Data Structures

Richard Anderson
University of Washington

Today'’s topics

Teaching Data Structures

Active Learning in Data Structures
Big Ideas: Average Case Analysis
Research discussion

Re-revised Workshop Schedule

Monday, June 30, Active learning and * Wednesday, July 2, Data Structures
instructional goals —~ Morning
— Morning « Data Structures Teaching (2hrs)
+ Welcome and Overview (1 hr) « Data Structure Activities (1 hr)
+ Introductory Activity (1 hr). Determine — Afternoon
background of participants « Content Lecture: (1.5 hr) Average Case
+ Active learning and instructional goals (1hr) Analysis
in Discrete Math, Data Structures, « Research Discussion
igorithms.
— Aftermoon’ « Thursday, July 3, Algorithms
« Group Work 51 5 hrs). Development of — Morning
activilies/goals from participant's classes. + Algorithms Teaching (2 hrs)
« Content lectures (Great Ideas in « Algorithms Activities (1 hr)
Computing): (1.5 hr) Problem mapping — Afternoon
Tuesday, July 1, Discrete Mathematics « Content Lecture (1.5 hrs) Algorithm
— Moming implementation
+ Discrete Mathematics Teaching (2 hrs) « Theory discussion (optional) / Visit Mysore
- Activities in Discrete Mathematics (1 hr) « Friday, July 4, Topics
~ Aiternoon - Moming
+ Educational Technology Lecture (1.5 hrs) = Lecture (1.5 hrs) Socially relevant
« Content Lecture: (1.5 hrs) Complexity puting

+ Faculty Presentations (1.5 hrs)
— Afternoon
+ Follow up discussion with RJA (1.5 hrs)
+ Follow up discussion with Krishna

JCEE: Welcor

Thursday and Friday

Final presentations
— Short presentations by groups

— How will you take ideas from this workshop
and implement them in a class next term

— Create a few power point slides
Find time on Thursday to prepare talks

Presentations after coffee break Friday
morning

JCEE: Welcome at

Highlights from Day 2

711120 EE: Discrete Mathemati

University of Washington
Course

CSE 326 Data Structures (4)

Abstract data types and their implementations as data structures.
Efficient of algorithms employing these data structures; asymptotic
analyses. Dictionaries: balanced search trees, hashing. Priority
queues: heaps. Disjoint sets with union, find. Graph algorithms:
shortest path, minimum spanning tree, topological sort, search.
Sorting. Prerequisite: CSE 321.

Data Structures and Algorithm Analysis in Java 2nd Ed., Mark
Allen Weiss
Ten week term

— 3 lectures per week (50 minutes)

— 1 quiz section

— Midterm, Final

IUCEE: Data Structu

Course overview

» Background (3)

» Heaps (4)

» Trees (5)

» Hashing (1)

* Union Find (2)

* Sorting (2)

» Graphs (3)

» Special Topics (4)

Analyzing the course and
content
What is the purpose of each unit?
— Long term impact on students
What are the learning goals of each unit?
— How are they evaluated

What strategies can be used to make
material relevant and interesting?

How does the context impact the content

Broader goals

» Analysis of course content

— How does this apply to the courses that you
teach?

» Reflect on challenges of your courses

Overall course context

Discrete structures a pre-requisite

— Students will have taken other majors classes
Students interested in the implementations side of
the course

— Graduates remember the course positively

Internal inconsistency in course offerings

— Many different instructors teach the course

— Some instructors take a different approach

Concern that the material is out of date

CS2 introduces some of the concepts covered in
the course

E Background

» Need to define the course

— Asymptotic analysis — why constant factors
don’t matter

— ADTs - this is an old program structuring
concept
» Handling the interface with CS2 is tricky

— Some variety in which course offering
students had

Class Overview

Introduction to many of the basic data structures
used in computer software

— Understand the data structures

— Analyze the algorithms that use them

— Know when to apply them

Practice design and analysis of data structures.
Practice using these data structures by writing
programs.

Make the transformation from programmer to
computer scientist

Goals

¢ You will understand

— what the tools are for storing and processing common
data types

— which tools are appropriate for which need
¢ So that you can
— make good design choices as a developer, project
manager, or system customer
¢ You will be able to
— Justify your design decisions via formal reasoning

— Communicate ideas about programs clearly and
precisely

Concepts vs. Mechanisms

* Abstract « Concrete

« Pseudocode « Specific programming language

¢ Algorithm e Program
— A sequence of high-level,
language independent
operations, which may act
upon an abstracted view of

— A sequence of operations in a
specific programming language,
which may act upon real data in
the form of numbers, images,

data. sound, etc.
* Abstract Data Type (ADT) e« Data structure
— A mathematical description — A specific way in which a

of an object and the set of

program’s data is represented,
operations on the object.

which reflects the programmer’s
design choices/goals.

Second Example: Stack ADT

¢ LIFO: Last In First Out
e Stack operations

— create

— destroy

— push

— pop

— top

— is_empty

/’EDCBA

>
'I'II'I'IUOUJJ

Algorithm Analysis: Why?

» Correctness:
— Does the algorithm do what is intended.
» Performance:
— What is the running time of the algorithm.
— How much storage does it consume.
« Different algorithms may be correct
— Which should | use?

Asymptotic Analysis

 Eliminate low order terms
—-4n+5=>
—-05nlogn+2n+7=
-n3+2"+3n=>

» Eliminate coefficients
—4n >
—-05nlogn=
—nlog n? =>

Definition of Order Notation

¢ Upper bound: T(n) = O(f(n)) Big-O
Exist positive constants ¢ and n’ such that
T(n) scf(n) foralln>n’

¢ Lower bound: T(n) = XAg(n)) Omega
Exist positive constants ¢ and n’ such that
T(n) 2cg(n) foralln>n’

* Tight bound: T(n) = 6(f(n)) Theta
When both hold:
T(n) = O(f(n))
T(n) = Qf(n))

Order Notation: Example

Yi+0h

100072 + 1000

He+0h
Te+06
Be+ 5
Se+05
de+0G -
38405 | e

2ee0f

10+0R - ;_/"'

i .

20 40 &0 B0 100 120 140 160 130 200

100n? + 1000 <5 (n®+ 2n?) for alln > 19
So f(n) e O(g(n))
IUCEE: Data Structur

Types of Analysis
Two orthogonal axes:

— Bound Flavor
» Upper bound (O, 0)
* Lower bound (Q, ®)
« Asymptotically tight (6)

— Analysis Case
* Worst Case (Adversary)
* Average Case
» Best Case
* Amortized

E Heaps

¢ Multiple heaps are introduced
— Priority Queue
— Leftist Heaps
— Skew Heaps
— Binomial Queues
¢ Idea of Priority Queue is absolutely fundamental
« Other concepts introduced with other flavors of
heaps
— e.g., d-heaps allow higher branching factor and
tradeoffs in operation costs
« Introducing other queues only makes sense if
underlying concepts are emphasized

a Structure 21

Queues that Allow Line Jumping

* Need a new ADT

e Operations: Insert an Item,
Remove the “Best” Item

insert deleteMin

Priority Queue ADT
1. PQueue data : collection of data with
priority

2. PQueue operations

— insert
— deleteMin

3. PQueue property: for two elements in the
queue, x and y, if x has a lower priority
value than y, x will be deleted before y

IUCEE: Data Structure

Representing Complete
Binary Trees in an Array

1 g
@ From node i:
2

©
T left child:
4@ 05»;9\ Gé © r?gh(t:clhild:

8 9 1 11 121
® OO DO parent:
implicit (array) implementation:
[[alsfc]ofe[Frle]nf1]afK]L]

0 1 2 3 4 5 6 7 8 9 10 11 12

IUCEE: Data Structu

13

Heap Order Property

Heap order property: For every non-root
node X, the value in the parent of X is
less than (or equal to) the value in X.

2
@& R @

@
not a heap

GO @

Insert: percolate up

‘ @«,

/ @D
G

IUCEE: Data Structu

More Priority Queue Operations
e decreaseKey
— given a pointer to an object in the queue, reduce its priority

value

Solution: change priority and

e increaseKey

— given a pointer to an object in the queue, increase its priority
value

Why do we need a pointer? Why not simply data value?

Solution: change priority and

IUCEE: Data Structur

A Solution: d-Heaps
Each node has d
— (choose a poweroftwo () ® ®®@ @ WG ©@
for efficiency)

children
Still representable by

— fit one set of children in alt2 1]3 724]8[s]12[11]10[6 o]
cache line

array
Good choices for d:

— fit one set of children on a
memory page/disk block

IUCEE: Data Structu

Leftist Heap Properties
» Heap-order property

— parent’s priority value is < to childrens’ priority
values

— result: minimum element is at the root

* Leftist property
— For every node x, npl(left(x)) > npl(right(x))

— result: tree is at least as “heavy” on the left as
the right

Merging Two Leftist Heaps

e merge(T,,T,) returns one leftist heap
containing all elements of the two
(distinct) leftist heaps T, and T,

merge
" @ @
merge
VANV AN
o,
T i
2 e o i

AN A

Yet Another Data Structure:
Binomial Queues

« Structural property

— Forest of binomial trees with at most
one tree of any height

| What's a forest?

What's a binomial tree?

 Order property

— Each binomial tree has the heap-order
property

Binomial Queue with n elements

Binomial Q with n elements has a unique structural
representation in terms of binomial trees!

Write nin binary: n=1101 .0 5 = 13 ase 1)

153/182/ \\

No B, 1B,

TL

E Trees

¢ Understanding binary trees and binary search

trees is critical

Material may have been covered in CS2

— but | want students to really understand it

— implementation assignment can really help

— long term understanding of search and deletion

e Concept of balanced trees (e.g. AVL)
important
— Details less so

Binary Trees
* Binary tree is

— a root
— left subtree (maybe &)
empty)
— right subtree (maybe &) ©
empty) ® 6 G
« Representation: &) M

Data

left | right o o

pointer | pointer

Binary Search Tree Data Structure

e Structural property
— each node has < 2 children
— result:
« storage is small
« operations are simple
« average depth is small

* Order property
— all keys in left subtree smaller
than root's key
— all keys in right subtree larger
than root's key

— result: easy to find any given key 0 0 9

* What must | know about what | store?

Find in BST, Recursive

Node Find(Object key,
Node root) {
if (root == NULL)
return NULL;

if (key < root.key)
return Find(key,
root.left);
else if (key > root.key)
return Find(key,
root.right);

else
return root;

Runtime:

Non-lazy Deletion

* Removing an item disrupts the tree
structure.

» Basic idea: find the node that is to be
removed. Then “fix” the tree so that it is
still a binary search tree.

e Three cases:

—node has no children (leaf node)
—node has one child
—node has two children

Deletion — The Two Child Case

Delete(5)

What can we replace 5 with?

Balanced BST

Observation
¢ BST: the shallower the better!
e For a BST with n nodes

— Average height is O(log n)

— Worst case height is O(n)

» Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth iso(logn) - strong enough!
2. is easy to maintain — not too strong!

The AVL Tree Data Structure

Structural properties

1. Binary tree property
(0,1, or 2 children)

2. Heights of left and right
subtrees of every node
differ by at most 1

Result:

Worst case depth of any

node is: O(log n)

Ordering property
— Same as for BST

Double rotation in general

h>0

Height of tree before? Height of tree after? Effect on Ancestors?

The Splay Tree Idea

If you're forced to make
areally deep access:

Since you're down there anyway,
fix up a lot of deep nodes!

Time to access
el (conservative)

(has registers) 1 ns per instruction

SRAM Cache
Cache
8KB - 4MB 210 ns

Main Memory
DIRAY Main Memory
up to 10GB 40-100 ns
. - Disk
afew
many GB Disk milliseconds
(5-10 Million ns)

Solution: B-Trees
* specialized M-ary search trees

» Each node has (up to) M-1 keys:
— subtree between two keys x and y contains
leaves with values v such that [3][7[i22d] [|
X<v<y

* Pick branching factor M
such that each node
takes one full
{page, block}
of memory

Range Queries

» Think of a range query.
— “Give me all customers aged 45-55.”
— “Give me all accounts worth $5m to $15m”

e Can be done in time

» What if we want both:

— “Give me all customers aged 45-55 with
accounts worth between $5m and $15m.”

Nearest Neighbor Search

e
Y9 he
€
y q) ry fo
be
3 Co

Nearest neighbor is e.

k-d Tree Construction

k-d tree cell
)
9o | he
=2 6
Y|4 | e fo
s5|
s2
be s7
? Ce
s3] s1|

E Hashing

» Great idea — but the idea can be conveyed
quickly

* Implementation of hash tables less
important than in the past

— Programmers should use build in HashTable
class

IUCEE: Data Structure

Hash Tables

» Constant time accesses! hash table

* A hash table is an array of some g

fixed size, usually a prime number.

* General idea:

hash function:
h(K)

e

key space (e.g., integers, strings) TableSize -1

Collision Resolution

Collision: when two keys map to the same
location in the hash table.

Two ways to resolve collisions:
1. Separate Chaining

2. Open Addressing (linear probing,
guadratic probing, double hashing)

Analysis of find

» Defn: The load factor, A, of a hash table
is the ratio: N <« no. of elements

M table size

For separate chaining, A = average # of
elements in a bucket

* Unsuccessful find:

» Successful find:

E Union Find

* Classic data structure
» Some neat ideas
— In-tree data structure
— Path compression
— Weighted union
» Touches on deep theoretical results
* Not that useful
— Programmers rarely implement Union-Find

UCEE: Data Strt

Disjoint Union - Find

Maintain a set of pairwise disjoint sets.
-{3,5,7}, {4,2,8}, {9}, {1,6}

Each set has a unique name, one of its
members

-{3,5,7},{4,2,8}, {9}, {1,6}

Find(x) — return the name of the set
containing x

Union(x,y) — take the union of two sets
named x and y

Find

 Find(x) — return the name of the set
containing X.
-{3.5,7,1,6} {4.2,8}, {9},
—Find(1) =5
—Find(4) =8

Up-Tree for DU/F

Initial state

Intermediate .
state
Roots are the names of each set. 4

71212008 IUCEE: Data Structures

Find Operation

» Find(x) follow x to the root and return the

T e

/

|
|
\

Find(6) = 7

IUCEE: Data Structures

Union Operation

¢ Union(i,j) - assuming i and j roots, point i to
-

Union(1,7)

Weighted Union

» Weighted Union

— Always point the smaller tree to the root of the
larger tree

W-Union(1,7)

212008 IUCEE: Data Structures

Analysis of Weighted Union

» With weighted union an up-tree of height h has
weight at least 2.

* Proof by induction
— Basis: h = 0. The up-tree has one node, 20 =1
— Inductive step: Assume true for all h’ < h.

T W(T,) > W(T,) > 2h-1
.) A
Minimum weight T Weigh/;ed Induction
up-tree of height h h-1 i hypothesis
formed by |
weighted unions W(T) > 202+ 201 = 20
IUCEE: Data Str 5t

Path Compression

+ On a Find operation point all the nodes on the
search path directly to the root.

% e
k.«'i 2= ‘@’;

IUCEE: Data Structures 60

Disjoint Union / Find
with Weighted Union and PC

* Worst case time complexity for a W-Union is
O(1) and for a PC-Find is O(log n).

» Time complexity for m > n operations on n
elements is O(m log* n)

— Log * n < 7 for all reasonable n. Essentially constant
time per operation!

» Using “ranked union” gives an even better
bound theoretically.

71212008 IUCEE: Data Structures

e

Sorting

* Important — but programmers should not
be writing sort routines

» The motivation for seeing lots of sort
algorithms is to see the algorithmic ideas
and issues

 Quicksort probably the most important

IUCEE: Data Structures

Mergesort

¢ Divide it in two at the midpoint

e Conquer each side in turn (by recursively
sorting)

* Merge two halves together

2/2008 IUCEE: Data Structure:

Iterative Mergesort

!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! Merge by 1

L I 1 1T [T [T T [T [T]
VS VSV VWV VU Mergeby2

! ! ! ! ! ! ! ! Merge by 4

\ 7 \ 7 ‘ Merge by 8

Merge by 16

212008 IUCEE: Data Structures 64

Quicksort

¢ Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space that
MergeSort does
— Partition array into left and right sub-arrays
« the elements in left sub-array are all less than pivot
« elements in right sub-array are all greater than pivot
— Recursively sort left and right sub-arrays
— Concatenate left and right sub-arrays in O(1) time

IUCEE: Data Structur

“Four easy steps”

e To sort an array S

— If the number of elements in S is 0 or 1, then
return. The array is sorted.

—Pick an element v in S. This is the pivot
value.

— Partition S-{v} into two disjoint subsets, S; =
{all values x<v}, and S, = {all values x>v}.
— Return QuickSort(S;), v, QuickSort(S,)

IUCEE: Data Structures 66

Features of Sorting Algorithms

* In-place
— Sorted items occupy the same space as the
original items. (No copying required, only O(1)
extra space if any.)
+ Stable

— Items in input with the same value end up in
the same order as when they began.

Decision Tree Example

a<b<c, b<c<a i
" 4 possible orders

c<a<b, a<c<hb, —

b<a<c, c<b<a

.4) am*

b<c<a
b<a<c
c<b<a

b<y\t:>c
b<c<a c<b<a
b<a<c

C<V\>a

b<c<a b<a<c

actual order

Decision Trees and Sorting

« Every sorting algorithm corresponds to a
decision tree
— Finds correct leaf by choosing edges to follow
« ie, by making comparisons
— Each decision reduces the possible solution space
by one half
¢ Run time is > maximum no. of comparisons

— maximum number of comparisons is the length of
the longest path in the decision tree, i.e. the height
of the tree

BucketSort (aka BinSort)

If all values to be sorted are known to be
between 1 and K, create an array count of size
K, increment counts while traversing the input,
and finally output the result.

Example K=5. Input=(5,1,3,4,3,2,1,1,5,4,5) - N

count array

1 #

Running time to sort n items?

gl iw|N

Radix Sort Example (2"d pass)

Bucket sort

After 15t pass by 10's After 2" pass

721 digit 3

3 9

e ol1|2|3]af[s|6|7]|8]09 721

537 03 721 | 537 67 | 478 123

67 09 123 | 38 537

478 38

38 67

9 478

Summary of sorting

* Sorting choices:
— O(N2) — Bubblesort, Insertion Sort
— O(N log N) average case running time:

* Heapsort: In-place, not stable.

* Mergesort: O(N) extra space, stable.

« Quicksort: claimed fastest in practice, but O(N2)
worst case. Needs extra storage for recursion. Not
stable.

— O(N) — Radix Sort: fast and stable. Not
comparison based. Not in-place.

E Graphs

 This shifts the course from data structures
to algorithms
» Definitions and concepts of graphs from

discrete mathematics, but algorithms
should be new

Graphs

« A formalism for representing
relationships between

objects . L
Graph G = (V,E)
— Set of vertices: T

V ={vi, vy, Vo}
— Set of edges:
E = {e;,e,,.,en}
where each e; connects two v
vertices (Vi1,Viz) E

{Han, Leia, Luke}
{(Luke, Leia),
(Han, Leia),
(Leia, Han)}

Path Length and Cost

* Path length: the number of edges in the path
* Path cost: the sum of the costs of each edge

Chicago

San Francisco

Dallas
..length(p) =5 [cost(p) =11.5

Some Applications:
Moving Around Washington

[Tacoma % fe-flun_

What’s the fastest way to get from Seattle to Pullman?
Edge labels:

UCEE: Data Strt

Graph Connectivity

Undirected graphs are connected if there is a path between
any two vertices

Directed graphs are strongly connected if there is a path from
any one vertex to any other

Directed graphs are weakly connected if there is a path
between any two vertices, ignoring direction

A complete graph has an edge between every pair of yertices

Depth-First Graph Search

Open — Stack
Criteria — Pop

DFS(Start, Goal_test)

push(Start, Open);

repeat
if (empty(Open)) then return fail;
Node := pop(Open);
if (Goal_test(Node)) then return Node;
for each Child of node do

if (Child not already visited) then push(Child, Open);

Mark Node as visited;

end

IUCEE: Data Structu

Dijkstra’s Algorithm for
Single Source Shortest Path

 Similar to breadth-first search, but uses a
heap instead of a queue:
— Always select (expand) the vertex that has a
lowest-cost path to the start vertex
* Correctly handles the case where the
lowest-cost (shortest) path to a vertex is
not the one with fewest edges

Dijkstra’s Algorithm: Idea

At each step:
4 I 1) Pick closest unknown
i . 2 vertex
: 2) Add it to known
! : vertices
! i 2 3) Update distances

Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to «
Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select an unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b
a’s cost = min(a’s old cost, b's cost + cost of (b, a))
a’s prev path node = b

Floyd-Warshall

for (int k = 1; k =< V; k++)
for (int 1 = 1; 1 =< V; i++)
for (int j = 1; j =< V; j++)
it ((MLIT[KI+ MIKIO) < MEAT0D)
MOA10] = MO1EkI+ MEKI0]

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of

vertices (i,j) containing only vertices 1..k as intermediate vertices

Minimum Spanning Tree Problem

* Input: Undirected Graph G = (V,E) and a
cost function C from E to the reals. C(e) is
the cost of edge e.

» Output: A spanning tree T with minimum
total cost. That is: T that minimizes

C(T)=2.C

eeT

Find the MST

E Special Topics

« Although these topics are interesting, it is
not clear what there purpose is

Problem: Large Graphs

It is expensive to find optimal paths in large
graphs, using BFS or Dijkstra’s algorithm (for
weighted graphs)

How can we search large graphs efficiently
by using “commonsense” about which
direction looks most promising?

Best-first search
A*: Exactly like Best-first search, but using a
different criteria for the priority queue:

e minimize (distance from start) +
(estimated distance to goal)

Speech Recognition as Shortest
Path

» Convert to a shortest-path problem:
— Utterance is a “layered” DAG
— Begins with a special dummy “start” node

— Next: A layer of nodes for each word position, one
node for each word choice
— Edges between every node in layer i to every node
in layer i+1
» Cost of an edge is smaller if the pair of words frequently
occur together in real speech
— Technically: - log probability of co-occurrence

— Finally: a dummy “end” node
— Find shortest path from start to end node

Network Flows

« Given a weighted, directed graph G=(V,E)
» Treat the edge weights as capacities
¢ How much can we flow through the graph?

Dictionary Coding

» Does not use statistical knowledge of data.

» Encoder: As the input is processed
develop a dictionary and transmit the
index of strings found in the dictionary.

» Decoder: As the code is processed
reconstruct the dictionary to invert the
process of encoding.

» Examples: LZW, LZ77, Sequitur,

» Applications: Unix Compress, gzip, GIF

