
1

Unequal Loss Protection for
H.263 Compressed Video

Justin Goshi, Alexander E. Mohr
Richard E. Ladner

Computer Science and Engr.
University of Washington
Seattle, WA 98195–2350�

goshi,amohr,ladner � @cs.washington.edu

Eve A. Riskin
Electrical Engineering

University of Washington
Seattle, WA 98195–2500
riskin@ee.washington.edu

Alan Lippman
Trusted Media Networks, Inc.

P.O. Box 3822
Seattle, WA 89124

alanl@trustedmedianetworks.com

Abstract—We study the application of Unequal Loss Protection
(ULP) algorithms to motion-compensated video over lossy packet
networks. In particular, we focus on streaming video applications
over the Internet. The original ULP framework [14] applies un-
equal amounts of forward error correction (FEC) to embedded
data to provide graceful degradation of quality in the presence of
increasing packet loss. In this paper, we apply the ULP framework
to baseline H.263, a video compression standard that targets low
bit rates, by investigating re-orderings of the bitstream to make it
embedded. The re-ordering process allows a receiver to display
high quality video, even at the high loss rates encountered in wire-
less transmissions and the current Internet.

I. INTRODUCTION

The rapid growth of the Internet and increasing bandwidth
and computing power over the past few years, have heightened
the interest in multimedia applications such as video conferenc-
ing and video-on-demand. A particular application, streaming
media over the Internet, is rapidly increasing in popularity, with
future applications to wireless devices expected. With stream-
ing media, users can request a multimedia file and, after a small
buffering delay, can start playing the file while it is still being
downloaded. However, these time-sensitive applications do not
fit well into the current best-effort nature of the Internet. When
the network transmission capacity is exceeded, packets are dis-
carded at random and reliability is commonly implemented by
retransmitting lost packets. However, for multimedia applica-
tions, the delay introduced by retransmissions is often undesir-
able. Recent research has found that packet losses even on the
wired Internet often occur at high rates [3], [15] and a study
by Boyce [6] on the effects of packet loss on the quality of
MPEG video shows that those high loss rates can severely dam-
age video quality due to the temporal dependencies inherent in
motion-compensated video coders.

This work was supported by RealNetworks, Inc., the Washington Technology
Center, and NSF Grants No. EIA-9973531 and CCR-0104800.

The Unequal Loss Protection (ULP) framework [14] was de-
veloped to provide graceful degradation of quality in the pres-
ence of increasing packet loss. Graceful degradation provides
a user with reduced but acceptable quality in proportion to the
amount of data lost. The ULP framework accomplishes this by
applying unequal amounts of forward error correction (FEC) to
protect embedded data from packet losses. Embedded data have
the property that the earlier parts of the compressed bit stream
are most important to the overall quality of the reproduction.
Furthermore, the later parts of the bit stream are meaningless
without the beginning parts of the bit stream. Using this frame-
work, it was shown that graceful degradation of image quality
can be achieved without retransmissions and without any sup-
port from the network, such as priority dropping of packets. In
this paper, we focus on streaming video applications for the In-
ternet and adapt the ULP framework to achieve graceful degra-
dation of video quality. We concentrate our efforts on motion-
compensated video coders, which take advantage of temporal
redundancy to achieve efficient compression. This approach
is used by most current video coding standards, but it makes
these coders susceptible to losses. We use the H.263 video cod-
ing standard [9], [18] as our test-bed because its techniques are
typical of those used at the low bit rates found on both wireless
networks and the current Internet.

A. Related Work

Many people have contributed effort towards making mul-
timedia data more robust in the presence of bit errors and
packet losses. For a good review of many of these error re-
silience techniques, see [7], [19], [20]. Here, we focus on
techniques specific to combating packet loss, both within the
MPEG and H.263 video coding standards and previously pro-
posed schemes that use FEC.

Scalable video coding techniques encode the source into a
base layer and one or more enhancement layers. The base layer

2

is coded so that a coarse video sequence can be decoded from
the base layer, while the enhancement layers serve to increase
quality should they be available. This approach is well-suited
to networks that offer different priority levels or for adapting
to channel bandwidth in multicast environments. In [2], the
loss resilience of the four scalable video coding algorithms for
MPEG-2 is examined and in [21] the error resilience schemes
(including scalable video coding) in H.263+ are studied.

The latest version of H.263, commonly called H.263++, con-
tains support for data partitioning and coding using reversible
variable length codes (RVLC) [12]. This partitioning is aimed
at protecting against bit errors in wireless networks by splitting
the macroblock headers, motion vectors, and coefficients into
separate segments, which allows each segment to be isolated
from errors or erasures in other segments. The RVLCs allow
a segment to be decoded from both directions and improve re-
silience to bit errors.

Leicher [11] applied Priority Encoding Transmission
(PET) [1] to entire compressed MPEG video sequences using
a coarse three-level system where the intra (I) frames had pri-
ority 60%, the predicted (P) frames had priority 80%, and the
bidirectional (B) predicted frames had priority 95%. The pri-
ority specifies the percentage of packets necessary to recover
the message fragment, which reflects the fact that I-Frames are
required to decode P-Frames and that P-Frames are required to
decode B-Frames, due to temporal dependencies.

Bolot and Turletti [4] described a redundancy scheme for
conditional replenishment coders in which DCT blocks updated
in packet � would also have more-highly quantized versions
transmitted in the following

�
packets. Thus, assuming a re-

ceiver can accommodate a buffer delay of
�

packets, informa-
tion about a changed block will be decoded as long as at least
one of those

�
packets is received. In effect, this scheme uses

FEC in the form of a simple repetition code and has some de-
gree of unequal protection because redundant DCT blocks are
quantized with larger and larger step sizes.

In a more recent study, Boyce [5] introduced the High Pri-
ority Partitioning (HiPP) scheme using the data partitioning
ideas in MPEG-2 to provide unequal loss protection of MPEG
video. In MPEG-2 data partitioning, the data are split into high
and low priority partitions. The critical data, such as headers,
motion vectors, and low frequency discrete cosine transform
(DCT) coefficients, are placed in the high priority partition,
while the remaining high frequency coefficients are placed in
the low priority partition. A priority breakpoint specifies a cut-
off that decides whether the coefficients should go into the high
or low priority partition. In Boyce’s HiPP scheme, arbitrary
splitting is supported and Reed-Solomon FEC is applied only
to the high priority partition. It puts all I-Frame data into the
high priority partition, puts all B-Frame data into the low prior-
ity partition, and splits P-Frame data between the high and low
priority partitions.

B. Contribution of this Paper

Our main contribution is in illustrating how the ULP frame-
work can be applied to motion-compensated video (in partic-
ular, H.263 video). The use of the ULP framework allows us

to improve on previous work that uses FEC to protect motion-
compensated video in the following ways:

1) We apply ULP over fine grained chunks of data. Leicher
protected entire frames and Boyce protected only the high
priority partition. We segment the data using ideas from
both scalable coding and data partitioning techniques,
providing data fragments that are both much smaller and
more numerous. By ordering those fragments according
to their relative importance, we provide better graceful
degradation of video quality.

2) We optimize the FEC allocation for a given video se-
quence and estimated network conditions. In Leicher’s
scheme, the user must manually assign priorities to each
frame type, while in Boyce’s scheme, the priority cutoff
must be specified.

3) We specify a target transmission bit rate and trade-off the
encoding bit rate and redundancy rate such that the total
bit budget is satisfied. Leicher and Boyce both specify an
encoding bit rate and add additional redundancy.

C. Paper Organization

This paper is organized as follows. Section II gives some
background on the original ULP framework and the H.263
video coding standard. Section III describes the problems
we encountered in adapting the ULP framework to motion-
compensated video and how we solved them. Section IV
presents our simulations comparing our ULP system to baseline
H.263. The results serve to illustrate that the ULP framework
effectively provides graceful degradation. Finally, section V
contains our conclusions and future work.

II. BACKGROUND

In this section, we begin with an overview of the ULP frame-
work followed by a brief introduction to the H.263 video coding
standard. For an in-depth description of the ULP framework,
see [14], [13]. For a good introduction to H.263, refer to [9],
[18].

A. ULP Framework

The ULP framework [14] operates by applying unequal
amounts of FEC to data that are compressed with an unmodi-
fied embedded algorithm and transmitted over lossy packet net-
works. A diagram of the entire system as it would be used is
shown in figure 1. The scheme is modular in that it can use any
embedded compression algorithm and obtain graceful degrada-
tion of quality with increasing packet loss rate. In the follow-
ing paragraphs we describe how the ULP framework provides
graceful degradation, and the algorithm used for allocation of
source and redundancy.

How ULP Provides Graceful Degradation: The ULP frame-
work is based on Priority Encoding Transmission (PET) [1],
which assigns unequal amounts of FEC to data sent over lossy
packet networks according to user-specified priorities and mes-
sage fragments. The PET algorithm does not specify how to
choose message fragment sizes or how to assign priorities, but

3

Embedded
Encoder

Network

ULP
Decoder

ULP
Assignment

Embedded
Decoder

Source data

Displayed data

Fig. 1. Block diagram showing the components of a system that uses ULP to
protect embedded data.

1 2 3 F F F
F

F
F
F

F
F

4 5 6 7
8 9 10 11

12 13 14 15 16
17 18 19 20 21
22 23 24 25 26
27 28 30 31 32

F

29

1

2

3

4

5

6

7

St
re

am
s

1 2 3 4 5 6

Packets

1 2 3 F F
F

F
F
F

F
F

4 5 6
8 9 10
12 13 14 16
17 18 19 21
22 23 24 26
27 28 29 31 32

F

?

?
?
?
?
?

?

1 2 3 4 5 6

1

2

3

4

5

6

7

St
re

am
s

Packets

1 2 3
4 5 6 7
8 9 10 11
12 13 14 15 16
17 18 19 20 21
22 23 24 25 26
27 28 29 X X X

1

2

3

4

5

6

7

St
re

am
s

1 2 3 4 65
Packets

(a) (b) (c)

Fig. 2. A message of 32 symbols of data (numbers 1–32) and ten symbols
of FEC (F) is divided into seven streams and sent in six packets. (a) The data
layout before transmission. (b) The data layout after packet 4 is lost during
transmission. (c) The data layout after FEC is used in recovery.

the ULP framework adds these capabilities. An example of the
protection provided by the ULP framework is shown in figure 2.
It adds FEC to each message fragment such that the fragment
and the FEC form a stream. The message is divided into �
streams, each of which contains one symbol from each of �
packets. The property of this type of redundancy allows a given
stream containing both data and FEC symbols to be success-
fully decoded as long as the number of lost packets is less than
or equal to the number of FEC symbols. It is important to note
that successfully decoding a given stream depends only on the
number (not the order) of packets lost.

In Figure 2(a), each of the ����� rows is a stream and each of
the ����� columns is a packet. This figure shows one possible
way to send a message of 32 symbols of data (numbers 1–32)
and ten symbols of FEC (F). Notice that more FEC is applied
to the earlier parts of the message and less FEC is applied to the
later parts. This is done because the ULP framework operates
on embedded bit streams. Recall that for embedded bit streams,
the earlier parts of the message are more important to the overall
quality of the reproduction and that the later parts of the bit
stream are meaningless without the beginning parts of the bit
stream. By using more FEC for earlier symbols in the message
we have the desired property that if we can recover a symbol
	 , then we are guaranteed to recover all symbols
�� 	 . An
example where one packet out of six is lost and five are received
correctly is shown in figures 2(b) and 2(c). In this case, the first
six streams can be recovered because they contain at least one
FEC symbol. The last stream cannot be completely recovered
as it has no FEC, although a partial decoding is possible. Thus,
we can recover a lower fidelity version of the message from
the decoded prefix, and each additional stream that is decoded
improves the quality of the received message. This illustrates
how the ULP framework provides graceful degradation when
applied to embedded bit streams.

The ULP Algorithm: The ULP algorithm operates on a descrip-
tion of the source in the form of a utility–cost curve. Utility
measures how much benefit the receiver is likely to enjoy by
receiving and decoding the data, and cost specifies the number
of bits used by the encoder to achieve a given utility. Utility
can be measured in many ways, and in this paper we use the
total sequence peak signal-to-noise ratio (PSNR). This metric
is computed by taking the PSNR value using the average mean
squared error over the video sequence. We chose this metric
because it reflected our subjective quality fairly well over the
video sequences used in our experiments.

Given as inputs the number of packets to be transmitted, the
length of those packets, the utility–cost curve representing the
source, and an estimate of the packet loss probability in the
form of a probability mass function (pmf), the ULP assignment
problem is to find an assignment of FEC for each stream such
that the expected utility at the receiver is maximized. To deter-
mine the amount of data and FEC to assign to each stream, a
hill-climbing algorithm was first developed in [14]. Improved
ULP assignment algorithms have since been developed [13],
[16]. The later algorithms are much faster (two orders of mag-
nitude in some tests) and find allocations with similar or better
expected utilities.

B. Baseline H.263

H.263 is a DCT-based, motion-compensated international
video coding standard that operates very efficiently at the low
bit rates found on the Internet and wireless networks. Version 2
of the standard, commonly known as H.263+, contains 16 op-
tional annexes offering enhancements such as improving com-
pression performance, allowing the use of scalable bit streams,
and providing support for custom picture sizes, all at the cost of
an increase in complexity. Version 3 of the standard, known as
H.263++, contains even more such enhancements. Since we are
only interested in demonstrating graceful degradation of video
quality, we concentrate on baseline H.263 with no optional an-
nexes for our work and briefly describe the relevant aspects of
that standard.

Video Frame Structure: Baseline H.263 supports five standard-
ized picture formats: sub-QCIF, QCIF, CIF, 4CIF, and 16CIF.
The luminance component is sampled at the selected resolution
while the chrominance components are down-sampled by a fac-
tor of two in both the horizontal and vertical dimensions. Each
frame in the video sequence is split into ������� pixel mac-
roblocks (MB) where each MB is composed of six ����� pixel
data blocks: four luminance and two chrominance.

Motion Compensation: There are two types of frames in base-
line H.263: intra (I-Frame) and inter (P-Frame). The I-Frame
contains only intra macroblocks while the P-Frame can contain
both intra and inter macroblocks. An intra MB is coded in-
dependently, whereas an inter MB is first motion-compensated
and then the differences are encoded. Motion-compensated pre-
diction models the pixels within the current MB as being a
translation of pixels in the previously encoded frame and rep-
resents that translational motion by two-dimensional displace-
ment vectors called motion vectors (MV). In baseline H.263,

4

there is one motion vector for each inter MB. Inter-frame cod-
ing gives very good compression efficiency; however, it also
leads to temporal error propagation since the P-Frames depend
on earlier frames in the video sequence. In baseline H.263, the
first frame in the video sequence is an I-Frame and all other
frames are P-Frames.

Transform and Entropy Coding: Each � � � block of original or
motion-compensated pixels is transformed using the DCT [17].
The transform decorrelates the block of pixels and compacts
its energy into a small number of coefficients, which are then
quantized using the same quantization step size. The quan-
tized coefficients are entropy-coded using variable-length codes
(VLCs). Prior to entropy coding, the � � � DCT transformed
block is scanned into a one-dimensional array, ordered from
low frequency to high frequency coefficients, and coded using a
three-dimensional run-length VLC table representing the triple
(LAST, RUN, LEVEL). The symbol LAST is one bit represent-
ing whether or not this codeword is the last in the current block.
The symbol RUN is the distance between two nonzero coeffi-
cients in the array of coefficients. The symbol LEVEL is the
quantized value of the nonzero value immediately following a
sequence of zeros. The motion-vectors are also entropy-coded
using VLC codewords after being predicted from nearby MVs.

III. APPLYING ULP TO H.263

This section details our application of the ULP framework
to compressed H.263 video and the mechanisms that we use
to overcome the challenges inherent in that process. Several
changes to the original ULP system that was illustrated in fig-
ure 1 were necessary. These modifications are described below
and addressed in the following subsections.

1) We must create independent subsequences. Because
streaming video exists as a continual sequence of frames,
we must divide that sequence into discrete independent
subsequences. Each of these subsequences is protected
in the fashion that was illustrated in figure 2.

2) We must reorder the compressed bit stream. The H.263
coder does not produce an embedded bit stream (the data
are not ordered in any way). Because the ULP algorithm
assumes that the bit stream is embedded, we must reorder
the compressed bit stream to make it appear embedded.

3) We must select the encoding bit rate. The ULP frame-
work relies on having a utility-cost curve that describes
the utility of the bitstream when it is truncated at vari-
ous points. It is difficult to generate a single utility-cost
curve for an input source since it depends on the chosen
encoding bit rate of the H.263 encoder.

Figure 3 shows the entire system which is modified to protect
H.263 motion-compensated video. We first decide on the num-
ber of frames to use in our independent subsequences which
we call a group of pictures (GOP). A decision for the encod-
ing bit rate along with the video source is used as input to the
H.263 encoder and a compressed bitstream is produced. We
then pass the data to an ordering module that performs the re-
organization described in Section III-B. The ULP assignment
module determines an assignment for the ordered bitstream and

GOP size
decision

Encoding rate
decision

H.263
Encoder Module

Ordering ULP
Assignment

Module
Re−orderingH.263

Decoder
ULP

Decoder
Decoded

GOP

Network

Video Source

Displayed Video

Fig. 3. Block diagram showing the components of a system that uses ULP
to protect H.263 motion-compensated video. Protection is provided separately
over each independent subsequence.

creates packets to be transmitted over the network. The net-
work may drop packets, the surviving packets are given to the
ULP decoder, and a prefix of the ordered bitstream is created.
The re-ordering module converts that prefix into a standards-
compliant syntactically-legal compressed bitstream, which the
H.263 decoder uses to display the video sequence.

A. Creating Independent Subsequences

Video exists as a continual sequence of frames, so an impor-
tant design decision is the number of frames that each subse-
quence contains. This group of pictures (GOP) size is influ-
enced by our application of interest, streaming media applica-
tions over the Internet which has the following properties:

1) For video-on-demand, small start-up delays are often en-
countered.

2) The Internet uses large packet sizes of 500 to 1500 bytes
so that the overhead of packet headers is minimal.

3) Longer FEC codes that spread information among more
packets make the data more resistant to bursty losses.

These points imply a trade-off between long subsequences
that impose long delays, yet are effective against bursty losses,
and short subsequences that impose short delays, yet are less
effective against bursty losses. We study GOP sizes that induce
delays of one to three seconds, less than the five seconds com-
mon in current implementations by industry. Also, to ensure
that subsequences are independent, we encode the first frame
in a GOP as an I-Frame so that our ordering schemes need not
worry about error propagation between GOPs.

B. Reordering the Compressed Bitstream

The assumption that the data are embedded gives the ULP
framework guidelines for the relative importance of the data
and allows the bit stream to be truncated at arbitrary points.
Because H.263 is not an embedded coder, our approach is to
order the compressed bit stream to make it appear embedded.

Figure 4 illustrates the main idea for our reordering scheme
which we call frequency-based ordering (because we reorder
the VLC codewords from low to high frequency content, re-
flecting their order of importance to visual quality). In the nor-
mal H.263 bit stream, data for each frame are interleaved in
raster-order (left to right, top to bottom). This creates the effect
that the important data (such as header information and motion
vectors) are spread throughout the bit stream as shown in the
figure. The figure shows that our reordering scheme attempts
to order the data for a group of pictures in order of importance.
We do this by extracting data from each frame and rearranging

5

H.263 ordering

Frequency−based
ordering

Fig. 4. H.263 bit stream layout and frequency-based bit stream layout. The
darker colors represent data that are more important to the quality of recon-
struction.

the bit stream. The particular ordering of importance that we
use in our frequency-based ordering scheme is:

1) The first I-Frame in a GOP.
2) Picture headers from all frames in a GOP.
3) MB headers from all frames in a GOP.
4) MV data from all MBs in a GOP.
5) First VLC codewords from each block in a GOP.
6) Second VLC codewords from each block in a GOP.
7) Etc.
While our ordering scheme does not create a truly embed-

ded bit stream, it is ordered according to relative importance.
For example, the first data that we receive are the I-Frame, al-
lowing us to reconstruct the first frame in a group of pictures.
Next comes various control information like headers and mo-
tion vectors. Finally, we group the

�����
VLC codewords from

each block (where the groups are ordered from low to high fre-
quency content). The effect of this grouping is that we receive
some data from all blocks in all frames allowing us to recon-
struct a coarse version of our video sequence. The more data
we receive, the more VLC codewords from each block we can
decode allowing us to achieve progressively better quality.

Validation of our Frequency-Based Ordering Scheme:
To test how well our frequency-based ordering scheme works

to create an embedded bit stream, we compare it against a
scheme similar to the one Leicher used [11] (which we call a
PET-style ordering) and an HiPP [5]-style ordering. In the PET-
style ordering, each frame is assigned its own priority segment.
The I-Frame has the highest priority, followed by the P-Frames
in order from the earliest to latest in a GOP. This order reflects
the relative order of frame importance due to temporal depen-
dencies. In the HiPP-style ordering, we have two priority seg-
ments (high and low). All I-Frame data go into the high priority
segment and P-Frame data are split into the high and low seg-
ments, with the priority cutoff set at the one that provides the
most graceful degradation for each experiment.

To compare the various ordering schemes we took H.263 en-
coded bit streams, ordered them according to the various or-
dering schemes, and simulated the effects of applying ULP and
sending the data over a lossy network. Because we are using
the ULP framework, we can simulate various amounts of loss
by simply truncating the ordered bit stream, since this is exactly
the kind of priority protection that ULP gives you. By compar-
ing the reconstructed sequences after truncation, we can get an
idea of which ordering scheme approximates an embedded bit
stream the best.

When watching the video sequences, we noticed that the
PET-based scheme degrades the most and that our frequency-
based scheme degrades the least. The PET-based scheme loses
data in chunks, such that many frames at the end of a GOP

0 50 100 150 200 250 300
16

18

20

22

24

26

28

30

32

34

36

Frame number

F
ra

m
e

P
S

N
R

PET scheme
HiPP scheme
Frequency−based scheme

Fig. 5. Frame by frame PSNR for the foreman video sequence encoded at 128
kbps when each set of 50 frames experiences 10% data loss. The � -axis plots
the frame number of all encoded frames in the video sequence and the � -axis
plots the frame’s PNSR.

are lost. This results in a jerky video sequence caused by
frame skipping. On the other hand, the frequency-based scheme
spreads the effects of loss among the DCT-coefficients in all
frames in a GOP. The data are slightly degraded, but entire
frames do not get dropped. The HiPP-based scheme is simi-
lar to our frequency-based scheme but the loss is not spread in
as fine a granularity because there is only one priority cutoff.
Another drawback to this approach is that the priority cutoff
must be user specified. An example of the degradation effects
can be seen by looking at Figure 5, which shows the utility for
each encoded frame in the foreman video sequence. The se-
quence is encoded at 128 kbps, a GOP has 50 frames, and each
encoded GOP experiences 10% truncation. Within a GOP, the
frequency-based ordering scheme has the lowest PSNR for the
first frame but the least variation in PSNR among the frames in
a GOP. The loss is spread out among the various frames pro-
viding a slightly degraded but good quality video sequence. We
also observed the same trend for other video sequences, encod-
ing bit rates, GOP sizes, and truncation amounts. Because our
frequency-based scheme provides the best graceful degradation
in the face of increasing truncation, we conclude that it behaves
the closest to an embedded coder (the data are ordered by im-
portance).

C. Selecting the Encoding Bit Rate

For a true embedded encoder, the bit stream would be the
same if the encoder were asked to produce � bits, or if it were
asked to produce � bits and those �
	�� bits were truncated to
� bits. With the ordering scheme above, however, an encoding
of � bits will almost certainly be different from an encoding
of ��	� bits that is truncated to � bits (due to the monolithic
nature of the encoder). To differentiate our ordered monolithic
encodings from the usual embedded or scalable encodings that
continually refine data, we refer to the ordered encodings as
truncatable.

6

32 40 48 56 64 72 80 88 96 104 112 120 128
21

21.5

22

22.5

23

23.5

24

24.5

25

25.5

26
Possible encoding bit rates, foreman sequence

Encoding bit rate (in kbps)

U
til

ity
 (

in
 to

ta
l s

eq
ue

nc
e

P
S

N
R

)

Fig. 6. Illustration of the utility (in total sequence PSNR) for different at-
tempted encoding bit rate. We choose the encoding bit rate that yields the best
utility.

Given a mismatch between a sequence targeted for � bits and
one truncated to � bits, generating a single utility–cost curve
to describe the encoded bit stream is problematic. Instead, we
generate a family of utility–cost curves, where each curve rep-
resents a single ordered encoding truncated to points that cor-
respond to the order listed in Section III-B. We then run the
ULP assignment algorithm independently over each member of
the family and use the encoding bit rate and FEC assignment
that yields the best expected utility. An example of the vari-
ous expected utilities after running the ULP algorithm on the
utility–cost curves generated for different encoding bit rates is
shown in figure 6. The results are shown for the foreman video
sequence, a target bit rate of 128 kbps, and an exponential loss
model with a mean loss rate of 10%. We tried encoding bit rates
of 32 kbps to 128 kbps in increments of 8 kbps. By looking at
the figure we see that the best encoding bit rate is 80 kbps, so
we would encode the source at 80 kbps and use the amount of
redundancy that was used in generating the given utility.

IV. RESULTS

In this section, we present some of our experimental results
obtained using simulations. We present comparisons of our
ULP system with baseline H.263 to show that our system can
provide good graceful degradation in the presence of packet
loss. Given an estimate of the network loss model, we com-
pare our ULP system to baseline H.263 by looking at expected
frame PSNR values and frame PSNR values corresponding to
different packet loss rates. The results give us insight into the
quality of the video sequences and how it varies as the video is
played. Before going into our results we describe the method-
ology used in our simulations.

A. Methodology

For our experiments, we implemented the system illustrated
in figure 3. For the H.263 encoder and decoder we used the
implementation of the TMN version 3.0 H.263 codec [8]. The
only change made to the decoder causes it to insert duplicate
frames into the reconstructed video sequence when a frame is

skipped, which is needed to compare the original and recon-
structed video sequences on a frame by frame basis. We could
have achieved the same effect without changing the decoder,
but this implementation was considered easiest. We use the
approximately optimal ULP algorithm described in [13]. We
simulate rather than use an actual network to allow greater con-
trol over the packet loss conditions. Finally, we compare the
reconstructed video sequence both subjectively (by viewing the
sequences) and objectively (by examining frame by frame util-
ities). It is important to note that the graphs for the frame utili-
ties show sharp drops in utility at the start of each GOP. This is
due to the fact that the H.263+ encoder skips frames at the low
bit rates used in our experiments. We decided to include frame
utilities even for skipped frames for fairness since our ULP sys-
tem and baseline H.263 will skip different frames (since they
encode at different bit rates).

We present results using the 400 frame foreman sequence
and the first 200 frames of the news sequence. These video
sequences were downloaded from the web site: http://kbs.cs.tu-
berlin.de/˜stewe/vceg/sequences.htm. The results presented in
this section use a target transmission bit rate of 128kbps and
a GOP size of 50 frames (corresponding to a 2 second delay).
We use an exponential loss model with a mean loss rate of 10%
for each GOP. We simulate the packet loss by randomly choos-
ing which packets are dropped. This produces some counter-
intuitive results when looking at baseline H.263 where some-
times the performance looks better at higher loss rates. This
happens because the order of packets lost affects the quality
of the reconstructed video. We do not see this effect for our
ULP system because only the number (not the order) of pack-
ets lost affects successful decoding of the data as described in
section II. We also experimented with other video sequences
and various settings of parameters (target transmission bit rate,
GOP size, and network loss model) and found those results to
be consistent with those presented in this section.

B. Expected Frame PSNR

In this section, we compare our ULP system to baseline
H.263 by looking at the performance measured in expected
frame PSNR. This metric is computed by averaging the per-
formance over all possible loss rates with the performance
weighted according to the probabilities given by the loss model
(exponential with a 10% mean loss rate). The results for the
foreman sequence are shown in figure 7 and the results for the
news sequence are shown in figure 8. The results show that the
expected performance of our ULP system is much better than
baseline H.263 due to the packet loss protection used by ULP.
Notice again that both ULP-protected sequences skip frames at
the ends of GOPs due to packet loss.

C. Frame PSNR at Various Packet Loss Rates

In this section, we compare our ULP system to baseline
H.263 by looking at frame PSNR values for different loss rates.
Figure 9 shows the results for the foreman sequence and fig-
ure 10 shows the results for the news video sequence. Both fig-
ures show the same trends. For no packet loss baseline H.263
performs better since it encodes at the target transmission bit

7

0 50 100 150 200 250 300 350 400
16

18

20

22

24

26

28

30

32

34

36
Expected frame utilities, foreman sequence

Frame number

U
til

ity
 (

in
 P

S
N

R
)

ULP
No protection

Fig. 7. Expected frame PSNR values for the foreman video sequence
using an exponential loss model with a 10% mean loss rate for each GOP
(50 frames).

0 50 100 150 200
16

18

20

22

24

26

28

30

32

34

36
Expected frame utilities, news sequence

Frame number

U
til

ity
 (

in
 P

S
N

R
)

ULP
No protection

Fig. 8. Expected frame PSNR values for the news video sequence using
an exponential loss model with a 10% mean loss rate for each GOP (50
frames).

0 50 100 150 200 250 300 350 400
10

15

20

25

30

35

40
Frame utilities, foreman sequence, 0% loss

Frame number

U
til

ity
 (

in
 P

S
N

R
)

ULP
No protection

0 50 100 150 200 250 300 350 400
10

15

20

25

30

35

40
Frame utilities, foreman sequence, 9.38% loss

Frame number

U
til

ity
 (

in
 P

S
N

R
)

ULP
No protection

0 50 100 150 200 250 300 350 400
10

15

20

25

30

35

40
Frame utilities, foreman sequence, 40.63% loss

Frame number
U

til
ity

 (
in

 P
S

N
R

)

ULP
No protection

Fig. 9. Frame PSNR values for the foreman video sequence when experiencing no packet loss (left), 9.38% packet loss (center), and 40.63% packet loss (right)
for each GOP (50 frames).

0 50 100 150 200
5

10

15

20

25

30

35

40
Frame utilities, news sequence, 0% loss

Frame number

U
til

ity
 (

in
 P

S
N

R
)

ULP
No protection

0 50 100 150 200
5

10

15

20

25

30

35

40
Frame utilities, news sequence, 9.38% loss

Frame number

U
til

ity
 (

in
 P

S
N

R
)

ULP
No protection

0 50 100 150 200
5

10

15

20

25

30

35

40
Frame utilities, news sequence, 40.63% loss

Frame number

U
til

ity
 (

in
 P

S
N

R
)

ULP
No protection

Fig. 10. Frame PSNR values for the news video sequence when experiencing no packet loss (left), 9.38% packet loss (center), and 40.63% packet loss (right) for
each GOP (50 frames).

rate while ULP encodes at a lower bit rate and uses redun-
dancy. When experiencing packet loss rates near to the mean
loss rate (9.38% packet loss), we see that the ULP system is able
to provide good quality while baseline H.263 has an unusable
video sequence. Finally, at a very high packet loss rate (40.63%
packet loss), ULP still manages to provide a good quality video
sequence which is only slightly degraded. The results show that
ULP successfully provides graceful degradation in the presence
of increasing packet loss.

V. CONCLUSIONS AND FUTURE WORK

The goal of this work was to show that we can provide
graceful degradation of motion-compensated video quality in
the presence of packet loss. We demonstrated that possibil-
ity, despite the various challenges involved with non-embedded,
monolithic, motion-compensated video coders like H.263. We
introduced a frequency-based ordering scheme to make the en-
coded bit stream appear embedded, then adapted the ULP al-
gorithm to find the encoding bit rate and FEC allocation that
provides the best expected utility for a given packet loss esti-
mate. We compared our ULP system to baseline H.263 in the

8

presence of packet loss to illustrate that our system provides
graceful degradation. We would like to mention that it is also
possible to consider a system that uses FEC to provide equal
loss protection (ELP), where all data are considered of equal
importance and have the same protection. Such a system pro-
vides two levels of quality for its clients. A client receives no
data until a sufficient number of packets are received (allowing
the decoding of the original data). Once the client can decode
the original data, the receipt of additional packets does not help
the video quality. The advantage of an ELP system over our
ULP system is its simplicity since it only provides one level
of protection. However, the amount of protection still needs to
be chosen. Preliminary results show that ELP performs pretty
well.

One direction for future work is to study the execution time
of various stages of the system operation to verify that our ap-
proach is suited to video-on-demand applications. Another di-
rection for future work is to study the use of the H.263+ or
H.263++ optional annexes. These annexes would make the or-
dering process more complex, but may lead to improved results.
Finally, since an assumption of the ULP algorithm is that the
source data are embedded, another direction is to compare the
scheme introduced in this paper against applying ULP to natu-
rally embedded video coders such as 3D-SPIHT [10].

REFERENCES

[1] Andres Albanese, Johannes Blömer, Jeff Edmonds, Michael Luby, and
Madhu Sudan. Priority encoding transmission. IEEE Transactions on
Information Theory, 42:1737–1744, November 1996.

[2] R. Aravind, M. Reha Civanlar, and Amy R. Reibman. Packet loss re-
silience of MPEG-2 scalable video coding algorithms. IEEE Transactions
on Circuits and Systems for Video Technology, 6(5):426–435, October
1996.

[3] J.C. Bolot. End-to-end packet delay and loss behavior in the Internet. In
SIGCOMM, pages 289–298, September 1993.

[4] J.C. Bolot and T. Turletti. Adaptive error control for packet video in the
Internet. In Proceedings of ICIP, volume 1, pages 25–28, 1996.

[5] Jill M. Boyce. Packet loss resilient transmission of MPEG video over
the Internet. Signal Processing: Image Communication, 15(1-2):7–24,
September 1999.

[6] Jill M. Boyce and Robert D. Gaglianello. Packet loss effects on MPEG
video sent over the public Internet. In ACM Multimedia, pages 181–190,
1998.

[7] C. W. Chen, P. Cosman, N. Kingsbury, J. Liang, and J. W. Modes-
tino (Guest Editors). Error-resilient image and video transmission. IEEE
Journal on Selected Areas in Communications, 18(6):809–1144, June
2000.

[8] TMN 3.0 (H.263) codec. Released by the signal processing and multime-
dia group, University of British Columbia, http://spmg.ece.ubc.ca.

[9] Guy Côté, Berna Erol, Michael Gallant, and Faouzi Kossentini. H.263+:
Video coding at low bit rates. IEEE Transactions on Circuits and Systems
for Video Technology, 8(7):849–866, November 1998.

[10] B. Kim, Z. Xiong, and W. Pearlman. Low bit-rate scalable video coding
with 3D set partitioning in hierarchical trees (3D SPIHT). IEEE Trans-
actions on Circuit and Systems for Video Technology, 10:1374–1387, De-
cember 2000.

[11] Christian Leicher. Hierarchical encoding of MPEG sequences using pri-
ority encoding transmission (PET). Technical Report TR-94-058, The
International Computer Science Institute, November 1994.

[12] Adam H. Li, Surin Kittitornkun, Yu Hen Hu, Dong-Seek Park, and
John D. Villasenor. Data partitioning and reversible variable length codes
for robust video communications. In Data Compression Conference,
pages 460–469, March 2000.

[13] Alexander E. Mohr, Eve A. Riskin, and Richard E. Ladner. Approxi-
mately optimal assignment for unequal loss protection. In Proceedings of
ICIP, volume 1, pages 367–370, sep 2000.

[14] Alexander E. Mohr, Eve A. Riskin, and Richard E. Ladner. Unequal loss
protection: Graceful degradation of image quality over packet erasure
channels through forward error correction. IEEE Journal on Selected
Areas in Communication, 18(6):819–829, June 2000.

[15] Vern Paxson. End-to-end Internet packet dynamics. IEEE/ACM Transac-
tions on Networking, 18(6):277–292, June 2000.

[16] Rohit Puri and Kannan Ramchandran. Multiple description source cod-
ing through forward error correction codes. In Proc. 33rd Asilomar Con-
ference on Signals, Systems, and Computers, volume 1, pages 342–346,
October 1999.

[17] Ramamohan Rao and Patrick Yip. Discrete Cosine Transforms: Algo-
rithms, Advantages, Applications. Academic Press, 1990.

[18] CCITT recomendation H.263. Video coding for low bit rate communica-
tion, 1998.

[19] Yao Wang, Stephan Wenger, Jiangtao Wen, and Aggelos K. Katsaggelos.
Error resilient video coding techniques. IEEE Signal Processing Maga-
zine, pages 61–82, July 2000.

[20] Yao Wang and Qin-Fan Zhu. Error control and concealment for video
communication: A review. Proceedings of the IEEE, 86(5):974–997, May
1998.

[21] Stephan Wenger, Gerd Knorr, Jörg Ott, and Faouzi Kossentini. Error
resilience support in H.263. IEEE Transactions on Circuits and Systems
for Video Technology, 8(7):867–877, November 1998.

