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Today’s topics

• Teaching Data Structures
• Active Learning in Data Structures
• Big Ideas:  Average Case Analysis
• Research discussion
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Re-revised Workshop Schedule
• Monday, June 30, Active learning and 

instructional goals 
– Morning

• Welcome and Overview (1 hr) 
• Introductory Activity (1 hr). Determine 

background of participants 
• Active learning and instructional goals (1hr) 

in Discrete Math, Data Structures, 
Algorithms. 

– Afternoon
• Group Work (1.5 hrs). Development of 

activities/goals from participant's classes. 
• Content lectures (Great Ideas in 

Computing): (1.5 hr) Problem mapping 
• Tuesday, July 1, Discrete Mathematics 

– Morning
• Discrete Mathematics Teaching (2 hrs) 
• Activities in Discrete Mathematics (1 hr)

– Afternoon 
• Educational Technology Lecture (1.5 hrs) 
• Content Lecture: (1.5  hrs) Complexity 

Theory 

• Wednesday, July 2, Data Structures
– Morning

• Data Structures Teaching (2hrs) 
• Data Structure Activities (1 hr) 

– Afternoon
• Content Lecture: (1.5 hr) Average Case 

Analysis 
• Research Discussion

• Thursday, July 3, Algorithms 
– Morning

• Algorithms Teaching (2 hrs) 
• Algorithms Activities (1 hr) 

– Afternoon
• Content Lecture (1.5 hrs) Algorithm 

implementation
• Theory discussion (optional) / Visit Mysore

• Friday, July 4, Topics
– Morning

• Lecture (1.5 hrs) Socially relevant 
computing 

• Faculty Presentations (1.5 hrs)
– Afternoon

• Follow up discussion with RJA (1.5 hrs) 
• Follow up discussion with Krishna
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Thursday and Friday

• Final presentations
– Short presentations by groups 
– How will you take ideas from this workshop 

and implement them in a class next term
– Create a few power point slides

• Find time on Thursday to prepare talks
• Presentations after coffee break Friday 

morning 
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Highlights from Day 2
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University of Washington 
Course

• Data Structures and Algorithm Analysis in Java 2nd Ed., Mark 
Allen Weiss

• Ten week term
– 3 lectures per week (50 minutes)
– 1 quiz section
– Midterm,  Final
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CSE 326 Data Structures (4)
Abstract data types and their implementations as data structures. 

Efficient of algorithms employing these data structures; asymptotic 
analyses. Dictionaries: balanced search trees, hashing. Priority
queues: heaps. Disjoint sets with union, find. Graph algorithms:
shortest path, minimum spanning tree, topological sort, search. 
Sorting. Prerequisite: CSE 321. 



Course overview

• Background (3)
• Heaps (4)
• Trees (5)
• Hashing (1)
• Union Find (2)
• Sorting (2)
• Graphs (3)
• Special Topics (4)
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Analyzing the course and 
content

• What is the purpose of each unit?
– Long term impact on students

• What are the learning goals of each unit?
– How are they evaluated

• What strategies can be used to make 
material relevant and interesting?

• How does the context impact the content
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Broader goals

• Analysis of course content
– How does this apply to the courses that you 

teach?
• Reflect on challenges of your courses

7/2/2008 IUCEE:  Data Structures 9

Overall course context
• Discrete structures a pre-requisite

– Students will have taken other majors classes
• Students interested in the implementations side of 

the course
– Graduates remember the course positively

• Internal inconsistency in course offerings
– Many different instructors teach the course
– Some instructors take a different approach

• Concern that the material is out of date
• CS2 introduces some of the concepts covered in 

the course
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Background

• Need to define the course
– Asymptotic analysis – why constant factors 

don’t matter
– ADTs – this is an old program structuring 

concept
• Handling the interface with CS2 is tricky

– Some variety in which course offering 
students had
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Class Overview

• Introduction to many of the basic data structures 
used in computer software
– Understand the data structures
– Analyze the algorithms that use them
– Know when to apply them

• Practice design and analysis of data structures.
• Practice using these data structures by writing 

programs.
• Make the transformation from programmer to 

computer scientist
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Goals
• You will understand

– what the tools are for storing and processing common 
data types

– which tools are appropriate for which need
• So that you can

– make good design choices as a developer, project 
manager, or system customer

• You will be able to
– Justify your design decisions via formal reasoning
– Communicate ideas about programs clearly and 

precisely
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Concepts vs.    Mechanisms

• Abstract
• Pseudocode
• Algorithm

– A sequence of high-level, 
language independent 
operations, which may act 
upon an abstracted view of 
data.

• Abstract Data Type (ADT)
– A mathematical description 

of an object and the set of 
operations on the object.

• Concrete
• Specific programming language
• Program

– A sequence of operations in a 
specific programming language, 
which may act upon real data in 
the form of numbers, images, 
sound, etc.  

• Data structure
– A specific way in which a 

program’s data is represented, 
which reflects the programmer’s 
design choices/goals.
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Second Example: Stack ADT
• LIFO: Last In First Out
• Stack operations

– create
– destroy
– push
– pop
– top
– is_empty

A

B
C
D
E
F

E D C B A

F
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Algorithm Analysis: Why?

• Correctness:
– Does the algorithm do what is intended.

• Performance:
– What is the running time of the algorithm.
– How much storage does it consume.

• Different algorithms may be correct
– Which should I use?
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Asymptotic Analysis

• Eliminate low order terms
– 4n + 5 ⇒
– 0.5 n log n + 2n + 7 ⇒
– n3 + 2n + 3n ⇒

• Eliminate coefficients
– 4n ⇒
– 0.5 n log n ⇒
– n log n2 =>
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Definition of Order Notation
• Upper bound: T(n)  = O(f(n)) Big-O

Exist positive constants c and n’ such that 
T(n) ≤ c f(n) for all n ≥ n’

• Lower bound: T(n)  = Ω(g(n)) Omega
Exist positive constants c and n’ such that

T(n) ≥ c g(n) for all n ≥ n’

• Tight bound: T(n)  = θ(f(n)) Theta
When both hold:

T(n)  =  O(f(n))
T(n)  =  Ω(f(n))
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Order Notation: Example

100n2 + 1000 ≤ 5 (n3 + 2n2) for all n ≥ 19
So f(n) ∈ O( g(n) )
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Types of Analysis
Two orthogonal axes:

– Bound Flavor
• Upper bound (O, o)
• Lower bound (Ω, ω)
• Asymptotically tight (θ)

– Analysis Case
• Worst Case (Adversary)
• Average Case
• Best Case
• Amortized 20IUCEE:  Data Structures7/2/2008

Heaps
• Multiple heaps are introduced

– Priority Queue
– Leftist Heaps
– Skew Heaps
– Binomial Queues

• Idea of Priority Queue is absolutely fundamental
• Other concepts introduced with other flavors of 

heaps
– e.g., d-heaps allow higher branching factor and 

tradeoffs in operation costs
• Introducing other queues only makes sense if 

underlying concepts are emphasized
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Queues that Allow Line Jumping
• Need a new ADT
• Operations:  Insert an Item, 

Remove the “Best” Item

insert deleteMin

6        2
15              23

12     18
45       3         7
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Priority Queue ADT
1. PQueue data : collection of data with 

priority

2. PQueue operations
– insert
– deleteMin

3. PQueue property: for two elements in the 
queue, x and y, if x has a lower priority 
value than y, x will be deleted before y
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Representing Complete 
Binary Trees in an Array

GED

CB

A

J KH I

F

L

From node i:

left child:
right child:
parent:

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:
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Heap Order Property
Heap order property: For every non-root 

node X, the value in the parent of X is 
less than (or equal to) the value in X.

1530

8020

10

996040

8020

10

50 700

85

not a heap
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Insert: percolate up

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60
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More Priority Queue Operations
• decreaseKey

– given a pointer to an object in the queue, reduce its priority 
value

Solution:  change priority and 
____________________________

• increaseKey
– given a pointer to an object in the queue, increase its priority

value

Solution: change priority and 
_____________________________

Why do we need a pointer? Why not simply data value?
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4

9654

23

1

8 1012

7

11

A Solution: d-Heaps
• Each node has d

children
• Still representable by 

array
• Good choices for d:

– (choose a power of two 
for efficiency)

– fit one set of children in a 
cache line

– fit one set of children on a 
memory page/disk block

3 7 2 8 5 12 11 10 6 9112
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Leftist Heap Properties
• Heap-order property

– parent’s priority value is ≤ to childrens’ priority 
values

– result: minimum element is at the root

• Leftist property
– For every node x, npl(left(x)) ≥ npl(right(x))
– result: tree is at least as “heavy” on the left as 

the right
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Merging Two Leftist Heaps
• merge(T1,T2) returns one leftist heap 

containing all elements of the two 
(distinct) leftist heaps T1 and T2

a

L1 R1

b

L2 R2

merge

T1

T2

a < b

a

L1

merge

b

L2 R2

R1
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Yet Another Data Structure:
Binomial Queues

• Structural property
– Forest of binomial trees with at most

one tree of any height

• Order property
– Each binomial tree has the heap-order 

property

31

What’s a forest?

What’s a binomial tree?
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Binomial Queue with n elements

Binomial Q with n elements has a unique structural 
representation in terms of binomial trees!

Write n in binary:    n = 1101 (base 2) = 13 (base 10)

32

1 B3 1 B2 No B1 1 B0
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Trees

• Understanding binary trees and binary search 
trees is critical

• Material may have been covered in CS2
– but I want students to really understand it
– implementation assignment can really help
– long term understanding of search and deletion

• Concept of balanced trees (e.g. AVL) 
important
– Details less so
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Binary Trees
• Binary tree is

– a root
– left subtree (maybe 

empty) 
– right subtree (maybe 

empty) 

• Representation:

A

B

D E

C

F

HG

JI

Data

right 
pointer

left
pointer
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Binary Search Tree Data Structure
• Structural property

– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?

4

121062

115

8

14

13

7 9
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Find in BST, Recursive
Node Find(Object key,

Node root) {
if (root == NULL)
return NULL;

if (key < root.key)
return Find(key,

root.left);
else if (key > root.key)
return Find(key,

root.right);
else
return root;

}

2092

155

10

307 17

Runtime:
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Non-lazy Deletion
• Removing an item disrupts the tree 

structure.
• Basic idea: find the node that is to be 

removed.  Then “fix” the tree so that it is 
still a binary search tree.

• Three cases:
– node has no children (leaf node)
– node has one child
– node has two children

IUCEE:  Data Structures

Deletion – The Two Child Case

3092

205

10

7

Delete(5)

What can we replace 5 with?
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Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is O(log n)
– Worst case height is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is O(log n)        – strong enough!
2. is easy to maintain – not too strong!
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The AVL Tree Data Structure
Structural properties

1. Binary tree property 
(0,1, or 2 children)

2. Heights of left and right 
subtrees of every node
differ by at most 1

Result:
Worst case depth of any 

node is: O(log n)

Ordering property
– Same as for BST

4

121062

115

8

14137 9

15

7/2/2008 IUCEE:  Data Structures

Double rotation in general
a

Z

b

W

c

X Yh-1

h

h h -1

a

Z

b

W

c

X
Yh-1 hh h

h ≥ 0

W < b <X < c < Y < a < Z

Height of tree before?   Height of tree after?  Effect on Ancestors?7/2/2008 IUCEE:  Data Structures

The Splay Tree Idea

17

10

92

5

If you’re forced to make 
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

3
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CPU

(has registers)

Cache

Main Memory

Disk

TIme to access
(conservative)

2-10 ns

40-100 ns

a few 
milliseconds

(5-10 Million ns)

SRAM

8KB - 4MB

DRAM

up to 10GB

many GB

Cache

Main Memory

Disk

1 ns per instruction
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Solution: B-Trees
• specialized M-ary search trees

• Each node has (up to) M-1 keys:
– subtree between two keys x and y contains

leaves with values v such that
x ≤ v < y 

• Pick branching factor M
such that each node 
takes one full 
{page, block}
of memory

3 7 1221

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x
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Range Queries

• Think of a range query.
– “Give me all customers aged 45-55.”
– “Give me all accounts worth $5m to $15m”

• Can be done in time ________.

• What if we want both:
– “Give me all customers aged 45-55 with 

accounts worth between $5m and $15m.”
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x

y

a
b

f

c

g h

ed

i

Nearest Neighbor Search

query

Nearest neighbor is e.
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y

k-d Tree Construction  
x

a
b

c

g h

ed

i s1

s2
y y

s6

s3
x

s4
y

s7
y

s8
y

s5
x

s1

s2

s3

s4

s5

s6

s7

s8

a b

d e

g c f h i

x

f

k-d tree cell
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Hashing

• Great idea – but the idea can be conveyed 
quickly

• Implementation of hash tables less 
important than in the past
– Programmers should use build in HashTable 

class
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Hash Tables
• Constant time accesses!
• A hash table is an array of some 

fixed size, usually a prime number.
• General idea:

key space (e.g., integers, strings)

0

…

TableSize –1 

hash function:
h(K)

hash table
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Collision Resolution

Collision: when two keys map to the same 
location in the hash table.  

Two ways to resolve collisions:
1. Separate Chaining
2. Open Addressing (linear probing, 

quadratic probing, double hashing)
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Analysis of find
• Defn: The load factor, λ, of a hash table 

is the ratio:         ← no. of elements
← table size

For separate chaining, λ = average # of 
elements in a bucket

• Unsuccessful find:

• Successful find:

M
N
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Union Find

• Classic data structure
• Some neat ideas

– In-tree data structure
– Path compression
– Weighted union

• Touches on deep theoretical results
• Not that useful 

– Programmers rarely implement Union-Find
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Disjoint Union - Find

• Maintain a set of pairwise disjoint sets.
– {3,5,7} , {4,2,8}, {9}, {1,6}

• Each set has a unique name, one of its 
members
– {3,5,7} , {4,2,8}, {9}, {1,6}

• Find(x) – return the name of the set 
containing x

• Union(x,y) – take the union of two sets 
named x and y

537/2/2008 IUCEE:  Data Structures

Find

• Find(x) – return the name of the set 
containing x.
– {3,5,7,1,6}, {4,2,8}, {9}, 
– Find(1) = 5
– Find(4) = 8
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Up-Tree for DU/F

55

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state

Roots are the names of each set.
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Find Operation

• Find(x) follow x to the root and return the 
root

56

1

2

3

45

6

7

Find(6) = 7
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Union Operation

• Union(i,j) - assuming i and j roots, point i to 
j.

57

1

2

3

45

6

7
Union(1,7)
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Weighted Union

• Weighted Union
– Always point the smaller tree to the root of the 

larger tree

58

1

2

3

45

6

7
W-Union(1,7)

2 41
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Analysis of Weighted Union

• With weighted union an up-tree of height h has 
weight at least 2h.

• Proof by induction
– Basis: h = 0. The up-tree has one node, 20 = 1
– Inductive step: Assume true for all h’ < h.

59

h-1
Minimum weight
up-tree of height h
formed by
weighted unions

T1 T2

T W(T1) > W(T2) > 2h-1

Weighted
union

Induction
hypothesis

W(T) > 2h-1 + 2h-1 = 2h
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Path Compression
• On a Find operation point all the nodes on the 

search path directly to the root.

60

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910
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Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union is 
O(1) and for a PC-Find is O(log n). 

• Time complexity for m ≥ n operations on n 
elements is O(m log* n) 
– Log * n < 7 for all reasonable n. Essentially constant 

time per operation!
• Using “ranked union” gives an even better 

bound theoretically.
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Sorting

• Important – but programmers should not 
be writing sort routines

• The motivation for seeing lots of sort 
algorithms is to see the algorithmic ideas 
and issues

• Quicksort probably the most important
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Mergesort

• Divide it in two at the midpoint
• Conquer each side in turn (by recursively 

sorting)
• Merge two halves together

63

8 2 9 4 5 3 1 6
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Iterative Mergesort

64

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

copy
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Quicksort

• Quicksort uses a divide and conquer strategy, 
but does not require the O(N) extra space that 
MergeSort does
– Partition array into left and right sub-arrays

• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

– Recursively sort left and right sub-arrays
– Concatenate left and right sub-arrays in O(1) time
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“Four easy steps”

• To sort an array S
– If the number of elements in S is 0 or 1, then 

return.  The array is sorted.
– Pick an element v in S.  This is the pivot

value.
– Partition S-{v} into two disjoint subsets, S1 = 

{all values x≤v}, and S2 = {all values x≥v}.
– Return QuickSort(S1), v, QuickSort(S2)

667/2/2008 IUCEE:  Data Structures



Features of Sorting Algorithms

• In-place
– Sorted items occupy the same space as the 

original items. (No copying required, only O(1) 
extra space if any.)

• Stable
– Items in input with the same value end up in 

the same order as when they began.
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Decision Tree Example

68

a < b < c,  b < c < a,
c < a < b,  a < c < b,
b < a < c,  c < b < a 

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c 
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c 

c < b < a

b < c < a b < a < c 

a < b a > b

a > ca < c

b < c b > c

b < c b > c 

c < a c > a

possible orders

actual order

7/2/2008 IUCEE:  Data Structures

Decision Trees and Sorting

• Every sorting algorithm corresponds to a 
decision tree
– Finds correct leaf by choosing edges to follow

• ie, by making comparisons

– Each decision reduces the possible solution space 
by one half

• Run time is ≥ maximum no. of comparisons
– maximum number of comparisons is the length of 

the longest path in the decision tree, i.e. the height 
of the tree

697/2/2008 IUCEE:  Data Structures

BucketSort (aka BinSort)
If all values to be sorted are known to be 
between 1 and K, create an array count of size 
K, increment counts while traversing the input, 
and finally output the result.

Example K=5.   Input = (5,1,3,4,3,2,1,1,5,4,5)

70

count array
1
2
3
4
5

Running time to sort n items?
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Radix Sort Example (2nd pass)

71

Bucket sort 
by 10’s 
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

721
3

123
537

67
478

38
9

After 1st pass After 2nd pass
3
9

721
123
537

38
67

478
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Summary of sorting

• Sorting choices:
– O(N2) – Bubblesort, Insertion Sort
– O(N log N) average case running time:

• Heapsort: In-place, not stable.
• Mergesort: O(N) extra space, stable.
• Quicksort: claimed fastest in practice, but O(N2)

worst case. Needs extra storage for recursion. Not 
stable.

– O(N) – Radix Sort: fast and stable. Not 
comparison based. Not in-place.
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Graphs

• This shifts the course from data structures 
to algorithms

• Definitions and concepts of graphs from 
discrete mathematics, but algorithms 
should be new
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Graphs
• A formalism for representing 

relationships between 
objects
Graph G = (V,E)
– Set of vertices:
V = {v1,v2,…,vn}

– Set of edges:
E = {e1,e2,…,em} 
where each ei connects two
vertices (vi1,vi2)

74

Han

Leia

Luke

V = {Han, Leia, Luke}
E = {(Luke, Leia), 

(Han, Leia), 
(Leia, Han)}
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Path Length and Cost
• Path length: the number of edges in the path
• Path cost: the sum of the costs of each edge

75

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(p) = 5 cost(p) = 11.57/2/2008 IUCEE:  Data Structures

Some Applications:
Moving Around Washington

76

What’s the fastest way to get from Seattle to Pullman?
Edge labels: 
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Graph Connectivity
Undirected graphs are connected if there is a path between 

any two vertices

Directed graphs are strongly connected if there is a path from 
any one vertex to any other

Directed graphs are weakly connected if there is a path 
between any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices
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Depth-First Graph Search

DFS( Start, Goal_test)
push(Start, Open);
repeat

if (empty(Open)) then return fail;
Node := pop(Open);
if (Goal_test(Node)) then return Node;
for each Child of node do

if (Child not already visited) then push(Child, Open);
Mark Node as visited;

end
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Open – Stack

Criteria – Pop
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Dijkstra’s Algorithm for 
Single Source Shortest Path

• Similar to breadth-first search, but uses a 
heap instead of a queue:
– Always select (expand) the vertex that has a 

lowest-cost path to the start vertex 
• Correctly handles the case where the 

lowest-cost (shortest) path to a vertex is 
not the one with fewest edges

797/2/2008 IUCEE:  Data Structures

Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown

vertex
2) Add it to known

vertices
3) Update distances
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Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select an unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b

a’s cost = min(a’s old cost,  b’s cost + cost of (b, a))
a’s prev path node = b
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Floyd-Warshall
for (int k = 1; k =< V; k++)
for (int i = 1; i =< V; i++)
for (int j = 1; j =< V; j++)
if ( ( M[i][k]+ M[k][j] ) < M[i][j] )

M[i][j] = M[i][k]+ M[k][j] 
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Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of 
vertices (i,j) containing only vertices 1..k as intermediate vertices
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Minimum Spanning Tree Problem

• Input: Undirected Graph G = (V,E) and a 
cost function C from E to the reals. C(e) is 
the cost of edge e.

• Output: A spanning tree T with minimum 
total cost.  That is: T that minimizes
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Find the MST
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Special Topics

• Although these topics are interesting, it is 
not clear what there purpose is
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Problem: Large Graphs
• It is expensive to find optimal paths in large 

graphs, using BFS or Dijkstra’s algorithm (for 
weighted graphs)

• How can we search large graphs efficiently 
by using “commonsense” about which 
direction looks most promising?

• Best-first search
• A*: Exactly like Best-first search, but using a 

different criteria for the priority queue:
• minimize  (distance from start) +

(estimated distance to goal)
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Speech Recognition as Shortest 
Path

• Convert to a shortest-path problem:
– Utterance is a “layered” DAG
– Begins with a special dummy “start” node
– Next: A layer of nodes for each word position, one 

node for each word choice
– Edges between every node in layer i to every node 

in layer i+1
• Cost of an edge is smaller if the pair of words frequently 

occur together in real speech
– Technically: - log probability of co-occurrence

– Finally: a dummy “end” node
– Find shortest path from start to end node
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Network Flows

• Given a weighted, directed graph G=(V,E)
• Treat the edge weights as capacities
• How much can we flow through the graph?
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Dictionary Coding

• Does not use statistical knowledge of data.
• Encoder: As the input is processed 

develop a dictionary and transmit the 
index of strings found in the dictionary.

• Decoder: As the code is processed 
reconstruct the dictionary to invert the 
process of encoding.

• Examples: LZW, LZ77, Sequitur, 
• Applications: Unix Compress, gzip, GIF
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