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Today’s topics

• Teaching Discrete Mathematics
• Active Learning in Discrete Mathematics
• Educational Technology Research at UW
• Big Ideas:  Complexity Theory
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Highlights from Day 1
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Website

• http://cs.washington.edu/homes/anderson
– Home page

• http://cs.washington.edu/homes/anderson/iucee
– Workshop websites
– Updates might be slow (through July 20)

• Google groups
– IUCEE Workshop on Teaching Algorithms
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Re-revised Workshop Schedule
• Monday, June 30, Active learning and 

instructional goals 
– Morning

• Welcome and Overview (1 hr) 
• Introductory Activity (1 hr). Determine 

background of participants 
• Active learning and instructional goals (1hr) in 

Discrete Math, Data Structures, Algorithms. 
– Afternoon

• Group Work (1.5 hrs). Development of 
activities/goals from participant's classes. 

• Content lectures (Great Ideas in Computing): 
(1.5 hr) Problem mapping 

• Tuesday, July 1, Discrete Mathematics 
– Morning

• Discrete Mathematics Teaching (2 hrs) 
• Activities in Discrete Mathematics (1 hr)

– Afternoon 
• Educational Technology Lecture (1.5 hrs) 
• Content Lecture: (1.5  hrs) Complexity Theory 

• Wednesday, July 2, Data Structures
– Morning

• Data Structures Teaching (2hrs) 
• Data Structure Activities (1 hr) 

– Afternoon
• Group work (1.5 hrs)
• Content Lecture: (1.5 hr) Average Case 

Analysis 
• Thursday, July 3, Algorithms 

– Morning
• Algorithms Teaching (2 hrs) 
• Algorithms Activities (1 hr) 

– Afternoon
• Activity Critique (.5 hr)
• Research discussion (1 hr)
• Theory discussion (optional)

• Friday, July 4, Topics
– Morning

• Content Lecture (1.5 hrs) Algorithm 
implementation

• Lecture (1.5 hrs) Socially relevant computing 
– Afternoon

• Follow up and faculty presentations (1.5 hrs) 
• Research Discussion (1.5 hrs)
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Wednesday

• Each group:
– Design two classroom activities for your classes.  

Identify the pedagogical goals of the activity.
• Five of the groups will give progress report to 

the class
• Overnight each group should prepare ppt 

slides
• Thursday there will be a feedback/critique 

session
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Thursday and Friday

• Each group will develop a presentation on 
how they are going to apply ideas from 
this workshop.

• Thursday
– Two hours work time

• Friday
– Three hours presentation time

• 15 minutes per group with PPT slides
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University of Washington 
Course

• Discrete Mathematics and Its Applications,  
Rosen,  6-th Edition

• Ten week term
– 3 lectures per week (50 minutes)
– 1 quiz section
– Midterm,  Final
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CSE 321 Discrete Structures (4) 
Fundamentals of set theory, graph theory, enumeration, and algebraic 
structures, with applications in computing. Prerequisite: CSE 143; 
either MATH 126, MATH 129, or MATH 136. 

Course overview

• Logic (4)
• Reasoning (2)
• Set Theory (1)
• Number Theory (4)
• Counting (3)
• Probability (3)
• Relations (3)
• Graph Theory (2)
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Analyzing the course and 
content

• What is the purpose of each unit?
– Long term impact on students

• What are the learning goals of each unit?
– How are they evaluated

• What strategies can be used to make 
material relevant and interesting?

• How does the context impact the content
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Broader goals

• Analysis of course content
– How does this apply to the courses that you 

teach?
• Reflect on challenges of your courses
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Overall course context
• First course in CSE Major 

– Students will have taken CS1, CS2
– Various mathematics and physics classes

• Broad range of mathematical background of 
entering students

• Goals of the course
– Formalism for later study
– Learn how to do a mathematical argument

• Many students are not interested in this 
course
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Logic
• Begin by motivating the entire course

– “Why this stuff is important”
• Formal systems used throughout computing
• Propositional logic and predicate calculus
• Boolean logic covered multiple time in 

curriculum
• Relationship between logic and English is 

hard for the students
– implication and quantification
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Goals

• Understanding boolean algebra
• Connection with language

– Represent statements with logic
• Predicates

– Meaning of quantifiers
– Nested quantification
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Why this material is important

• Language and formalism for expressing 
ideas in computing

• Fundamental tasks in computing
– Translating imprecise specification into a 

working system
– Getting the details right

Propositions
• A statement that has a truth value
• Which of the following are propositions?

– The Washington State flag is red
– It snowed in Whistler, BC on January 4, 2008.
– Hillary Clinton won the democratic caucus in Iowa
– Space aliens landed in Roswell, New Mexico
– Ron Paul would be a great president
– Turn your homework in on Wednesday
– Why are we taking this class?
– If n is an integer greater than two, then the equation an + bn = cn has no 

solutions in non-zero integers a, b, and c.
– Every even integer greater than two can be written as the sum of two 

primes
– This statement is false

– Propositional variables: p, q, r, s, . . . 
– Truth values: T for true,  F for false

Compound Propositions

• Negation (not) ¬ p
• Conjunction (and) p ∧ q
• Disjunction (or) p ∨ q
• Exclusive or p ⊕ q
• Implication p → q
• Biconditional p ↔ q

p → q

• Implication
– p implies q
– whenever p is true q must be true
– if p then q
– q if p
– p is sufficient for q
– p only if q

p q p → q



English and Logic

• You cannot ride the roller coaster if you 
are under 4 feet tall unless you are older 
than 16 years old
– q: you can ride the roller coaster
– r: you are under 4 feet tall
– s: you are older than 16

( r ∧ ¬ s) → ¬ q

¬ s → (r → ¬ q)

Logical equivalence
• Terminology:  A compound proposition is a

– Tautology if it is always true
– Contradiction if it is always false
– Contingency if it can be either true or false

p ∨ ¬ p

(p ⊕ p) ∨ p

p ⊕ ¬ p ⊕ q ⊕ ¬ q

(p → q) ∧ p

(p ∧ q) ∨ (p ∧ ¬ q) ∨ (¬ p ∧ q) ∨ (¬ p ∧ ¬ q) 

Logical Proofs

• To show P is equivalent to Q
– Apply a series of logical equivalences to 

subexpressions to convert P to Q
• To show P is a tautology

– Apply a series of logical equivalences to 
subexpressions to convert P to T

Statements with quantifiers
• ∃ x Even(x)

• ∀ x Odd(x)

• ∀ x (Even(x) ∨ Odd(x))

• ∃ x (Even(x) ∧ Odd(x))

• ∀ x Greater(x+1, x)

• ∃ x (Even(x) ∧ Prime(x))

Even(x)
Odd(x)
Prime(x)
Greater(x,y)
Equal(x,y)

Domain:
Positive Integers

Statements with quantifiers
• ∀ x ∃ y Greater (y, x)

• ∃ y ∀ x Greater (y, x)

• ∀ x ∃ y (Greater(y, x) ∧ Prime(y))

• ∀ x (Prime(x) → (Equal(x, 2) ∨ Odd(x))

• ∃ x ∃ y(Equal(x, y + 2) ∧ Prime(x) ∧ Prime(y)) 

Domain:
Positive Integers

For every number there is some number that is greater than it 

Greater(a, b) ≡ “a > b”

Prolog

• Logic programming language
• Facts and Rules
RunsOS(SlipperPC,  Windows)
RunsOS(SlipperTablet, Windows)
RunsOS(CarmelLaptop, Linux)

OSVersion(SlipperPC, SP2)
OSVersion(SlipperTablet, SP1)
OSVersion(CarmelLaptop, Ver3)

LaterVersion(SP2, SP1)
LaterVersion(Ver3, Ver2)
LaterVersion(Ver2, Ver1)

Later(x, y) :-
Later(x, z), Later(z, y)

NotLater(x, y) :- Later(y, x)
NotLater(x, y) :-

SameVersion(x, y)

MachineVulnerable(m) :-
OSVersion(m, v), 
VersionVulnerable(v)

VersionVulnerable(v) :-
CriticalVulnerability(x), 
Version(x, n),  
NotLater(v, n)



Nested Quantifiers
• Iteration over multiple variables
• Nested loops
• Details

– Use distinct variables
• ∀ x(∃ y(P(x,y) → ∀ x Q(y, x)))

– Variable name doesn’t matter
• ∀ x ∃ y P(x, y) ≡ ∀ a ∃ b P(a, b)

– Positions of quantifiers can change (but order is 
important)

• ∀ x (Q(x) ∧ ∃ y P(x, y)) ≡ ∀ x ∃ y (Q(x) ∧ P(x, y))

Quantification with two variables
Expression When true When false

∀ x ∀ y P(x,y)

∃ x ∃ y P(x,y)

∀ x ∃ y P(x, y)

∃ y ∀ x P(x, y)

Reasoning

• Students have difficulty with mathematical 
proofs

• Attempt made to introduce proofs
• Describe proofs by technique
• Some students have difficulty appreciating 

a direct proof
• Proof by contradiction leads to confusion
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Goals

• Understand the basic notion of a proof in a 
formal system

• Derive and recognize mathematically valid 
proofs

• Understand basic proof techniques
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Reasoning

• “If Seattle won last Saturday they would be 
in the playoffs”

• “Seattle is not in the playoffs”
• Therefore . . .

Proofs

• Start with hypotheses and facts
• Use rules of inference to extend set of 

facts
• Result is proved when it is included in the 

set



Rules of Inference
p
p → q

∴ q

¬ q
p → q

∴ ¬ p

p → q
q → r

∴ p → r

p ∨ q
¬ p

∴ q

p       
∴ p ∨ q

p
q

∴ p ∨ q
p ∧ q

∴ p

p ∨ q
¬ p ∨ r

∴ q ∨ r

∀ x P(x)
∴ P(c) 

∃ x P(x)
∴ P(c) for some c

P(c) for some c
∴ ∃ x P(x)

P(c) for any c
∴ ∀ xP(x)

Proofs

• Proof methods
– Direct proof
– Contrapositive proof
– Proof by contradiction
– Proof by equivalence

Direct Proof

• If n is odd, then n2 is odd

Definition 
n is even if n = 2k for some integer k
n is odd if n = 2k+1 for some integer k

Contradiction example

• Show that at least four of any 22 days 
must fall on the same day of the week

Tiling problems

• Can an n × n
checkerboard be tiled 
with 2 × 1 tiles?

8× 8 Checkerboard with two 
corners removed

• Can an 8 × 8 
checkerboard with 
upper left and lower 
right corners removed 
be tiled with 2 × 1 
tiles?



Set Theory

• Students have seen this many times 
already

• Still important for students to see the 
definitions / terminology

• Russell’s Paradox discussed
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Definition: A set is an unordered 
collection of objects

Cartesian Product : A × B

A × B = { (a, b) | a ∈ A ∧ b ∈ B}

De Morgan’s Laws

A ∪ B = A ∩ B    

A ∩ B = A ∪ B

Proof technique:
To show C = D show
x ∈ C → x ∈ D and
x ∈ D → x ∈ C

A B

Russell’s Paradox

S = { x | x ∈ x }/

Number Theory
• Important for a small number of computing 

applications
– Students should know a little number theory to 

appreciate aspects of security
• Students who will go on to graduate school should 

know this stuff
• Concepts such as modular arithmetic important for 

algorithmic thinking
• Mixed background of students coming in

– Top students understand this from their math classes
– Other students unable to transfer knowledge from 

other disciplines
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Goals
• Understand modular arithmetic
• Provide motivating example

– RSA encryption
– Students should understand what public key 

cryptography is, but the details do not need to be 
retained

– Something of interest for most advanced students
• Introduce algorithmic and computational 

topics
– Fast exponentiation
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Arithmetic mod 7

• a +7 b = (a + b) mod 7
• a ×7 b = (a × b) mod 7

+ 0 1 2 3 4 5 6

0

1

2

3

4

5

6

X 0 1 2 3 4 5 6

0

1

2

3

4

5

6

Multiplicative Inverses

• Euclid’s theorem: if  x and y are relatively 
prime, then there exists integers s, t, such 
that:

• Prove a ∈ {1, 2, 3, 4, 5, 6} has a 
multiplicative inverse under ×7 

sx + ty = 1

Hashing

• Map values from a large domain, 0…M-1 
in a much smaller domain, 0…n-1

• Index lookup
• Test for equality
• Hash(x) = x mod p
• Often want the hash function to depend on 

all of the bits of the data
– Collision management

Pseudo Random number 
generation

• Linear Congruential method

xn+1 = (a xn + c) mod m

Modular Exponentiation

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1

2

3

4

5

6



Exponentiation

• Compute 7836581453

• Compute 7836581453 mod 104729

Primality

• An integer p is prime if its only divisors are 
1 and p

• An integer that is greater than 1, and not 
prime is called composite

• Fundamental theorem of arithmetic:
– Every positive integer greater than one has a 

unique prime factorization

Distribution of Primes

• If you pick a random number n in the 
range [x, 2x], what is the chance that n is 
prime?

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 
97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 
269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359

Famous Algorithmic Problems

• Primality Testing:
– Given an integer n, determine if n is prime

• Factoring
– Given an integer n, determine the prime 

factorization of n

Primality Testing

• Is the following 200 digit number prime:
409924084160960281797612325325875254029092850990862201334
039205254095520835286062154399159482608757188937978247351
186211381925694908400980611330666502556080656092539012888
01302035441884878187944219033

Public Key Cryptography

• How can Alice send a secret message to 
Bob if Bob cannot send a secret key to 
Alice?

ALICE BOB

My public key is:
13890580304018329082310291
80219821092381083012982301
91280921830213983012923813
20498068029809347849394598
17847938828739845792389384
89288237482838299293840200
10924380915809283290823823



RSA

• Rivest – Shamir – Adelman
• n = pq.  p, q are large primes
• Choose e relatively prime to (p-1)(q-1)
• Find d, k such that de + k(p-1)(q-1) = 1 by 

Euclid’s Algorithm
• Publish e as the encryption key,  d is kept 

private as the decryption key

Message protocol

• Bob
– Precompute p, q, n, e, d
– Publish e, n

• Alice
– Read e, n from Bob’s public site
– To send message M,  compute C = Me mod n
– Send C to Bob

• Bob
– Compute Cd to decode message M

Decryption

• de = 1 + k(p-1)(q-1)
• Cd ≡ (Me)d= Mde = M1 + k(p-1)(q-1) (mod n)
• Cd≡ M (Mp-1)k(q-1) ≡ M (mod p)
• Cd≡ M (Mq-1)k(p-1) ≡ M (mod q)
• Hence Cd ≡ M (mod pq)

Practical Cryptography

ALICE BOB

ALICE BOB

ALICE BOB

ALICE BOB

Here is my public key

I want to talk to you, here is my 
private key

Okay,  here is my private key

Yadda,  yadda,  yadda

Induction

• Considered to be most important part of 
the course

• Students will have seen basic induction
– but more sophisticated uses are new

• “Strong induction”
– link it with formal proof
– recursion is new to most students

• Matter of discussion how formal to make 
the coverage
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Goals
• Be able to use induction in mathematical 

arguments
– understand how to use induction hypothesis

• Give recursive definitions of sets, strings, and 
trees

• Be able to use structural induction to 
establish properties of recursively defined 
objects

• Appreciate that there is a formal structure 
underneath computational objects
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Induction Example

• Prove 3 | 22n -1 for n ≥ 0

Induction as a rule of Inference

P(0)
∀ k (P(k) → P(k+1))

∴ ∀ n P(n)

Cute Application: Checkerboard 
Tiling with Trinominos

Prove that a 2k × 2k checkerboard with one 
square removed can be tiled with: 

Strong Induction
P(0)
∀ k ((P(0) ∧ P(1) ∧ P(2) ∧ … ∧ P(k)) → P(k+1))

∴ ∀ n P(n)

Player 1 wins n × 2 Chomp!
Winning strategy: chose the lower corner square

Theorem: Player 2 loses when faced with an n × 2
board missing the lower corner square

Recursive Definitions

• F(0) = 0;  F(n + 1) = F(n) + 1;

• F(0) = 1;  F(n + 1) =  2 × F(n);

• F(0) = 1;  F(n + 1) = 2F(n)



Recursive Definitions of Sets

• Recursive definition
– Basis step:  0 ∈ S
– Recursive step:  if x ∈ S, then x + 2 ∈ S
– Exclusion rule:  Every element in S follows 

from basis steps and a finite number of 
recursive steps

Strings

• The set Σ* of strings over the alphabet Σ is 
defined
– Basis:  λ ∈ Σ* (λ is the empty string)
– Recursive:  if w ∈ Σ*, x ∈ Σ, then wx ∈ Σ*

Families of strings over Σ = {a, b}

• L1
– λ ∈ L1

– w ∈ L1 then awb ∈ L1

• L2
– λ ∈ L2

– w ∈ L2 then aw ∈ L2

– w ∈ L2 then wb ∈ L2

Function definitions

Len(λ) = 0;
Len(wx) = 1 + Len(w); for w ∈ Σ*, x ∈ Σ

Concat(w, λ) = w for w ∈ Σ*
Concat(w1,w2x) = Concat(w1,w2)x for w1, w2 in Σ*, x ∈ Σ

Tree definitions

• A single vertex r is a tree with root r.
• Let t1, t2, …, tn be trees with roots r1, r2, …, 

rn respectively, and let r be a vertex.  A 
new tree with root r is formed by adding 
edges from r to r1,…, rn.

Simplifying notation

• (•, T1, T2), tree with left subtree T1 and 
right subtree T2

• ε is the empty tree
• Extended Binary Trees (EBT)

– ε ∈ EBT
– if T1, T2 ∈ EBT,  then (•, T1, T2) ∈ EBT

• Full Binary Trees (FBT)
– • ∈ FBT
– if T1, T2 ∈ FBT,  then (•, T1, T2) ∈ FBT



Recursive Functions on Trees

• N(T)  - number of vertices of T
• N(ε) = 0; N(•) = 1
• N(•, T1, T2) = 1 + N(T1) + N(T2)

• Ht(T) – height of T
• Ht(ε) = 0;   Ht(•) = 1
• Ht(•, T1, T2) = 1 + max(Ht(T1), Ht(T2))

NOTE: Height definition differs from the text
Base case H(•) = 0 used in text

Structural Induction

• Show P  holds for all basis elements of S.
• Show that P holds for elements used to 

construct a new element of S, then P 
holds for the new elements.

Binary Trees

• If T is a binary tree, then N(T) ≤ 2Ht(T) - 1

If T = ε:

If T = (•, T1, T2)       Ht(T1) = x, Ht(T2) = y
N(T1) ≤ 2x,   N(T2) ≤ 2y

N(T) = N(T1) + N(T2) + 1
≤ 2x – 1 + 2y – 1 + 1
≤ 2Ht(T) -1 + 2Ht(T) – 1 – 1
≤ 2Ht(T) - 1

Counting
• Convey general rules of counting
• Material has been seen in math classes – but the 

connection to Computing is important
• Don’t want to spend too much time on this 

because it is specialized and won’t be retained
• Combinatorial proofs can be very clever (but its 

not clear what students get out of them)
• Some of this material has little general application
• Easy topic to for creating homework and exam 

questions

7/1/2008 IUCEE:  Discrete Mathematics 76

Goals 

• Convey general rules of counting
– Cartesian product is important

• Link material they have seen in math 
classes to computing

• Strengthen algorithmic skills by solving 
counting problems
– Decomposition
– Mapping
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Counting Rules

Product Rule: If there are n1 choices for the 
first item and n2 choices for the second item, 
then there are n1n2 choices for the two items

Sum Rule: If there are n1 choices of an 
element from S1 and n2 choices of an 
element from S2 and S1∩ S2 is empty, then 
there are n1 + n2 choices of an element from 
S1∪ S2



Counting examples

License numbers have the form LLL DDD, how many 
different license numbers are available?

There are 38 students in a class, and 38 chairs, how 
many different seating arrangements are there if everyone
shows up?

How many different predicates are there on Σ = {a,…,z}?

Important cases of the Product 
Rule

• Cartesian product
– |A1 × A2 × … × An| = |A1||A2|. . . |An|

• Subsets of a set S
– |P(S)|= 2|S|

• Strings of length n over Σ
– |Σn| = |Σ|n

Inclusion-Exclusion Principle

• How many binary strings of length 9 start 
with 00 or end with 11

|A1 ∪ A2 | = |A1| + |A2| - |A1 ∩ A2|

Inclusion-Exclusion

• A class has of 40 students has  20 CS 
majors,  15 Math majors.  5 of these 
students are dual majors.  How many 
students in the class are neither math, nor 
CS majors?

Generalizing Inclusion 
Exclusion Permutations vs. Combinations

• How many ways are there of selecting 1st, 
2nd, and 3rd place from a group of 10 
sprinters?

• How many ways are there of selecting the 
top three finishers from a group of 10 
sprinters?



Counting paths

• How many paths are there of length n+m-2 
from the upper left corner to the lower right 
corner of an n × m grid?

Binomial Coefficient Identities 
from the Binomial Theorem

Combinations with repetition

• How many different ways are there of 
selecting 5 letters from {A, B, C} with 
repetition

How many non-decreasing sequences 
of {1,2,3} of length 5 are there?

How many different ways are there of 
adding 3 non-negative integers together to 

get 5 ?

1 + 2 + 2                     • | • • | • •

2 + 0 + 3                     • • | | • • •

0 + 1 + 4

3 + 1 + 1

5 + 0 + 0

Probability
• Viewed as a very important topic for some 

subareas of Computer Science
– Students required to take a statistics course
– Some faculty want to add Probability for 

Computer Scientists
• Students will have seen the topics many 

times previously
• Discrete probability is a direct application of 

counting
• Advanced topics included (Bayes’ theorem)
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Goals
• Provide a domain for practicing counting 

techniques
• Remind students of a few probability 

concepts
– Sample space, event, distribution, independence, 

conditional probability, random variable, 
expectation

• Introduce an advanced topic to see what is to 
come in other classes

• Understand applications of linearity of 
expectation
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Discrete Probability

Experiment: Procedure that yields an outcome

Sample space: Set of all possible outcomes

Event: subset of the sample space

S a sample space of equally likely outcomes, 
E an event, the probability of E, p(E) = |E|/|S|

Example: Poker
Probability of 4 of a kind

Discrete Probability Theory

• Set S
• Probability distribution p : S → [0,1]

– For s ∈ S,  0 ≤ p(s) ≤ 1
– Σs∈ S p(s) = 1

• Event E,  E⊆ S
• p(E) = Σs∈ Ep(s)

Conditional Probability

Let E and F be events with p(F) > 0.  The 
conditional probability of E given F, defined 
by p(E | F), is defined as:

Random Variables

A random variable is a function from 
a sample space to the real numbers



Bayes’ Theorem

Suppose that E and F are events from a sample 
space S such that p(E) > 0 and p(F) > 0.  Then

False Positives, False 
Negatives

Let D be the event that a person has the disease

Let Y be the event that a person tests positive 
for the disease

Testing for disease

Disease is very rare:  p(D) = 1/100,000

Testing is accurate:
False negative: 1%
False positive: 0.5%

Suppose you get a positive result,  what
do you conclude?

P(D | Y) is about 0.002

Spam Filtering

From: Zambia Nation Farmers Union [znfukabwe@mail.zamtel.zm]
Subject: Letter of assistance for school installation
To: Richard Anderson

Dear Richard,
I hope you are fine, Iam through talking to local headmen about the possible 
assistance of school installation.  the idea is and will be welcome.
I trust that you will do your best as i await for more from you.
Once again
Thanking you very much
Sebastian Mazuba.

Expectation

The expected value of random variable X(s) on 
sample space S is:

Left to right maxima

max_so_far := A[0];
for i := 1 to n-1

if (A[ i ] > max_so_far)
max_so_far := A[ i ];

5, 2, 9, 14, 11, 18, 7, 16, 1, 20, 3, 19, 10, 15, 4, 6, 17, 12, 8



Relations

• Some of this material is highly relevant
– Relational database theory
– Difficult to cover the material in any depth

• Large number of definitions
– Easy to generate homework and exam 

questions on definitions
– Definitions without applications unsatisfying
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Goals

• Convey basic concepts of relations
– Sets of pairs
– Relational operations as set operations

• Understand composition of relations
• Connect with real world applications
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Definition of Relations

Let A and B be sets,  
A binary relation from A to B is a subset of A × B

Let A be a set,
A binary relation on A is a subset of A × A

Combining Relations

Let R be a relation from A to B
Let S be a relation from B to C
The composite of R and S,  S ° R is the relation 
from A to C defined

S ° R = {(a, c) | ∃ b such that (a,b)∈ R and (b,c)∈ S}

Powers of a Relation
R2 = R ° R = {(a, c) | ∃ b such that (a,b)∈ R and (b,c)∈ R}

R0 = {(a,a) | a ∈ A}

R1 = R
Rn+1 = Rn ° R

How is  related to  ?



From the Mathematics 
Geneology Project 

Erhard Weigel
Gottfried Leibniz
Jacob Bernoulli
Johann Bernoulli
Leonhard Euler
Joseph Lagrange
Jean-Baptiste Fourier
Gustav Dirichlet
Rudolf Lipschitz

Felix Klein
C. L. Ferdinand Lindemann
Herman Minkowski
Constantin Caratheodory
Georg Aumann
Friedrich Bauer
Manfred Paul
Ernst Mayr
Richard Anderson

http://genealogy.math.ndsu.nodak.edu/

n-ary relations

Let A1, A2, …, An be sets.  An n-ary relation on 
these sets is a subset of A1× A2× . . . × An.

Relational databases

Student_Name ID_Number Major GPA
Knuth 328012098 CS 4.00
Von Neuman 481080220 CS 3.78
Von Neuman 481080220 Mathematics 3.78
Russell 238082388 Philosophy 3.85
Einstein 238001920 Physics 2.11
Newton 1727017 Mathematics 3.61
Karp 348882811 CS 3.98
Newton 1727017 Physics 3.61
Bernoulli 2921938 Mathematics 3.21
Bernoulli 2921939 Mathematics 3.54

Alternate Approach
Student_ID Name GPA

328012098 Knuth 4.00

481080220 Von Neuman 3.78

238082388 Russell 3.85

238001920 Einstein 2.11

1727017 Newton 3.61

348882811 Karp 3.98

2921938 Bernoulli 3.21

2921939 Bernoulli 3.54

Student_ID Major

328012098 CS

481080220 CS

481080220 Mathematics

238082388 Philosophy

238001920 Physics

1727017 Mathematics

348882811 CS

1727017 Physics

2921938 Mathematics

2921939 Mathematics

Database Operations

Projection

Join

Select

Matrix representation
Relation R from  A={a1, … ap} to B={b1, . . . bq}

{(1, 1), (1, 2),  (1, 4),  (2,1),  (2,3), (3,2), (3, 3) }



Graph Theory

• End of term material – limited chance for 
homework

• Cannot ask deep questions on the exam
• Graph theory is split across three classes

– Algorithmic material is covered in other 
classes
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Goals

• Understand the basic concept of a graph 
and associated terminology

• Model real world with graphs
– Real world to formalism

• Elementary mathematical reasoning about 
graphs
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Graph Theory

• Graph formalism
– G = (V, E)
– Vertices
– Edges

• Directed Graph
– Edges ordered pairs

• Undirected Graph
– Edges sets of size two

Big Graphs

• Web Graph
– Hyperlinks and pages

• Social Networks
– Community Graph

• Linked In,  Face Book
– Transactions

• Ebay
– Authorship

• Erdos Number

Page Rank

• Determine the value 
of a page based on 
link analysis

• Model of randomly 
traversing a graph
– Weighting factors on 

nodes
– Damping (random 

transitions)

Degree sequence

• Find a graph with 
degree sequence 
– 3, 3, 2, 1, 1

• Find a graph with 
degree sequence
– 3, 3, 3, 3, 3



Handshake Theorem Counting Paths

Let A be the Adjacency Matrix.   What is A2?

d

c

b

e

a


