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ABSTRACT

This paper describes an algorithm that achieves an ap-
proximately optimal assignment of forward error correction
to progressive data within the unequal loss protection frame-
work [1]. It first finds the optimal assignment under convex
hull and fractional bit allocation assumptions. It then re-
laxes those constraints to find an assignment that approx-
imates the global optimum. The algorithm has a running
time of O(

���������	�
) where

�
is the number of points on the

convex hull of the source’s utility–cost curve and
�

is the
number of packets transmitted.

1. INTRODUCTION

The Internet is a widely deployed network of computers that
exchange data packets. In traversing the network, a packet
is sent from computer to computer until it arrives at its des-
tination. However, when the number of packets sent ex-
ceeds transmission capacity, packets are discarded at ran-
dom, causing loss of data and perhaps decoding failure if
the lost data are not somehow replaced.

The standard practice for many networks is to request
retransmission of the lost data, which requires transmitting
a message back to the sender and an additional delay while
the receiver awaits the retransmitted data. However, the re-
ceiver may not want to transmit a message to the sender (for
example, to conserve power, to avoid broadcasting its lo-
cation, or to avoid feedback implosion in multicast) or the
added delay may be long (for example, satellite or trans-
oceanic links).

Unequal loss protection [1] avoids retransmission by ap-
plying forward error correction to the source data and us-
ing that redundancy to reconstruct lost data. It uses various
strengths of Reed-Solomon block codes [2] to protect the
source data unequally: important data are assigned stronger
codes and less important data are assigned weaker codes.
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In [1], we presented the unequal loss protection framework
and an assignment heuristic that finds a local optimum that
maximizes the benefit to the receiver.

In this work, we introduce a new assignment algorithm
that approximates the global optimum, has a time bound
linear in the length of the input data, and executes multiple
orders of magnitude faster than both our previous heuristic
and an algorithm by Puri and Ramchandran [3].

2. BACKGROUND

This section first overviews our assumptions about the source
data and introduces the concept of a utility function over
that data. After discussing network loss estimation, Reed-
Solomon codes are briefly reviewed. Finally, we explain
how all of these elements are used within the unequal loss
protection framework.

2.1. Source Data and Utility–Cost Functions

We assume that the source data are a continuous sequence of
symbols. Furthermore, we assume that the data have associ-
ated with them functions that describe both their utility and
cost. The utility measures how much benefit the receiver is
likely to enjoy from receiving and decoding the data. The
cost measures how much we must pay to achieve a certain
utility and is usually given in bits.

As a simple example, if the sender knows nothing about
the utility of the source data, then the utility function would
be linear with cost: the sender has no information on which
to base its decision. The utility values might also be arbi-
trary: the sender knows only that some data have a “high
priority” designation and other data do not. Alternatively,
if the data represent an image, the sender could choose a
measure of image quality as the utility value. That measure
might be the signal-to-noise ratio of the image, resulting in
a utility–cost curve that tracks the PSNR–rate curve of the
source. Utility might also be measured as the decrease in
mean squared error or some perceptual criterion.



We assume that the utility–cost function is given by the
source. Furthermore, we assume that the data are progres-
sive: data with high utility–cost slopes generally tend to ap-
pear early in the sequence, while data with low utility–cost
slopes generally tend to appear late in the sequence. This
assumption allows us to approximate the utility–cost curve
by its upper convex hull.

2.2. Network Loss Estimation

Another input to our algorithm will be an estimate of cur-
rent packet loss conditions on the network. For

�
fixed,

define a discrete random variable
�

as the number of pack-
ets out of

�
received, with PMF �������	� . This estimate

could be the result of almost any model of expected packet
loss rates: uniform, binomial, Zipf, Poisson, exponential,
Gilbert–Elliott, and other distributions. The estimate could
also be generated by a dynamic estimator of network condi-
tions.

Characterizing networks such as the Internet is an open
and active research topic in the networking community [4,
5]. By stipulating that our algorithm input only a PMF, we
maintain the relevance of our assignment algorithm to a va-
riety of network estimators.

2.3. Reed-Solomon Codes

Systematic Reed-Solomon (R-S) codes can be used to gen-
erate forward error correction (FEC); R-S codes are partic-
ularly effective at recovering from erased symbols when the
locations of the erased symbols are known. Because we are
concerned only with networks in which packets either arrive
perfectly intact or are completely discarded, we consider R-
S codes that are optimized for erasures and do not correct bit
errors [2]. These maximum distance separable block codes
are denoted by a pair � ��
� � , where

�
is the block length

and
�

is the number of source symbols. When the code is
systematic, the first

�
of the

�
encoded symbols are the

source symbols, and the remaining
�����

symbols are re-
dundancy. They have the property that an � ��
� � code can
exactly recover the

�
source symbols from any size

�
subset

of the
�

total symbols. This recovery is possible by treat-
ing the source symbols as the coefficients of a polynomial
in a Galois field and evaluating it at a number of additional
points, thus creating redundant data.

2.4. Unequal Loss Protection Framework

The unequal loss protection (ULP) framework [1] was in-
spired by work on Priority Encoding Transmission [6]. If
there are

�
packets of length � symbols, the basic concept

is to use the � th symbol of every packet to create the � th code
block, for a total of � independent R-S code blocks with
various strengths. For a block containing both data symbols
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Fig. 1. An example utility–cost curve with vertices labeled.

and FEC symbols, so long as the number of lost packets is
less than or equal to the number of FEC symbols, the entire
block can be decoded [6]. Note that each block will lose ex-
actly the same number of symbols because one lost packet
erases one symbol from every block.

The optimization problem can now be stated: for a given
input data sequence, utility function, and PMF of packet
losses, how many data symbols should be used and how
strong should the R-S code on each data symbol be such
that the expected received utility is maximized for a fixed
cost? In the next section, we address that question.

3. APPROXIMATELY OPTIMAL ASSIGNMENT

The approximately optimal assignment algorithm consists
of three distinct stages. The first stage finds the upper con-
vex hull of the utility–cost function for the source data. The
second stage assumes that R-S codes can be allocated frac-
tionally and calculates a globally optimal assignment of for-
ward error correction under that assumption. The final stage
removes the assumptions and converts that assignment into
an approximately optimal one.

3.1. Convex Hull

A number of techniques exist for finding the convex hull of
a set of points [7, 8]. In our case, � input points are sorted
in the cost coordinate so that a simple ������� algorithm can
be used to generate the

��� � points on the upper convex
hull, an example of which appears in Figure 1.



Iteration
� ��� , a � � 
 � � code

� ��� , a � � 
 � � code
� ��� , a � � 
 � � code �

1 �
	 �
	 �
	 0
� 	�� �� : � 	�� �� : � 	�� �� :����� � ����� ��� � � ��� ��� � ����� � ����� ��� � � ��� � � � ���  � ����� � � � � ���"! � ��#�$� ��� � �%��&� � � � � � � ��� � �

� � � � � � � � � � ��� � �
�� � � �  � � � � ��� � �

�
 ��#� � ���$� �%� �')(+*'-,.* �  � 	 ')(�/'-,0/ � �2143 ')(�5'-,05 � �26� 	

2 �� �� � 	 15
�  � � � : �  � � � : �
	 � �  :����� � �7� � � ��� � � ��� ��� � �8�-� � �9� � � ��� � � ��� � � � ���  � ����� � � � � ���"! � � ��� � � �� � ���:& ���;�� � � � � � � � � � � �

� � � � � � � � � � � � � � �
�� � � �  � � � � ��� � �

�
 �
�� ��#� � ���$� ���;�')(+*'-, * �=< 	 ')(�/'-, / �  643 ')(�5'-, 5 �  �>3

3 � � � � �
	 30
� � � � � : � � � � � : �
	 � �  :�8� � � � � ��� � � � � � ��� �+� � ��� � � � � �+� � � � � � ��� � � � ���  � ����� � � � � ���"! � � ��� � � ���� ��� � ���;�� � � � � � � � � � � �

� � � � � � � � � � � � � � �
�� � � �? � � � � ��� � �

�
 �
�� ��#� � ���$� ���;�')( *'-,.* � 3 	 ')( /'-,0/ �  	43 ')( 5'-,05 �  �>3

4 � � � �
�� �  40

Table 1. Illustration of Assignment Algorithm

3.2. Assignment Algorithm

Let @$�
	 
 �  
A�:�A� 
 �+B+C ;D � @ �7EF	 
4G 	 � , �7E  
4G  � , �A�A� , ( E:B
C  ,
�+B+C  � D be the

�
vertices of the convex hull of the utility–

cost curve for the source data, where E:H is the cost of trans-
mitting the data that results in a utility of

G H . Assume that
the utility–cost curve is convex, I;JLK / C I$JMK 5N JLK / C N JLK 5

� I;JLK 5 C I$JN JLK 5 C N J for� � �PO � � � , and that � 	 has E 	 � � . In the following dis-
cussion, we refer to vertices as being protected or decoded,
meaning that the source data represented by the cost/utility
pair of that vertex is being protected or decoded.

If
� ��� � represents the utility achieved when � packets

are received, then the expected utility QSR ��T of the receiver
can be expressed as QSR �UT �WV�XY$Z 	 � � ��� � � ���	� . For a
given utility–cost curve, number of packets to transmit

�
,

network estimate � � ���	� , and transmit cost �)[?\ Y , our goal
is to maximize QSR ��T .

We assume initially that a dummy vertex � 	 with zero
utility and cost can be decoded no matter how many packets
are received. The total cost for that assignment is � � �
and the expected utility is

� � � . Thereafter, we examine
each possible value of

�
and consider the effect of allow-

ing an additional vertex to be decoded. If ��H is the highest-
numbered vertex that can be decoded when

�
packets are

received, then by assigning the next highest vertex � H^]  to
an � � 
 � � code, the resulting changes to

�
and � are:

���-_ � � G H^]  � G H � X`a Z _ � � �Mb �
�

(1)

� � _ � �9E H^]  � E H � �
�

� � � (2)

These equations assume that � HM]  had never before been
assigned a code. If it had previously been assigned a weaker
� ��
4c � code, then the changes that result from promoting it
to a stronger � � 
 � � code would be:

�8�d_ � � G H^]  � G H �
[ C `
a Z _ � � �^b �

�
(3)

� � _ � �7E HM]  � E H � �
�

� � �

c � � (4)

Our algorithm is then as follows:

1. Calculate
��� _

and
� � _ for � ��� � �

.

2. Choose
�

to maximize the ratio e _ � ')(�f'-, f .
3. If ��g � � _ Oh� [?\ Y , then assign �+HM]  an � � 
 � �
code, update � , and go to step 1.



4. Otherwise, linearly interpolate an assignment of
� � 
� � between �
H and �
H^]  such that � � � [?\ Y and
terminate.

The number of iterations of the algorithm is bounded by
� �

because each vertex can decrease its assignment at most
�

times. The time of each iteration is ��� � � time to find the�
with maximal e _ . Hence the overall complexity of the

algorithm is ��� ���
�
� . That running time can be improved,

however, by using a priority queue in step 2. With that mod-
ification, the complexity of the algorithm is ��� ����� ��� � � .

In Table 1, we illustrate how our algorithm finds an as-
signment for the utility–cost curve of Figure 1;

� � � ; a
uniform PMF ��� ��� � � ��� ��� 
 � � � 
 � 
 � 
 � ; and � [?\ Y �
� � . The resulting assignment is a � � 
 � � code protecting the
first

�� of source data in �� and a � � 
 � � code protecting the
last � of the source data in �� and all of the source data
between �� and � � . Source data after � � would not be sent.

3.3. Resolving the Assignment

To find an actual assignment, we need to remove the frac-
tional bit assumption. Because the assignment found above
is optimal only for that assumption, this step makes the ac-
tual assignment only approximately optimal. Nevertheless,
we use the optimal solution as a guide and note that because
of the convexity requirement, each of the R-S codes has a
number of decodable source symbols that is non-decreasing
as the code strengths decrease. Thus, we start with the
strongest code, � ��
 � � , and allocate enough code blocks so
that the number of source symbols protected equals or ex-
ceeds the number suggested by the guide. We then move
to the next-strongest code and repeat. This stage uses O( � )
steps.

4. RESULTS

We implemented the ��� � �
�
� version of our algorithm and

compared it to our previous algorithm [1]. When finding
an assignment for the ���$� � ���$� Lenna image using 137
packets of size 47 bytes, a total rate of 0.2 bits per pixel,
and an exponential loss model with 20% mean loss rate, we
found an assignment in 75 ms on a SPARCstation 10, two
orders of magnitude faster than the 7.3 s of the previous
algorithm. Execution time dropped to 7.6 ms on a 500 MHz
Intel Pentium III workstation. The assignment resulted in
the same expected PSNR of 29.42 dB, which is within 0.06
dB of an upper bound on the global optimum.

We also encoded slightly more than 10 seconds of the� ! & � � ��� Foreman video sequence at 1.0 bits per pixel
with 3D-SPIHT, generating 811 packets of 1000 bytes each.
With a 5% mean loss rate, our SPARCstation 10 was able to
find an assignment in 0.47 seconds.

In related work, Puri and Ramchandran have also de-
veloped an approximately optimal assignment algorithm for
unequal loss protection that uses a Lagrangian multiplier

�
[3]. Performance results for our two assignment algo-

rithms are nearly identical (to within measurement error),
but our algorithm executes over 50 times faster than their re-
ported results. However, in communications with them, we
have learned that their execution time includes file parsing,
whereas ours does not, so the actual performance difference
is unclear. Furthermore, although their algorithm is linear in
the number of input points, they do not bound the number
of iterations required to find a value for

�
.

5. CONCLUSION

In this paper, we have presented a fast algorithm that ap-
proximates the optimal assignment of unequal amounts of
Reed-Solomon codes to progressive data. The algorithm
has explicit bounds on running time and executes extremely
quickly in practice, and thus should make real-time assign-
ment of FEC data possible.
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