
Algorithms

Richard Anderson
University of Washington

July 3, 2008 1IUCEE: Algorithms

Today’s topics

• Teaching Algorithms
• Active Learning in Algorithms
• Big Ideas: Solving Problems in Practice
• Mysore / Theory Discussion

July 3, 2008 IUCEE: Algorithms 2

Text books

July 3, 2008 IUCEE: Algorithms 3

University of Washington
Course

• Algorithm Design, by Jon Kleinberg and Eva
Tardos, 2005.

• Ten week term
– 3 lectures per week (50 minutes)
– Midterm, Final

July 3, 2008 IUCEE: Algorithms 4

CSE 421 Introduction to Algorithms (3)
Techniques for design of efficient algorithms. Methods for showing
lower bounds on computational complexity. Particular algorithms for
sorting, searching, set manipulation, arithmetic, graph problems,
pattern matching. Prerequisite: CSE 322; CSE 326.

Course overview

• Stable Marriage (2)
• Basic Graph Algorithms (3)
• Greedy Algorithms (2)
• Graph Algorithms (4)
• Divide and Conquer and Recurrences (5)
• Dynamic Programming (5)
• Network Flow and Applications (5)
• NP Completeness (3)

July 3, 2008 IUCEE: Algorithms 5

Analyzing the course and
content

• What is the purpose of each unit?
– Long term impact on students

• What are the learning goals of each unit?
– How are they evaluated

• What strategies can be used to make
material relevant and interesting?

• How does the context impact the content

July 3, 2008 IUCEE: Algorithms 6

Overall course context
• Senior level elective

– Students are not required to take this class
– Approximately half the students take this course
– Theory course: no expectation of programming

• Data structures is a pre-requisite
• Little coordination with data structures course

– Some overlap in material
– Generally different instructors

• Text book highly regarded by faculty
• Course is “algorithms by techniques”

July 3, 2008 IUCEE: Algorithms 7

Stable Marriage

• Very interesting choice for start of the
course

• Stable Marriage is a non-standard topic for
the class

• Advanced algorithm to start the class with
new ideas

• Show a series of different algorithmic
techniques

July 3, 2008 IUCEE: Algorithms 8

All of Computer Science is the
Study of Algorithms

July 3, 2008 9IUCEE: Algorithms

How to study algorithms

• Zoology
• Mine is faster than yours is
• Algorithmic ideas

– Where algorithms apply
– What makes an algorithm work
– Algorithmic thinking

Introductory Problem:
Stable Matching

• Setting:
– Assign TAs to Instructors
– Avoid having TAs and Instructors wanting

changes
• E.g., Prof A. would rather have student X than her

current TA, and student X would rather work for
Prof A. than his current instructor.

July 3, 2008 11IUCEE: Algorithms

Formal notions

• Perfect matching
• Ranked preference lists
• Stability

m1 w1

m2 w2

July 3, 2008 12IUCEE: Algorithms

Example (1 of 3)

• m1: w1 w2

• m2: w2 w1

• w1: m1 m2

• w2: m2 m1

m1

m2 w2

w1

Example (2 of 3)

• m1: w1 w2

• m2: w1 w2

• w1: m1 m2

• w2: m1 m2

m1

m2 w2

w1

Find a stable matching

Example (3 of 3)

• m1: w1 w2

• m2: w2 w1

• w1: m2 m1

• w2: m1 m2

m1

m2 w2

w1

A closer look

• Stable matchings are
not necessarily fair

m1: w1 w2 w3

m2: w2 w3 w1

m3: w3 w1 w2

w1: m2 m3 m1

w2: m3 m1 m2

w3: m1 m2 m3

m1

m2

m3

w1

w2

w3

How many stable matchings can you find?

Example

m1: w1 w2 w3

m2: w1 w3 w2

m3: w1 w2 w3

w1: m2 m3 m1

w2: m3 m1 m2

w3: m3 m1 m2

m1

m2 w2

w1

m3 w3

Intuitive Idea for an Algorithm

• m proposes to w
– If w is unmatched, w accepts
– If w is matched to m2

• If w prefers m to m2, w accepts
• If w prefers m2 to m, w rejects

• Unmatched m proposes to highest w on its
preference list that m has not already
proposed to

Algorithm

Initially all m in M and w in W are free
While there is a free m

w highest on m’s list that m has not proposed to
if w is free, then match (m, w)
else

suppose (m2, w) is matched
if w prefers m to m2

unmatch (m2, w)
match (m, w)

Does this work?

• Does it terminate?
• Is the result a stable matching?

• Begin by identifying invariants and
measures of progress
– m’s proposals get worse
– Once w is matched, w stays matched
– w’s partners get better (have lower w-rank)

Claim: The algorithm stops in at
most n2 steps

• Why?

When the algorithms halts, every w
is matched

• Why?

• Hence, the algorithm finds a perfect
matching

The resulting matching is stable

• Suppose
– m1 prefers w2 to w1

• How could this happen?

m1 w1

m2 w2

Result

• Simple, O(n2) algorithm to compute a
stable matching

• Corollary
– A stable matching always exists

Basic Graph Algorithms

• This material is necessary review
• Terminology varies so cover it again
• Formal setting for the course revisited

– Big Oh notation again
• Debatable on how much depth to go into

formal proofs on simple algorithms

July 3, 2008 25IUCEE: Algorithms

Polynomial time efficiency
• An algorithm is efficient if it has a polynomial run

time
• Run time as a function of problem size

– Run time: count number of instructions executed on
an underlying model of computation

– T(n): maximum run time for all problems of size at
most n

• Why Polynomial Time?
– Generally, polynomial time seems to capture the

algorithms which are efficient in practice
– The class of polynomial time algorithms has many

good, mathematical properties

July 3, 2008 26IUCEE: Algorithms

Ignoring constant factors

• Express run time as O(f(n))
• Emphasize algorithms with slower growth

rates
• Fundamental idea in the study of

algorithms
• Basis of Tarjan/Hopcroft Turing Award

July 3, 2008 27IUCEE: Algorithms

Formalizing growth rates

• T(n) is O(f(n)) [T : Z+ R+]
– If n is sufficiently large, T(n) is bounded by a

constant multiple of f(n)
– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is O(f(n)) will be written as:
T(n) = O(f(n))
– Be careful with this notation

July 3, 2008 28IUCEE: Algorithms

Graph Theory
• G = (V, E)

– V – vertices
– E – edges

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights
– Parallel edges
– Self loops

July 3, 2008 29IUCEE: Algorithms

Breadth first search

• Explore vertices in layers
– s in layer 1
– Neighbors of s in layer 2
– Neighbors of layer 2 in layer 3 . . .

s

July 3, 2008 30IUCEE: Algorithms

Testing Bipartiteness

• If a graph contains an odd cycle, it is not
bipartite

July 3, 2008 31IUCEE: Algorithms

Directed Graphs

• A Strongly Connected Component is a
subset of the vertices with paths between
every pair of vertices.

July 3, 2008 32IUCEE: Algorithms

Topological Sort

• Given a set of tasks with precedence
constraints, find a linear order of the tasks

142 143

321

341

370 378

326

322 401

421

431

July 3, 2008 33IUCEE: Algorithms

Greedy Algorithms

• Introduce an algorithmic paradigm
• Its hard to give a formal definition of

greedy algorithms
• Proof techniques are important

– Need to formally prove that these things work
• New material to students

July 3, 2008 IUCEE: Algorithms 34

Greedy Algorithms

• Solve problems with the simplest possible
algorithm

• The hard part: showing that something
simple actually works

• Pseudo-definition
– An algorithm is Greedy if it builds its solution

by adding elements one at a time using a
simple rule

July 3, 2008 35IUCEE: Algorithms

Greedy solution based on earliest
finishing time

Example 1

Example 2

Example 3

July 3, 2008 36IUCEE: Algorithms

Scheduling all intervals

• Minimize number of processors to
schedule all intervals

July 3, 2008 37IUCEE: Algorithms

Algorithm

• Sort by start times
• Suppose maximum depth is d, create d

slots
• Schedule items in increasing order, assign

each item to an open slot

• Correctness proof: When we reach an
item, we always have an open slot

July 3, 2008 38IUCEE: Algorithms

Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start
• One task may be worked on at a time
• All tasks must be completed

• Goal minimize maximum lateness
– Lateness = fi – di if fi >= di

July 3, 2008 39IUCEE: Algorithms

Example

2

3

2

4

DeadlineTime

2 3

23

Lateness 1

Lateness 3

July 3, 2008 40IUCEE: Algorithms

Determine the minimum lateness

2

3

4

5

6

4

5

12

DeadlineTime

July 3, 2008 41IUCEE: Algorithms

Homework Scheduling

• Tasks to perform
• Deadlines on the tasks
• Freedom to schedule tasks in any order

July 3, 2008 42IUCEE: Algorithms

Greedy Algorithm

• Earliest deadline first
• Order jobs by deadline

• This algorithm is optimal

July 3, 2008 43IUCEE: Algorithms

Analysis

• Suppose the jobs are ordered by deadlines,
d1 <= d2 <= . . . <= dn

• A schedule has an inversion if job j is scheduled
before i where j > i

• The schedule A computed by the greedy
algorithm has no inversions.

• Let O be the optimal schedule, we want to show
that A has the same maximum lateness as O

July 3, 2008 44IUCEE: Algorithms

Shortest Paths and MST

• These graph algorithms are presented in
the framework of greedy algorithms

• Students will have seen the algorithms
previously

• Attempt is made to have students really
understand the proofs
– Classical results

July 3, 2008 IUCEE: Algorithms 45

Dijkstra’s Algorithm

S = {}; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

1
4

3

2

3

2

1

2

10
1

2 2

5

4

Assume all edges have non-negative cost

July 3, 2008 46IUCEE: Algorithms

Proof

• Let v be a vertex in V-S with minimum d[v]
• Let Pv be a path of length d[v], with an edge (u,v)
• Let P be some other path to v. Suppose P first

leaves S on the edge (x, y)
– P = Psx + c(x,y) + Pyv

– Len(Psx) + c(x,y) >= d[y]
– Len(Pyv) >= 0
– Len(P) >= d[y] + 0 >= d[v] s

y

v

x

u

July 3, 2008 47IUCEE: Algorithms

http://www.cs.utexas.edu/users/EWD/

• Edsger Wybe Dijkstra was one of the most
influential members of computing science's
founding generation. Among the domains in
which his scientific contributions are
fundamental are
– algorithm design
– programming languages
– program design
– operating systems
– distributed processing
– formal specification and verification
– design of mathematical arguments

July 3, 2008 48IUCEE: Algorithms

Greedy Algorithm 1
Prim’s Algorithm

• Extend a tree by including the cheapest
out going edge

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e
c

g

f
b

s

u

v

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order of insertionJuly 3, 2008 49IUCEE: Algorithms

Application: Clustering

• Given a collection of points in an r-
dimensional space, and an integer K,
divide the points into K sets that are
closest together

July 3, 2008 50IUCEE: Algorithms

K-clustering

July 3, 2008 51IUCEE: Algorithms

Recurrences
• Big question on how much depth to cover

recurrences
– Full mathematical coverage
– Intuition

• Students have little background on
recurrences coming in
– Generally not covered in earlier courses

• My emphasis is in conveying the intuition
– Students can look up the formulas when they

need them

July 3, 2008 IUCEE: Algorithms 52

T(n) <= 2T(n/2) + cn; T(2) <= c;

July 3, 2008 53IUCEE: Algorithms

Recurrence Analysis

• Solution methods
– Unrolling recurrence
– Guess and verify
– Plugging in to a “Master Theorem”

July 3, 2008 54IUCEE: Algorithms

Unrolling the recurrence

July 3, 2008 55IUCEE: Algorithms

Recurrences

• Three basic behaviors
– Dominated by initial case
– Dominated by base case
– All cases equal – we care about the depth

July 3, 2008 56IUCEE: Algorithms

Recurrence Examples

• T(n) = 2 T(n/2) + cn
– O(n log n)

• T(n) = T(n/2) + cn
– O(n)

• More useful facts:
– logkn = log2n / log2k
– k log n = n log k

July 3, 2008 57IUCEE: Algorithms

T(n) = aT(n/b) + f(n)

July 3, 2008 58IUCEE: Algorithms

What you really need to know
about recurrences

• Work per level changes geometrically with
the level

• Geometrically increasing (x > 1)
– The bottom level wins

• Geometrically decreasing (x < 1)
– The top level wins

• Balanced (x = 1)
– Equal contribution

July 3, 2008 59IUCEE: Algorithms

Strassen’s Algorithm

Multiply 2 x 2 Matrices:
| r s | | a b| |e g|
| t u| | c d| | f h|

r = p1 + p4 – p5 + p7

s = p3 + p5

t = p2 + p5

u = p1 + p3 – p2 + p7

Where:

p1 = (b + d)(f + g)

p2= (c + d)e

p3= a(g – h)

p4= d(f – e)

p5= (a – b)h

p6= (c – d)(e + g)

p7= (b – d)(f + h)

=

July 3, 2008 60IUCEE: Algorithms

Divide and Conquer

• Classical algorithmic technique
• This is the texts weak point
• Students are probably already familiar with

the sorting algorithms
• Lectures generally show off classical

results
• FFT is a very hard result for the students

– CSE students have little to tie it to

July 3, 2008 IUCEE: Algorithms 61

Divide and Conquer Algorithms

• Split into sub problems
• Recursively solve the problem
• Combine solutions

• Make progress in the split and combine
stages
– Quicksort – progress made at the split step
– Mergesort – progress made at the combine

step

July 3, 2008 62IUCEE: Algorithms

Closest Pair Problem

• Given a set of points find the pair of points
p, q that minimizes dist(p, q)

July 3, 2008 63IUCEE: Algorithms

Karatsuba’s Algorithm

Multiply n-digit integers x and y

Let x = x1 2n/2 + x0 and y = y1 2n/2 + y0
Recursively compute

a = x1y1
b = x0y0
p = (x1 + x0)(y1 + y0)

Return a2n + (p – a – b)2n/2 + b

Recurrence: T(n) = 3T(n/2) + cn

July 3, 2008 64IUCEE: Algorithms

FFT, Convolution and Polynomial
Multiplication

• Preview
– FFT - O(n log n) algorithm

• Evaluate a polynomial of degree n at n points in
O(n log n) time

– Computation of Convolution and Polynomial
Multiplication (in O(n log n)) time

July 3, 2008 65IUCEE: Algorithms

Complex Analysis

• Polar coordinates: reθi

• eθi = cos θ + i sin θ
• a is a nth root of unity if an = 1
• Square roots of unity: +1, -1
• Fourth roots of unity: +1, -1, i, -i
• Eighth roots of unity: +1, -1, i, -i, β + iβ,
β - iβ, -β + iβ, -β - iβ where β = sqrt(2)

July 3, 2008 66IUCEE: Algorithms

Polynomial Multiplication

n-1 degree polynomials
A(x) = a0 + a1x + a2x2 + … +an-1xn-1,
B(x) = b0 + b1x + b2x2 + …+ bn-1xn-1

C(x) = A(x)B(x)
C(x)=c0+c1x + c2x2 + … + c2n-2x2n-2

p1, p2, . . ., p2n

A(p1), A(p2), . . ., A(p2n)
B(p1), B(p2), . . ., B(p2n)

C(pi) = A(pi)B(pi)

C(p1), C(p2), . . ., C(p2n)

July 3, 2008 67IUCEE: Algorithms

FFT Algorithm
// Evaluate the 2n-1th degree polynomial A at
// ω0,2n, ω1,2n, ω2,2n, . . ., ω2n-1,2n
FFT(A, 2n)

Recursively compute FFT(Aeven, n)
Recursively compute FFT(Aodd, n)

for j = 0 to 2n-1
A(ωj,2n) = Aeven(ω2

j,2n) + ωj,2nAodd(ω2
j,2n)

July 3, 2008 68IUCEE: Algorithms

Dynamic Programming

• I consider this to be the most important
part of the course

• Goal is for them to be able to apply this
technique to new problems

• Key concepts need to be highlighted so
students start to see the structure of
dynamic programming solutions

July 3, 2008 IUCEE: Algorithms 69

Dynamic Programming

• The most important algorithmic technique
covered in CSE 421

• Key ideas
– Express solution in terms of a polynomial

number of sub problems
– Order sub problems to avoid recomputation

July 3, 2008 70IUCEE: Algorithms

Subset Sum Problem

• Let w1,…,wn = {6, 8, 9, 11, 13, 16, 18, 24}
• Find a subset that has as large a sum as

possible, without exceeding 50

July 3, 2008 71IUCEE: Algorithms

Subset Sum Recurrence

• Opt[j, K] the largest subset of {w1, …, wj}
that sums to at most K

July 3, 2008 72IUCEE: Algorithms

Subset Sum Grid

4
3
2
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

{2, 4, 7, 10}

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + wj)

July 3, 2008 73IUCEE: Algorithms

Knapsack Problem
• Items have weights and values
• The problem is to maximize total value subject to

a bound on weght
• Items {I1, I2, … In}

– Weights {w1, w2, …,wn}
– Values {v1, v2, …, vn}
– Bound K

• Find set S of indices to:

– Maximize ΣiεSvi such that ΣiεSwi <= K

July 3, 2008 74IUCEE: Algorithms

Knapsack Recurrence

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + wj)

Subset Sum Recurrence:

Knapsack Recurrence:

July 3, 2008 75IUCEE: Algorithms

Knapsack Grid

4
3
2
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Weights {2, 4, 7, 10} Values: {3, 5, 9, 16}

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + vj)

July 3, 2008 76IUCEE: Algorithms

Optimal line breaking and hyphen-
ation

• Problem: break lines and insert hyphens to
make lines as balanced as possible

• Typographical considerations:
– Avoid excessive white space
– Limit number of hyphens
– Avoid widows and orphans
– Etc.

July 3, 2008 77IUCEE: Algorithms

Longest Common
Subsequence

• Application of dynamic programming
• LCS is one of the classic DP algorithms
• Space efficiency discussed

– Space more expensive than time
– If we just want the length of the string, O(n)

space is easy
– Very clever algorithm allows reconstruction of

LCS in O(n) space as well
– Included as an advanced topic

July 3, 2008 IUCEE: Algorithms 78

Longest Common Subsequence

• C=c1…cg is a subsequence of A=a1…am if
C can be obtained by removing elements
from A (but retaining order)

• LCS(A, B): A maximum length sequence
that is a subsequence of both A and B

ocurranec

occurrence
attacggct

tacgacca

July 3, 2008 79IUCEE: Algorithms

LCS Optimization

• A = a1a2…am

• B = b1b2…bn

• Opt[j, k] is the length of
LCS(a1a2…aj, b1b2…bk)

If aj = bk, Opt[j,k] = 1 + Opt[j-1, k-1]

If aj != bk, Opt[j,k] = max(Opt[j-1,k], Opt[j,k-1])
July 3, 2008 80IUCEE: Algorithms

Dynamic Programming
Computation

July 3, 2008 81IUCEE: Algorithms

How good is this algorithm?

• Is it feasible to compute the LCS of two
strings of length 100,000 on a standard
desktop PC? Why or why not.

July 3, 2008 82IUCEE: Algorithms

Algorithm Performance

• O(nm) time and O(nm) space
• On current desktop machines

– n, m < 10,000 is easy
– n, m > 1,000,000 is prohibitive

• Space is more likely to be the bounding
resource than time

July 3, 2008 83IUCEE: Algorithms

Computing LCS in O(nm) time and
O(n+m) space

• Divide and conquer algorithm
• Recomputing values used to save space

July 3, 2008 84IUCEE: Algorithms

Divide and Conquer Algorithm

• Where does the best path cross the
middle column?

• For a fixed i, and for each j, compute the
LCS that has ai matched with bj

July 3, 2008 85IUCEE: Algorithms

Divide and Conquer

• A = a1,…,am B = b1,…,bn

• Find j such that
– LCS(a1…am/2, b1…bj) and
– LCS(am/2+1…am,bj+1…bn) yield optimal solution

• Recurse

July 3, 2008 86IUCEE: Algorithms

Algorithm Analysis

• T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm

July 3, 2008 87IUCEE: Algorithms

Shortest Paths

• Shortest paths revisited from the dynamic
programming perspective
– Dynamic programming needed if edges have

negative cost

July 3, 2008 IUCEE: Algorithms 88

Shortest Path Problem

• Dijkstra’s Single Source Shortest Paths
Algorithm
– O(mlog n) time, positive cost edges

• General case – handling negative edges
• If there exists a negative cost cycle, the

shortest path is not defined
• Bellman-Ford Algorithm

– O(mn) time for graphs with negative cost
edges

July 3, 2008 89IUCEE: Algorithms

Shortest paths with a fixed number
of edges

• Find the shortest path from v to w with
exactly k edges

• Express as a recurrence
– Optk(w) = minx [Optk-1(x) + cxw]
– Opt0(w) = 0 if v=w and infinity otherwise

July 3, 2008 90IUCEE: Algorithms

If the pointer graph has a cycle, then
the graph has a negative cost cycle
• If P[w] = x then M[w] >= M[x] + cost(x,w)

– Equal when w is updated
– M[x] could be reduced after update

• Let v1, v2,…vk be a cycle in the pointer graph
with (vk,v1) the last edge added
– Just before the update

• M[vj] >= M[vj+1] + cost(vj+1, vj) for j < k
• M[vk] > M[v1] + cost(v1, vk)

– Adding everything up
• 0 > cost(v1,v2) + cost(v2,v3) + … + cost(vk, v1)

v2 v3

v1 v4

July 3, 2008 91IUCEE: Algorithms

Foreign Exchange Arbitrage

USD EUR CAD

USD ------ 0.8 1.2

EUR 1.2 ------ 1.6

CAD 0.8 0.6 -----

USD

CADEUR

1.2 1.2

0.6

USD

CADEUR

0.8 0.8

1.6July 3, 2008 92IUCEE: Algorithms

Network Flow

• This topic move the course into
combinatorial optimization

• Key is to understand what the network
flow problem is, and the basic
combinatorial theory behind it
– Many more sophisticated algorithms not

covered

July 3, 2008 IUCEE: Algorithms 93

Flow assignment and the residual
graph

u

s t

v

15/20

20/20

15/30

0/10

5/10

u

s t

v

5

15

10

5 20

15
15

5

July 3, 2008 94IUCEE: Algorithms

Find a maximum flow

a

s

d

b

c f

e

g

h

i

t

25

5

20 20

20

30

20

55

5
20

5 10

20

5
20

10

5

20

20

5

5

20

30

July 3, 2008 95IUCEE: Algorithms

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph GR

Find an s-t path P in GR with capacity b > 0

Add b units along in G

If the sum of the capacities of edges leaving S
is at most C, then the algorithm takes at most
C iterations

July 3, 2008 96IUCEE: Algorithms

MaxFlow – MinCut Theorem

• There exists a flow which has the same value of
the minimum cut

• Proof: Consider a flow where the residual graph
has no s-t path with positive capacity

• Let S be the set of vertices in GR reachable from
s with paths of positive capacity

s t

July 3, 2008 97IUCEE: Algorithms

Network Flow Applications

• Applications of network flow are very
powerful

• Problems that look very unlike flow can be
converted to network flow

• Brings up the theme of problem mapping

July 3, 2008 IUCEE: Algorithms 98

Problem Reduction

• Reduce Problem A to Problem B
– Convert an instance of Problem A to an instance

Problem B
– Use a solution of Problem B to get a solution to

Problem A
• Practical

– Use a program for Problem B to solve Problem A
• Theoretical

– Show that Problem B is at least as hard as Problem A

July 3, 2008 99IUCEE: Algorithms

Bipartite Matching

• A graph G=(V,E) is bipartite if the vertices
can be partitioned into disjoints sets X,Y

• A matching M is a subset of the edges that
does not share any vertices

• Find a matching as large as possible

July 3, 2008 100IUCEE: Algorithms

Converting Matching to Network
Flow

ts

July 3, 2008 101IUCEE: Algorithms

Open Pit Mining

• Each unit of earth has a profit (possibly
negative)

• Getting to the ore below the surface
requires removing the dirt above

• Test drilling gives reasonable estimates of
costs

• Plan an optimal mining operation

July 3, 2008 102IUCEE: Algorithms

Mine Graph

-3

-10

-4

3

-2

-3

-1

8

-2

4

3

-1

-7

-10

-1

July 3, 2008 103IUCEE: Algorithms

Setting the costs

• If p(v) > 0,
– cap(v,t) = p(v)
– cap(s,v) = 0

• If p(v) < 0
– cap(s,v) = -p(v)
– cap(v,t) = 0

• If p(v) = 0
– cap(s,v) = 0
– cap(v,t) = 0

s

t

3

-3

2

1

0
-1-3

3
1

3

2 1 3

July 3, 2008 104IUCEE: Algorithms

Image Segmentation

• Separate foreground
from background

July 3, 2008 105IUCEE: Algorithms

Image analysis

• ai: value of assigning pixel i to the foreground
• bi: value of assigning pixel i to the background
• pij: penalty for assigning i to the foreground, j to

the background or vice versa
• A: foreground, B: background
• Q(A,B) = Σ{i in A}ai + Σ{j in B}bj - Σ{(i,j) in E, i in A, j in B}pij

July 3, 2008 106IUCEE: Algorithms

Mincut Construction

u v

s

t

bv

av

puv

pvu

July 3, 2008 107IUCEE: Algorithms

NP Completeness
• Theory topic from the algorithmic perspective
• Students will see different aspects of NP-

Completeness in other courses
• Complexity theory course will prove Cook’s

theorem
• The basic goal is to remind students of

specific NP complete problems
• Material is not covered in much depth

because of the “last week of the term”
problem

July 3, 2008 IUCEE: Algorithms 108

Theory of NP-Completeness
The Universe

NP-Complete

NP

P

July 3, 2008 109IUCEE: Algorithms

What is NP?

• Problems solvable in non-deterministic
polynomial time . . .

• Problems where “yes” instances have
polynomial time checkable certificates

July 3, 2008 110IUCEE: Algorithms

NP-Completeness

• A problem X is NP-complete if
– X is in NP
– For every Y in NP, Y <P X

• X is a “hardest” problem in NP

• If X is NP-Complete, Z is in NP and X <P Z
– Then Z is NP-Complete

July 3, 2008 111IUCEE: Algorithms

History

• Jack Edmonds
– Identified NP

• Steve Cook
– Cook’s Theorem – NP-Completeness

• Dick Karp
– Identified “standard” collection of NP-Complete

Problems
• Leonid Levin

– Independent discovery of NP-Completeness in USSR

July 3, 2008 112IUCEE: Algorithms

Populating the NP-Completeness
Universe

• Circuit Sat <P 3-SAT
• 3-SAT <P Independent Set
• 3-SAT <P Vertex Cover
• Independent Set <P Clique
• 3-SAT <P Hamiltonian Circuit
• Hamiltonian Circuit <P Traveling Salesman
• 3-SAT <P Integer Linear Programming
• 3-SAT <P Graph Coloring
• 3-SAT <P Subset Sum
• Subset Sum <P Scheduling with Release times and

deadlines

July 3, 2008 113IUCEE: Algorithms

Find a satisfying truth assignment

(x || y || z) && (!x || !y || !z) && (!x || y) && (x || !y) && (y || !z) && (!y || z)

July 3, 2008 114IUCEE: Algorithms

IS <P VC

• Lemma: A set S is independent iff V-S is a
vertex cover

• To reduce IS to VC, we show that we can
determine if a graph has an independent
set of size K by testing for a Vertex cover
of size n - K

July 3, 2008 115IUCEE: Algorithms

Graph Coloring

• NP-Complete
– Graph K-coloring
– Graph 3-coloring

• Polynomial
– Graph 2-Coloring

July 3, 2008 116IUCEE: Algorithms

What we don’t know

• P vs. NP

NP-Complete

NP

P

NP = P

July 3, 2008 117IUCEE: Algorithms

What about ‘negative instances’

• How do you show that a graph does not
have a Hamiltonian Circuit

• How do you show that a formula is not
satisfiable?

July 3, 2008 118IUCEE: Algorithms

What about ‘negative instances’

• How do you show that a graph does not
have a Hamiltonian Circuit

• How do you show that a formula is not
satisfiable?

July 3, 2008 119IUCEE: Algorithms

