_r=1&ref=science

 Credits: Alexei Czeskis, Karl Koscher, Batya Friedman

Achieving Integrity (Symmetric)

M

Alice
Bob

valid/
invalidT

MAC

K

(M,T)
Verify

K

Message authentication schemes: A tool for protecting
integrity.

(Also called message authentication codes or MACs.)

K K

Adversary

.Message M

. Tag T

HMAC

 Construct MAC by applying a cryptographic hash
function to message and key

 Original motivation:
• Could also use encryption instead of hashing, but…
• Hashing is faster than encryption in software
• Library code for hash functions widely available
• Can easily replace one hash function with another
• There used to be US export restrictions on encryption

 Invented by Bellare, Canetti, and Krawczyk (1996)
• HMAC strength established by cryptographic analysis

 Mandatory for IP security, also used in SSL/TLS

Structure of HMAC

Embedded hash function
(strength of HMAC relies on

strength of this hash function)

“Black box”: can use this HMAC
construction with any hash function
(why is this important?)

Block size of embedded hash function

Secret key padded
to block size

magic value (flips half of key bits)

another magic value
(flips different key bits)

hash(key,hash(key,message))

“Amplify” key material
(get two keys out of one)

Very common problem:
given a small secret, how to
derive a lot of new keys?

CBC Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

⊕
Initialization
vector
(random)

⊕ ⊕ ⊕Key Key Key Key

CBC-MAC

 Not secure when system may MAC messages of different lengths.
• Encode length at beginning
• Use a derivative called CMAC

 Internal collisions and birthday attacks

TAG

plaintext

block
cipher

block
cipher

block
cipher

block
cipher

⊕ ⊕ ⊕ ⊕Key Key Key Key

Example attacks to CBC-MAC

 Example problems (for whiteboard):
• When process messages of different length
• When process messages of different length and encode

length at end of message
• When a collision occurs

 Recommendations
• Include length at beginning of message before CBC-MAC
• Use CMAC (which is like CBC-MAC but handles last block

differently)

Achieving Both Privacy and Integrity

Authenticated encryption scheme

Alice Bob

K K

M/invalid

K K

M
Encrypt Decrypt

C

Key K

.Message M

.Ciphertext C Adversary

Recall: Often desire both privacy and integrity. (For SSH, SSL,
IPsec, etc.)

Some subtleties! Encrypt-and-MAC

valid/invalid

M

DecryptKe VerifyKm

DKe,KmEKe,Km
M

C’

EncryptKe

T

MACKm

Ciphertext

TC’

Ciphertext

Return M if
valid

Natural approach for authenticated encryption: Combine an encryption scheme and
a MAC.

But insecure! [BN, Kra]

Assume Alice sends messages:

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

If Ti = Tj then Mi = Mj

 Adversary learns whether two plaintexts are equal.

Especially problematic when M1, M2, ... take on only a small number
of possible values.

Results of [BN00,Kra01]

Strong (CTXT)

Strong (CCA) Weak (CPA) InsecurePrivacy

Integrity Weak (PTXT) Weak (PTXT)

MAC-then-EncryptEncrypt-then-MAC Encrypt-and-MAC

M MACKm

TM

EncryptKe

C
Ciphertext C

M

EncryptKe MACKm

TC’
Ciphertext C

EncryptKe

M

MACKmC’

TC’
Ciphertext C

The Secure Shell (SSH) protocol is designed to provide:

• Secure remote logins.

• Secure file transfers.

Where security includes:

• Protecting the privacy of users’ data.

• Protecting the integrity of users’ data.

OpenSSH is included in the default installations of OS X and
many Linux distributions.

C’

paddingpdlpl

1 byte4 bytes

M

T

EncryptKe MACKm

M Data to be communicated

ctr

4 bytes

Maintained internally; not
transmitted

EKe,Km

Ciphertext packet

Authenticated encryption in SSH

T1C’1

EncryptKe MACKm

M1ctr1

T2T1

M2M1 FIREFIRE

Assume Alice sends messages M1 and M2 that are the same.

What’s different about SSH?

T2C’2

EncryptKe MACKm

M2ctr2 FIREFIRE

Then the tags T1 and T2 will be different with high probability.

10

But if counters repeat, tags may once again
leak private information about data.

Next

 A bit more context...

 RFIDs in car keys:
• RFIDs in car keys make it harder to hotwire a car
• Result: Car jackings increased

Improved security, increased risk

