
Data Structures

Richard Anderson
University of Washington

7/2/2008 1IUCEE: Data Structures

Today’s topics

• Teaching Data Structures
• Active Learning in Data Structures
• Big Ideas: Average Case Analysis
• Research discussion

7/2/2008 IUCEE: Data Structures 2

Re-revised Workshop Schedule
• Monday, June 30, Active learning and

instructional goals
– Morning

• Welcome and Overview (1 hr)
• Introductory Activity (1 hr). Determine

background of participants
• Active learning and instructional goals (1hr)

in Discrete Math, Data Structures,
Algorithms.

– Afternoon
• Group Work (1.5 hrs). Development of

activities/goals from participant's classes.
• Content lectures (Great Ideas in

Computing): (1.5 hr) Problem mapping
• Tuesday, July 1, Discrete Mathematics

– Morning
• Discrete Mathematics Teaching (2 hrs)
• Activities in Discrete Mathematics (1 hr)

– Afternoon
• Educational Technology Lecture (1.5 hrs)
• Content Lecture: (1.5 hrs) Complexity

Theory

• Wednesday, July 2, Data Structures
– Morning

• Data Structures Teaching (2hrs)
• Data Structure Activities (1 hr)

– Afternoon
• Content Lecture: (1.5 hr) Average Case

Analysis
• Research Discussion

• Thursday, July 3, Algorithms
– Morning

• Algorithms Teaching (2 hrs)
• Algorithms Activities (1 hr)

– Afternoon
• Content Lecture (1.5 hrs) Algorithm

implementation
• Theory discussion (optional) / Visit Mysore

• Friday, July 4, Topics
– Morning

• Lecture (1.5 hrs) Socially relevant
computing

• Faculty Presentations (1.5 hrs)
– Afternoon

• Follow up discussion with RJA (1.5 hrs)
• Follow up discussion with Krishna

June 30, 2008 IUCEE: Welcome and Overview 3

Thursday and Friday

• Final presentations
– Short presentations by groups
– How will you take ideas from this workshop

and implement them in a class next term
– Create a few power point slides

• Find time on Thursday to prepare talks
• Presentations after coffee break Friday

morning

June 30, 2008 4IUCEE: Welcome and Overview

Highlights from Day 2

7/1/2008 IUCEE: Discrete Mathematics 5

University of Washington
Course

• Data Structures and Algorithm Analysis in Java 2nd Ed., Mark
Allen Weiss

• Ten week term
– 3 lectures per week (50 minutes)
– 1 quiz section
– Midterm, Final

7/2/2008 IUCEE: Data Structures 6

CSE 326 Data Structures (4)
Abstract data types and their implementations as data structures.

Efficient of algorithms employing these data structures; asymptotic
analyses. Dictionaries: balanced search trees, hashing. Priority
queues: heaps. Disjoint sets with union, find. Graph algorithms:
shortest path, minimum spanning tree, topological sort, search.
Sorting. Prerequisite: CSE 321.

Course overview

• Background (3)
• Heaps (4)
• Trees (5)
• Hashing (1)
• Union Find (2)
• Sorting (2)
• Graphs (3)
• Special Topics (4)

7/2/2008 IUCEE: Data Structures 7

Analyzing the course and
content

• What is the purpose of each unit?
– Long term impact on students

• What are the learning goals of each unit?
– How are they evaluated

• What strategies can be used to make
material relevant and interesting?

• How does the context impact the content

7/2/2008 IUCEE: Data Structures 8

Broader goals

• Analysis of course content
– How does this apply to the courses that you

teach?
• Reflect on challenges of your courses

7/2/2008 IUCEE: Data Structures 9

Overall course context
• Discrete structures a pre-requisite

– Students will have taken other majors classes
• Students interested in the implementations side of

the course
– Graduates remember the course positively

• Internal inconsistency in course offerings
– Many different instructors teach the course
– Some instructors take a different approach

• Concern that the material is out of date
• CS2 introduces some of the concepts covered in

the course

7/2/2008 IUCEE: Data Structures 10

Background

• Need to define the course
– Asymptotic analysis – why constant factors

don’t matter
– ADTs – this is an old program structuring

concept
• Handling the interface with CS2 is tricky

– Some variety in which course offering
students had

7/2/2008 IUCEE: Data Structures 11

Class Overview

• Introduction to many of the basic data structures
used in computer software
– Understand the data structures
– Analyze the algorithms that use them
– Know when to apply them

• Practice design and analysis of data structures.
• Practice using these data structures by writing

programs.
• Make the transformation from programmer to

computer scientist

12IUCEE: Data Structures7/2/2008

Goals
• You will understand

– what the tools are for storing and processing common
data types

– which tools are appropriate for which need
• So that you can

– make good design choices as a developer, project
manager, or system customer

• You will be able to
– Justify your design decisions via formal reasoning
– Communicate ideas about programs clearly and

precisely

13IUCEE: Data Structures7/2/2008

Concepts vs. Mechanisms

• Abstract
• Pseudocode
• Algorithm

– A sequence of high-level,
language independent
operations, which may act
upon an abstracted view of
data.

• Abstract Data Type (ADT)
– A mathematical description

of an object and the set of
operations on the object.

• Concrete
• Specific programming language
• Program

– A sequence of operations in a
specific programming language,
which may act upon real data in
the form of numbers, images,
sound, etc.

• Data structure
– A specific way in which a

program’s data is represented,
which reflects the programmer’s
design choices/goals.

14IUCEE: Data Structures7/2/2008

Second Example: Stack ADT
• LIFO: Last In First Out
• Stack operations

– create
– destroy
– push
– pop
– top
– is_empty

A

B
C
D
E
F

E D C B A

F

15IUCEE: Data Structures7/2/2008

Algorithm Analysis: Why?

• Correctness:
– Does the algorithm do what is intended.

• Performance:
– What is the running time of the algorithm.
– How much storage does it consume.

• Different algorithms may be correct
– Which should I use?

16IUCEE: Data Structures7/2/2008

Asymptotic Analysis

• Eliminate low order terms
– 4n + 5 ⇒
– 0.5 n log n + 2n + 7 ⇒
– n3 + 2n + 3n ⇒

• Eliminate coefficients
– 4n ⇒
– 0.5 n log n ⇒
– n log n2 =>

17IUCEE: Data Structures7/2/2008

Definition of Order Notation
• Upper bound: T(n) = O(f(n)) Big-O

Exist positive constants c and n’ such that
T(n) ≤ c f(n) for all n ≥ n’

• Lower bound: T(n) = Ω(g(n)) Omega
Exist positive constants c and n’ such that

T(n) ≥ c g(n) for all n ≥ n’

• Tight bound: T(n) = θ(f(n)) Theta
When both hold:

T(n) = O(f(n))
T(n) = Ω(f(n))

18IUCEE: Data Structures7/2/2008

Order Notation: Example

100n2 + 1000 ≤ 5 (n3 + 2n2) for all n ≥ 19
So f(n) ∈ O(g(n))

19IUCEE: Data Structures7/2/2008

Types of Analysis
Two orthogonal axes:

– Bound Flavor
• Upper bound (O, o)
• Lower bound (Ω, ω)
• Asymptotically tight (θ)

– Analysis Case
• Worst Case (Adversary)
• Average Case
• Best Case
• Amortized 20IUCEE: Data Structures7/2/2008

Heaps
• Multiple heaps are introduced

– Priority Queue
– Leftist Heaps
– Skew Heaps
– Binomial Queues

• Idea of Priority Queue is absolutely fundamental
• Other concepts introduced with other flavors of

heaps
– e.g., d-heaps allow higher branching factor and

tradeoffs in operation costs
• Introducing other queues only makes sense if

underlying concepts are emphasized

7/2/2008 IUCEE: Data Structures 21 22

Queues that Allow Line Jumping
• Need a new ADT
• Operations: Insert an Item,

Remove the “Best” Item

insert deleteMin

6 2
15 23

12 18
45 3 7

7/2/2008 IUCEE: Data Structures

23

Priority Queue ADT
1. PQueue data : collection of data with

priority

2. PQueue operations
– insert
– deleteMin

3. PQueue property: for two elements in the
queue, x and y, if x has a lower priority
value than y, x will be deleted before y

7/2/2008 IUCEE: Data Structures 24

Representing Complete
Binary Trees in an Array

GED

CB

A

J KH I

F

L

From node i:

left child:
right child:
parent:

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

7/2/2008 IUCEE: Data Structures

25

Heap Order Property
Heap order property: For every non-root

node X, the value in the parent of X is
less than (or equal to) the value in X.

1530

8020

10

996040

8020

10

50 700

85

not a heap

7/2/2008 IUCEE: Data Structures 26

Insert: percolate up

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60

7/2/2008 IUCEE: Data Structures

27

More Priority Queue Operations
• decreaseKey

– given a pointer to an object in the queue, reduce its priority
value

Solution: change priority and

• increaseKey
– given a pointer to an object in the queue, increase its priority

value

Solution: change priority and

Why do we need a pointer? Why not simply data value?

7/2/2008 IUCEE: Data Structures 28

4

9654

23

1

8 1012

7

11

A Solution: d-Heaps
• Each node has d

children
• Still representable by

array
• Good choices for d:

– (choose a power of two
for efficiency)

– fit one set of children in a
cache line

– fit one set of children on a
memory page/disk block

3 7 2 8 5 12 11 10 6 9112

7/2/2008 IUCEE: Data Structures

29

Leftist Heap Properties
• Heap-order property

– parent’s priority value is ≤ to childrens’ priority
values

– result: minimum element is at the root

• Leftist property
– For every node x, npl(left(x)) ≥ npl(right(x))
– result: tree is at least as “heavy” on the left as

the right

7/2/2008 IUCEE: Data Structures 30

Merging Two Leftist Heaps
• merge(T1,T2) returns one leftist heap

containing all elements of the two
(distinct) leftist heaps T1 and T2

a

L1 R1

b

L2 R2

merge

T1

T2

a < b

a

L1

merge

b

L2 R2

R1

7/2/2008 IUCEE: Data Structures

Yet Another Data Structure:
Binomial Queues

• Structural property
– Forest of binomial trees with at most

one tree of any height

• Order property
– Each binomial tree has the heap-order

property

31

What’s a forest?

What’s a binomial tree?

7/2/2008 IUCEE: Data Structures

Binomial Queue with n elements

Binomial Q with n elements has a unique structural
representation in terms of binomial trees!

Write n in binary: n = 1101 (base 2) = 13 (base 10)

32

1 B3 1 B2 No B1 1 B0

7/2/2008 IUCEE: Data Structures

Trees

• Understanding binary trees and binary search
trees is critical

• Material may have been covered in CS2
– but I want students to really understand it
– implementation assignment can really help
– long term understanding of search and deletion

• Concept of balanced trees (e.g. AVL)
important
– Details less so

7/2/2008 IUCEE: Data Structures 33

Binary Trees
• Binary tree is

– a root
– left subtree (maybe

empty)
– right subtree (maybe

empty)

• Representation:

A

B

D E

C

F

HG

JI

Data

right
pointer

left
pointer

IUCEE: Data Structures

Binary Search Tree Data Structure
• Structural property

– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?

4

121062

115

8

14

13

7 9

IUCEE: Data Structures

Find in BST, Recursive
Node Find(Object key,

Node root) {
if (root == NULL)
return NULL;

if (key < root.key)
return Find(key,

root.left);
else if (key > root.key)
return Find(key,

root.right);
else
return root;

}

2092

155

10

307 17

Runtime:

IUCEE: Data Structures

Non-lazy Deletion
• Removing an item disrupts the tree

structure.
• Basic idea: find the node that is to be

removed. Then “fix” the tree so that it is
still a binary search tree.

• Three cases:
– node has no children (leaf node)
– node has one child
– node has two children

IUCEE: Data Structures

Deletion – The Two Child Case

3092

205

10

7

Delete(5)

What can we replace 5 with?

IUCEE: Data Structures

Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is O(log n)
– Worst case height is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is O(log n) – strong enough!
2. is easy to maintain – not too strong!

IUCEE: Data Structures

The AVL Tree Data Structure
Structural properties

1. Binary tree property
(0,1, or 2 children)

2. Heights of left and right
subtrees of every node
differ by at most 1

Result:
Worst case depth of any

node is: O(log n)

Ordering property
– Same as for BST

4

121062

115

8

14137 9

15

7/2/2008 IUCEE: Data Structures

Double rotation in general
a

Z

b

W

c

X Yh-1

h

h h -1

a

Z

b

W

c

X
Yh-1 hh h

h ≥ 0

W < b <X < c < Y < a < Z

Height of tree before? Height of tree after? Effect on Ancestors?7/2/2008 IUCEE: Data Structures

The Splay Tree Idea

17

10

92

5

If you’re forced to make
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

3

7/2/2008 IUCEE: Data Structures

CPU

(has registers)

Cache

Main Memory

Disk

TIme to access
(conservative)

2-10 ns

40-100 ns

a few
milliseconds

(5-10 Million ns)

SRAM

8KB - 4MB

DRAM

up to 10GB

many GB

Cache

Main Memory

Disk

1 ns per instruction

7/2/2008 43IUCEE: Data Structures

Solution: B-Trees
• specialized M-ary search trees

• Each node has (up to) M-1 keys:
– subtree between two keys x and y contains

leaves with values v such that
x ≤ v < y

• Pick branching factor M
such that each node
takes one full
{page, block}
of memory

3 7 1221

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x

7/2/2008 44IUCEE: Data Structures

Range Queries

• Think of a range query.
– “Give me all customers aged 45-55.”
– “Give me all accounts worth $5m to $15m”

• Can be done in time ________.

• What if we want both:
– “Give me all customers aged 45-55 with

accounts worth between $5m and $15m.”

7/2/2008 45IUCEE: Data Structures

x

y

a
b

f

c

g h

ed

i

Nearest Neighbor Search

query

Nearest neighbor is e.

7/2/2008 46IUCEE: Data Structures

y

k-d Tree Construction
x

a
b

c

g h

ed

i s1

s2
y y

s6

s3
x

s4
y

s7
y

s8
y

s5
x

s1

s2

s3

s4

s5

s6

s7

s8

a b

d e

g c f h i

x

f

k-d tree cell

7/2/2008 47IUCEE: Data Structures

Hashing

• Great idea – but the idea can be conveyed
quickly

• Implementation of hash tables less
important than in the past
– Programmers should use build in HashTable

class

7/2/2008 IUCEE: Data Structures 48

49

Hash Tables
• Constant time accesses!
• A hash table is an array of some

fixed size, usually a prime number.
• General idea:

key space (e.g., integers, strings)

0

…

TableSize –1

hash function:
h(K)

hash table

7/2/2008 IUCEE: Data Structures 50

Collision Resolution

Collision: when two keys map to the same
location in the hash table.

Two ways to resolve collisions:
1. Separate Chaining
2. Open Addressing (linear probing,

quadratic probing, double hashing)

7/2/2008 IUCEE: Data Structures

51

Analysis of find
• Defn: The load factor, λ, of a hash table

is the ratio: ← no. of elements
← table size

For separate chaining, λ = average # of
elements in a bucket

• Unsuccessful find:

• Successful find:

M
N

7/2/2008 IUCEE: Data Structures

Union Find

• Classic data structure
• Some neat ideas

– In-tree data structure
– Path compression
– Weighted union

• Touches on deep theoretical results
• Not that useful

– Programmers rarely implement Union-Find

7/2/2008 IUCEE: Data Structures 52

Disjoint Union - Find

• Maintain a set of pairwise disjoint sets.
– {3,5,7} , {4,2,8}, {9}, {1,6}

• Each set has a unique name, one of its
members
– {3,5,7} , {4,2,8}, {9}, {1,6}

• Find(x) – return the name of the set
containing x

• Union(x,y) – take the union of two sets
named x and y

537/2/2008 IUCEE: Data Structures

Find

• Find(x) – return the name of the set
containing x.
– {3,5,7,1,6}, {4,2,8}, {9},
– Find(1) = 5
– Find(4) = 8

547/2/2008 IUCEE: Data Structures

Up-Tree for DU/F

55

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state

Roots are the names of each set.

7/2/2008 IUCEE: Data Structures

Find Operation

• Find(x) follow x to the root and return the
root

56

1

2

3

45

6

7

Find(6) = 7

7/2/2008 IUCEE: Data Structures

Union Operation

• Union(i,j) - assuming i and j roots, point i to
j.

57

1

2

3

45

6

7
Union(1,7)

7/2/2008 IUCEE: Data Structures

Weighted Union

• Weighted Union
– Always point the smaller tree to the root of the

larger tree

58

1

2

3

45

6

7
W-Union(1,7)

2 41

7/2/2008 IUCEE: Data Structures

Analysis of Weighted Union

• With weighted union an up-tree of height h has
weight at least 2h.

• Proof by induction
– Basis: h = 0. The up-tree has one node, 20 = 1
– Inductive step: Assume true for all h’ < h.

59

h-1
Minimum weight
up-tree of height h
formed by
weighted unions

T1 T2

T W(T1) > W(T2) > 2h-1

Weighted
union

Induction
hypothesis

W(T) > 2h-1 + 2h-1 = 2h

7/2/2008 IUCEE: Data Structures

Path Compression
• On a Find operation point all the nodes on the

search path directly to the root.

60

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910

7/2/2008 IUCEE: Data Structures

Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union is
O(1) and for a PC-Find is O(log n).

• Time complexity for m ≥ n operations on n
elements is O(m log* n)
– Log * n < 7 for all reasonable n. Essentially constant

time per operation!
• Using “ranked union” gives an even better

bound theoretically.

617/2/2008 IUCEE: Data Structures

Sorting

• Important – but programmers should not
be writing sort routines

• The motivation for seeing lots of sort
algorithms is to see the algorithmic ideas
and issues

• Quicksort probably the most important

7/2/2008 IUCEE: Data Structures 62

Mergesort

• Divide it in two at the midpoint
• Conquer each side in turn (by recursively

sorting)
• Merge two halves together

63

8 2 9 4 5 3 1 6

7/2/2008 IUCEE: Data Structures

Iterative Mergesort

64

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

copy

7/2/2008 IUCEE: Data Structures

Quicksort

• Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space that
MergeSort does
– Partition array into left and right sub-arrays

• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

– Recursively sort left and right sub-arrays
– Concatenate left and right sub-arrays in O(1) time

657/2/2008 IUCEE: Data Structures

“Four easy steps”

• To sort an array S
– If the number of elements in S is 0 or 1, then

return. The array is sorted.
– Pick an element v in S. This is the pivot

value.
– Partition S-{v} into two disjoint subsets, S1 =

{all values x≤v}, and S2 = {all values x≥v}.
– Return QuickSort(S1), v, QuickSort(S2)

667/2/2008 IUCEE: Data Structures

Features of Sorting Algorithms

• In-place
– Sorted items occupy the same space as the

original items. (No copying required, only O(1)
extra space if any.)

• Stable
– Items in input with the same value end up in

the same order as when they began.

677/2/2008 IUCEE: Data Structures

Decision Tree Example

68

a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

7/2/2008 IUCEE: Data Structures

Decision Trees and Sorting

• Every sorting algorithm corresponds to a
decision tree
– Finds correct leaf by choosing edges to follow

• ie, by making comparisons

– Each decision reduces the possible solution space
by one half

• Run time is ≥ maximum no. of comparisons
– maximum number of comparisons is the length of

the longest path in the decision tree, i.e. the height
of the tree

697/2/2008 IUCEE: Data Structures

BucketSort (aka BinSort)
If all values to be sorted are known to be
between 1 and K, create an array count of size
K, increment counts while traversing the input,
and finally output the result.

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

70

count array
1
2
3
4
5

Running time to sort n items?
7/2/2008 IUCEE: Data Structures

Radix Sort Example (2nd pass)

71

Bucket sort
by 10’s
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

721
3

123
537

67
478

38
9

After 1st pass After 2nd pass
3
9

721
123
537

38
67

478

7/2/2008 IUCEE: Data Structures

Summary of sorting

• Sorting choices:
– O(N2) – Bubblesort, Insertion Sort
– O(N log N) average case running time:

• Heapsort: In-place, not stable.
• Mergesort: O(N) extra space, stable.
• Quicksort: claimed fastest in practice, but O(N2)

worst case. Needs extra storage for recursion. Not
stable.

– O(N) – Radix Sort: fast and stable. Not
comparison based. Not in-place.

727/2/2008 IUCEE: Data Structures

Graphs

• This shifts the course from data structures
to algorithms

• Definitions and concepts of graphs from
discrete mathematics, but algorithms
should be new

7/2/2008 IUCEE: Data Structures 73

Graphs
• A formalism for representing

relationships between
objects
Graph G = (V,E)
– Set of vertices:
V = {v1,v2,…,vn}

– Set of edges:
E = {e1,e2,…,em}
where each ei connects two
vertices (vi1,vi2)

74

Han

Leia

Luke

V = {Han, Leia, Luke}
E = {(Luke, Leia),

(Han, Leia),
(Leia, Han)}

7/2/2008 IUCEE: Data Structures

Path Length and Cost
• Path length: the number of edges in the path
• Path cost: the sum of the costs of each edge

75

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(p) = 5 cost(p) = 11.57/2/2008 IUCEE: Data Structures

Some Applications:
Moving Around Washington

76

What’s the fastest way to get from Seattle to Pullman?
Edge labels:

7/2/2008 IUCEE: Data Structures

Graph Connectivity
Undirected graphs are connected if there is a path between

any two vertices

Directed graphs are strongly connected if there is a path from
any one vertex to any other

Directed graphs are weakly connected if there is a path
between any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

777/2/2008 IUCEE: Data Structures

Depth-First Graph Search

DFS(Start, Goal_test)
push(Start, Open);
repeat

if (empty(Open)) then return fail;
Node := pop(Open);
if (Goal_test(Node)) then return Node;
for each Child of node do

if (Child not already visited) then push(Child, Open);
Mark Node as visited;

end

78

Open – Stack

Criteria – Pop

7/2/2008 IUCEE: Data Structures

Dijkstra’s Algorithm for
Single Source Shortest Path

• Similar to breadth-first search, but uses a
heap instead of a queue:
– Always select (expand) the vertex that has a

lowest-cost path to the start vertex
• Correctly handles the case where the

lowest-cost (shortest) path to a vertex is
not the one with fewest edges

797/2/2008 IUCEE: Data Structures

Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown

vertex
2) Add it to known

vertices
3) Update distances

807/2/2008 IUCEE: Data Structures

Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select an unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b

a’s cost = min(a’s old cost, b’s cost + cost of (b, a))
a’s prev path node = b

817/2/2008 IUCEE: Data Structures

Floyd-Warshall
for (int k = 1; k =< V; k++)
for (int i = 1; i =< V; i++)
for (int j = 1; j =< V; j++)
if ((M[i][k]+ M[k][j]) < M[i][j])

M[i][j] = M[i][k]+ M[k][j]

82

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of
vertices (i,j) containing only vertices 1..k as intermediate vertices

7/2/2008 IUCEE: Data Structures

Minimum Spanning Tree Problem

• Input: Undirected Graph G = (V,E) and a
cost function C from E to the reals. C(e) is
the cost of edge e.

• Output: A spanning tree T with minimum
total cost. That is: T that minimizes

83

∑
∈

=
Te

eCTC)()(

7/2/2008 IUCEE: Data Structures

Find the MST

84

A

C

B

D

F
H

G

E

1

7
6

5

11

4

12

13

2
3

9

10

4

7/2/2008 IUCEE: Data Structures

Special Topics

• Although these topics are interesting, it is
not clear what there purpose is

7/2/2008 IUCEE: Data Structures 85

Problem: Large Graphs
• It is expensive to find optimal paths in large

graphs, using BFS or Dijkstra’s algorithm (for
weighted graphs)

• How can we search large graphs efficiently
by using “commonsense” about which
direction looks most promising?

• Best-first search
• A*: Exactly like Best-first search, but using a

different criteria for the priority queue:
• minimize (distance from start) +

(estimated distance to goal)

867/2/2008 IUCEE: Data Structures

Speech Recognition as Shortest
Path

• Convert to a shortest-path problem:
– Utterance is a “layered” DAG
– Begins with a special dummy “start” node
– Next: A layer of nodes for each word position, one

node for each word choice
– Edges between every node in layer i to every node

in layer i+1
• Cost of an edge is smaller if the pair of words frequently

occur together in real speech
– Technically: - log probability of co-occurrence

– Finally: a dummy “end” node
– Find shortest path from start to end node

877/2/2008 IUCEE: Data Structures

Network Flows

• Given a weighted, directed graph G=(V,E)
• Treat the edge weights as capacities
• How much can we flow through the graph?

88

A

C

B

D

F
H

G

E

1
7

11

5
6

4

12

13

23

9

10

4
I

6
11

20
7/2/2008 IUCEE: Data Structures

Dictionary Coding

• Does not use statistical knowledge of data.
• Encoder: As the input is processed

develop a dictionary and transmit the
index of strings found in the dictionary.

• Decoder: As the code is processed
reconstruct the dictionary to invert the
process of encoding.

• Examples: LZW, LZ77, Sequitur,
• Applications: Unix Compress, gzip, GIF

897/2/2008 IUCEE: Data Structures

