

Today's topics

- Teaching Data Structures
- Active Learning in Data Structures
- Big Ideas: Average Case Analysis
- Research discussion

Re-revised Workshop Schedule

Thursday and Friday

- Final presentations
- Short presentations by groups
- How will you take ideas from this workshop and implement them in a class next term
- Create a few power point slides
- Find time on Thursday to prepare talks
- Presentations after coffee break Friday morning
\qquad

University of Washington Course

CSE 326 Data Structures (4)

Abstract data types and their implementations as data structures. Efficient of algorithms employing these data structures; asymptotic analyses. Dictionaries: balanced search trees, hashing. Priority queues: heaps. Disjoint sets with union, find. Graph algorithms: shortest path, minimum spanning tree, topological sort, search. Sorting. Prerequisite: CSE 321

- Data Structures and Algorithm Analysis in Java 2nd Ed., Mark Allen Weiss
- Ten week term
- 3 lectures per week (50 minutes)
- 1 quiz section
- Midterm, Final

Course overview

- Background (3)
- Heaps (4)
- Trees (5)
- Hashing (1)
- Union Find (2)
- Sorting (2)
- Graphs (3)
- Special Topics (4)

Analyzing the course and content

-What is the purpose of each unit? - Long term impact on students
-What are the learning goals of each unit? - How are they evaluated

- What strategies can be used to make material relevant and interesting?
- How does the context impact the content

Broader goals

- Analysis of course content
- How does this apply to the courses that you teach?
- Reflect on challenges of your courses

Background

- Need to define the course
- Asymptotic analysis - why constant factors don't matter
- ADTs - this is an old program structuring concept
- Handling the interface with CS2 is tricky
- Some variety in which course offering students had

Overall course context

- Discrete structures a pre-requisite
- Students will have taken other majors classes
- Students interested in the implementations side of the course
- Graduates remember the course positively
- Internal inconsistency in course offerings - Many different instructors teach the course - Some instructors take a different approach
- Concern that the material is out of date
- CS2 introduces some of the concepts covered in the course

Goals

- You will understand
- what the tools are for storing and processing common data types
- which tools are appropriate for which need
- So that you can
- make good design choices as a developer, project manager, or system customer
- You will be able to
- Justify your design decisions via formal reasoning
- Communicate ideas about programs clearly and precisely

Concepts vs. Mechanisms

- Abstract
- Pseudocode
- Algorithm

> - A sequence of high-level, language independent operations, which may act upon an abstracted view of data.
> - Abstract Data Type (ADT)
> - A mathematical description of an object and the set of operations on the object.

- Concrete
- Specific programming language
- Program
- A sequence of operations in a specific programming language, which may act upon real data in the form of numbers, images, sound, etc.
- Data structure
- A specific way in which a program's data is represented, which reflects the programmer's design choices/goals.

Second Example: Stack ADT

- LIFO: Last In First Out
- Stack operations
- create
- destroy
- push
- pop
- top
- is_empty

Asymptotic Analysis

- Eliminate low order terms
$-4 \mathrm{n}+5 \Rightarrow$
$-0.5 n \log n+2 n+7 \Rightarrow$
$-n^{3}+2^{n}+3 n \Rightarrow$
- Eliminate coefficients
$-4 n \Rightarrow$
$-0.5 n \log n \Rightarrow$
$-n \log n^{2}=>$

Algorithm Analysis: Why?

- Correctness:
- Does the algorithm do what is intended.
- Performance:
- What is the running time of the algorithm.
- How much storage does it consume.
- Different algorithms may be correct
- Which should I use?

Order Notation: Example

Types of Analysis

Two orthogonal axes:

- Bound Flavor
- Upper bound (O, o)
- Lower bound (Ω, ω)
- Asymptotically tight (θ)
- Analysis Case
- Worst Case (Adversary)
- Average Case
- Best Case
- Amortized

Queues that Allow Line Jumping

- Need a new ADT
- Operations: Insert an Item, Remove the "Best" Item

Priority Queue ADT

1. PQueue data : collection of data with priority
2. PQueue operations

- insert
- deleteMin

3. PQueue property: for two elements in the queue, x and y, if x has a lower priority value than y, x will be deleted before y

Representing Complete
Binary Trees in an Array

More Priority Queue Operations

decreaseKey

- given a pointer to an object in the queue, reduce its priority value

Solution: change priority and

- increaseKey
- given a pointer to an object in the queue, increase its priority value
Why do we need a pointer? Why not simply data value?
Solution: change priority and

Leftist Heap Properties

- Heap-order property
- parent's priority value is \leq to childrens' priority values
- result: minimum element is at the root
- Leftist property
- For every node $x, n p l(\operatorname{left}(x)) \geq n p l(\operatorname{right}(x))$
- result: tree is at least as "heavy" on the left as the right

A Solution: d-Heaps

- Each node has d children
- Still representable by array
- Good choices for d :
- (choose a power of two
 for efficiency)
 cache line
- fit one set of children on a memory page/disk block
\qquad

Merging Two Leftist Heaps

- merge $\left(T_{1}, T_{2}\right)$ returns one leftist heap containing all elements of the two (distinct) leftist heaps T_{1} and T_{2}
merge

$a<b$

Yet Another Data Structure: Binomial Queues

- Structural property
- Forest of binomial trees with at most one tree of any height

What's a forest?
What's a binomial tree?

- Order property
- Each binomial tree has the heap-order property

Trees

- Understanding binary trees and binary search trees is critical
- Material may have been covered in CS2
- but I want students to really understand it
- implementation assignment can really help
- long term understanding of search and deletion
- Concept of balanced trees (e.g. AVL) important
- Details less so

Binomial Queue with n elements

Binomial Q with n elements has a unique structural representation in terms of binomial trees!

Write n in binary: $\quad n=1101_{\text {(base 2) }}=13_{\text {(base 10) }}$

Binary Trees

- Binary tree is
- a root
- left subtree (maybe empty)
- right subtree (maybe empty)
- Representation:

Data	
left pointer	right pointer

Non-lazy Deletion

- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed. Then "fix" the tree so that it is still a binary search tree.
- Three cases:
- node has no children (leaf node)
- node has one child
- node has two children

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes
- Average height is $O(\log n)$
- Worst case height is $O(n)$
- Simple cases such as insert(1, $2,3, \ldots, n$) lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is $O(\log n)$ - strong enough!
2. is easy to maintain

- not too strong!

The AVL Tree Data Structure
Structural properties

1. Binary tree property (0,1 , or 2 children)
2. Heights of left and right subtrees of every node differ by at most 1
Result:
Worst case depth of any node is: $\mathrm{O}(\log n)$

Ordering property

- Same as for BST

Range Queries

- Think of a range query.
- "Give me all customers aged 45-55."
- "Give me all accounts worth $\$ 5 \mathrm{~m}$ to $\$ 15 \mathrm{~m}$ "
- Can be done in time \qquad .
- What if we want both:
- "Give me all customers aged 45-55 with accounts worth between $\$ 5 \mathrm{~m}$ and $\$ 15 \mathrm{~m}$."

Solution: B-Trees

- specialized M-ary search trees
- Each node has (up to) M-1 keys:
- subtree between two keys x and y contains leaves with values v such that $371221 / \square$ $x \leq v<y$
- Pick branching factor M such that each node takes one full \{page, block\} of memory

Nearest Neighbor Search

Nearest neighbor is e.

Hashing

- Great idea - but the idea can be conveyed quickly
- Implementation of hash tables less important than in the past
- Programmers should use build in HashTable class

Hash Tables

- Constant time accesses!
- A hash table is an array of some 0 fixed size, usually a prime number.

hash function: $\mathrm{h}(\mathrm{K})$

TableSize -1

- General idea:

key space (e.g., integers, strings)

Analysis of find

- Defn: The load factor, λ, of a hash table is the ratio: $\frac{N}{N} \leftarrow$ no. of elements \leftarrow table size
For separate chaining, $\lambda=$ average $\#$ of elements in a bucket
- Unsuccessful find:
- Successful find:
- Successful find.

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:

1. Separate Chaining
2. Open Addressing (linear probing, quadratic probing, double hashing)

Union Find

- Classic data structure
- Some neat ideas
- In-tree data structure
- Path compression
- Weighted union
- Touches on deep theoretical results
- Not that useful
- Programmers rarely implement Union-Find

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
- $\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Each set has a unique name, one of its members
$-\{3, \underline{5}, 7\},\{4,2,8\},\{9\},\{1,6\}$
- Find (x) - return the name of the set containing x
- Union (x, y) - take the union of two sets named x and y

Find

- Find (x) - return the name of the set containing x.
$-\{3, \underline{5}, 7,1,6\},\{4,2,8\},\{9\}$,
- Find(1) $=5$
- Find(4) $=8$

Find Operation

- Find(x) follow x to the root and return the root

Union Operation

- Union(i,j) - assuming i and j roots, point ito j.

Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2^{h}.
- Proof by induction
- Basis: $h=0$. The up-tree has one node, $2^{0}=1$
- Inductive step: Assume true for all $h^{\prime}<h$.

Minimum weight

 up-tree of height h formed by weighted union

IUCEE: Data Structures

Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is $\mathrm{O}(1)$ and for a PC-Find is $\mathrm{O}(\log n)$.
- Time complexity for $m \geq n$ operations on n elements is $O\left(m \log ^{\star} n\right)$
- Log * n < 7 for all reasonable n . Essentially constant time per operation!
- Using "ranked union" gives an even better bound theoretically.

Sorting

- Important - but programmers should not be writing sort routines
- The motivation for seeing lots of sort algorithms is to see the algorithmic ideas and issues
- Quicksort probably the most important

Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together

Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the $\mathrm{O}(\mathrm{N})$ extra space that MergeSort does
- Partition array into left and right sub-arrays
- the elements in left sub-array are all less than pivot
- elements in right sub-array are all greater than pivot
- Recursively sort left and right sub-arrays
- Concatenate left and right sub-arrays in O(1) time

"Four easy steps"

- To sort an array S
- If the number of elements in \mathbf{S} is 0 or 1, then return. The array is sorted.
- Pick an element v in \mathbf{S}. This is the pivot value.
- Partition S-\{v\} into two disjoint subsets, $\mathbf{S}_{1}=$ \{all values $x \leq v$ \}, and $\mathbf{S}_{2}=$ \{all values $x \geq v$ \}.
- Return QuickSort(\mathbf{S}_{1}), v, QuickSort(\mathbf{S}_{2})

Features of Sorting Algorithms

- In-place
- Sorted items occupy the same space as the original items. (No copying required, only $\mathrm{O}(1)$ extra space if any.)
- Stable
- Items in input with the same value end up in the same order as when they began.

Decision Trees and Sorting

- Every sorting algorithm corresponds to a decision tree
- Finds correct leaf by choosing edges to follow
- ie, by making comparisons
- Each decision reduces the possible solution space by one half
- Run time is \geq maximum no. of comparisons
- maximum number of comparisons is the length of the longest path in the decision tree, i.e. the height of the tree

BucketSort (aka BinSort)

If all values to be sorted are known to be between 1 and K, create an array count of size K, increment counts while traversing the input, and finally output the result.

Example $K=5$. Input $=(5,1,3,4,3,2,1,1,5,4,5)$

count array	
1	
2	
3	
4	
5	72200

Running time to sort \mathbf{n} items?
 and finally output the result.

Radix Sort Example (2 ${ }^{\text {nd }}$ pass)

After $1^{\text {st }}$ pass	Bucket sort by 10 's digit										After $2^{\text {nd }}$ pass
721											${ }_{9}$
3 123	0	1	2	3	4	5	6	7	8	9	721
537	${ }_{0}{ }^{0}$		721	537			67	478			123
67	$\bigcirc 9$		${ }^{123}$	${ }^{38}$							537
478											38
38 9											-678

Summary of sorting

- Sorting choices:
- O($\left.N^{2}\right)$ - Bubblesort, Insertion Sort
$-O(N \log N)$ average case running time:
- Heapsort: In-place, not stable.
- Mergesort: $O(N)$ extra space, stable.
- Quicksort: claimed fastest in practice, but $O\left(N^{2}\right)$ worst case. Needs extra storage for recursion. Not stable.
$-O(N)$ - Radix Sort: fast and stable. Not comparison based. Not in-place.

Graphs

- This shifts the course from data structures to algorithms
- Definitions and concepts of graphs from discrete mathematics, but algorithms should be new

Path Length and Cost

- Path length: the number of edges in the path
- Path cost: the sum of the costs of each edge

$$
\text { dength }(p)=5 \quad \text { IUCEE: Data Structures } \quad \operatorname{cost}(p)=11.5
$$

Graphs

- A formalism for representing relationships between objects
Graph $\mathbf{G}=(\mathbf{v}, \mathrm{E})$
- Set of vertices:

$$
v=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

- Set of edges
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
where each $\mathbf{e}_{\mathbf{i}}$ connects two
V = \{Han, Leia, Luke \}
$E=\{($ Luke, Leia),
(Han, Leia),
(Leia, Han)\}

Some Applications: Moving Around Washington

What's the fastest way to get from Seattle to Pullman? Edge labels: IUCEE: Data Structures

Depth-First Graph Search

Open - Stack

Criteria - Pop
DFS(Start, Goal_test) push(Start, Open);
repeat
if (empty(Open)) then return fail;
Node := pop(Open);
if (Goal_test(Node)) then return Node;
for each Child of node do
if (Child not already visited) then push(Child, Open); Mark Node as visited;
end

Dijkstra's Algorithm for Single Source Shortest Path

- Similar to breadth-first search, but uses a heap instead of a queue:
- Always select (expand) the vertex that has a lowest-cost path to the start vertex
- Correctly handles the case where the lowest-cost (shortest) path to a vertex is not the one with fewest edges

Dijkstra's Algorithm: Pseudocode

Initialize the cost of each node to ∞
Initialize the cost of the source to 0
While there are unknown nodes left in the graph
Select an unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b a 's cost $=\min (a$'s old cost, b 's cost $+\operatorname{cost}$ of $(b, a))$ a 's prev path node $=b$

Dijkstra's Algorithm: Idea

Floyd-Warshall

```
for (int k = 1; k =< V; k++)
    for (int i = 1; i =< v; i++)
        for (int j = 1; j =< v; j++)
            if ( (M[i][k]+ M[k][j] ) < M[i][j] )
            M[i][j] = M[i][k]+ M[k][j]
```

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of
vertices (i, j) containing only vertices $1 . . \mathrm{k}$ as intermediate vertices

- Input: Undirected Graph G = (V,E) and a cost function C from E to the reals. $C(e)$ is the cost of edge e.
- Output: A spanning tree T with minimum
total cost. That is: T that minimizes

$$
C(T)=\sum_{e \in T} C(e)
$$

Find the MST
 Find the MST

Minimum Spanning Tree Problem

Special Topics

- Although these topics are interesting, it is not clear what there purpose is

Speech Recognition as Shortest Path

- Convert to a shortest-path problem:
- Utterance is a "layered" DAG
- Begins with a special dummy "start" node
- Next: A layer of nodes for each word position, one node for each word choice
- Edges between every node in layer i to every node in layer i+1
- Cost of an edge is smaller if the pair of words frequently occur together in real speech
- Technically: - log probability of co-occurrence
- Finally: a dummy "end" node
- Find shortest path from start to end node

Problem: Large Graphs

- It is expensive to find optimal paths in large graphs, using BFS or Dijkstra's algorithm (for weighted graphs)
- How can we search large graphs efficiently by using "commonsense" about which direction looks most promising?
- Best-first search
- A^{*} : Exactly like Best-first search, but using a different criteria for the priority queue:
- minimize (distance from start) +
(estimated distance to goal)

IUCEE: Data Structures	86

Network Flows

- Given a weighted, directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Treat the edge weights as capacities
- How much can we flow through the graph?

Dictionary Coding

- Does not use statistical knowledge of data.
- Encoder: As the input is processed develop a dictionary and transmit the index of strings found in the dictionary.
- Decoder: As the code is processed reconstruct the dictionary to invert the process of encoding.
- Examples: LZW, LZ77, Sequitur,
- Applications: Unix Compress, gzip, GIF

