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Today’s topics

• Teaching Algorithms
• Active Learning in Algorithms
• Big Ideas:  Solving Problems in Practice
• Mysore / Theory Discussion
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Text books
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University of Washington 
Course

• Algorithm Design, by Jon Kleinberg and Eva 
Tardos,  2005.

• Ten week term
– 3 lectures per week (50 minutes)
– Midterm,  Final
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CSE 421 Introduction to Algorithms (3) 
Techniques for design of efficient algorithms. Methods for showing 
lower bounds on computational complexity. Particular algorithms for 
sorting, searching, set manipulation, arithmetic, graph problems, 
pattern matching. Prerequisite: CSE 322; CSE 326. 

Course overview

• Stable Marriage (2)
• Basic Graph Algorithms (3)
• Greedy Algorithms (2)
• Graph Algorithms (4)
• Divide and Conquer and Recurrences (5)
• Dynamic Programming (5)
• Network Flow and Applications (5)
• NP Completeness (3)
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Analyzing the course and 
content

• What is the purpose of each unit?
– Long term impact on students

• What are the learning goals of each unit?
– How are they evaluated

• What strategies can be used to make 
material relevant and interesting?

• How does the context impact the content
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Overall course context
• Senior level elective

– Students are not required to take this class
– Approximately half the students take this course
– Theory course: no expectation of programming

• Data structures is a pre-requisite
• Little coordination with data structures course

– Some overlap in material
– Generally different instructors

• Text book highly regarded by faculty
• Course is “algorithms by techniques”
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Stable Marriage

• Very interesting choice for start of the 
course

• Stable Marriage is a non-standard topic for 
the class

• Advanced algorithm to start the class with 
new ideas

• Show a series of different algorithmic 
techniques
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All of Computer Science is the 
Study of Algorithms
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How to study algorithms

• Zoology
• Mine is faster than yours is
• Algorithmic ideas

– Where algorithms apply
– What makes an algorithm work
– Algorithmic thinking

Introductory Problem:
Stable Matching

• Setting:
– Assign TAs to Instructors
– Avoid having TAs and Instructors wanting 

changes
• E.g., Prof A. would rather have student X than her 

current TA, and student X would rather work for 
Prof A. than his current instructor.
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Formal notions

• Perfect matching
• Ranked preference lists
• Stability

m1 w1

m2 w2
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Example  (1 of 3)

• m1: w1 w2

• m2: w2 w1

• w1: m1 m2

• w2: m2 m1

m1

m2 w2

w1

Example  (2 of 3)

• m1: w1 w2

• m2: w1 w2

• w1: m1 m2

• w2: m1 m2

m1

m2 w2

w1

Find a stable matching

Example  (3 of 3)

• m1: w1 w2

• m2: w2 w1

• w1: m2 m1

• w2: m1 m2

m1

m2 w2

w1

A closer look

• Stable matchings are 
not necessarily fair

m1:    w1 w2 w3

m2:    w2 w3 w1

m3:    w3 w1 w2

w1:   m2 m3 m1

w2:   m3 m1 m2

w3:   m1 m2 m3

m1

m2

m3

w1

w2

w3

How many stable matchings can you find?

Example

m1: w1 w2 w3

m2: w1 w3 w2

m3: w1 w2 w3

w1: m2 m3 m1

w2: m3 m1 m2

w3: m3 m1 m2

m1

m2 w2

w1

m3 w3

Intuitive Idea for an Algorithm

• m proposes to w
– If w is unmatched, w accepts
– If w is matched to m2

• If w prefers m to m2, w accepts
• If w prefers m2 to m, w rejects

• Unmatched m proposes to highest w on its 
preference list that m has not already 
proposed to



Algorithm

Initially all m in M and w in W are free
While there is a free m

w highest on m’s list that m has not proposed to
if w is free, then match (m, w)
else 

suppose (m2, w) is matched
if w prefers m to m2

unmatch (m2, w)
match (m, w)

Does this work?

• Does it terminate?
• Is the result a stable matching?

• Begin by identifying invariants and 
measures of progress
– m’s proposals get worse
– Once w is matched, w stays matched
– w’s partners get better (have lower w-rank)

Claim: The algorithm stops in at 
most n2 steps

• Why?

When the algorithms halts, every w 
is matched

• Why?

• Hence, the algorithm finds a perfect 
matching

The resulting matching is stable

• Suppose
– m1 prefers w2 to w1

• How could this happen?

m1 w1

m2 w2

Result

• Simple, O(n2) algorithm to compute a 
stable matching

• Corollary
– A stable matching always exists



Basic Graph Algorithms

• This material is necessary review
• Terminology varies so cover it again
• Formal setting for the course revisited

– Big Oh notation again
• Debatable on how much depth to go into 

formal proofs on simple algorithms
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Polynomial time efficiency
• An algorithm is efficient if it has a polynomial run 

time
• Run time as a function of problem size

– Run time: count number of instructions executed on 
an underlying model of computation

– T(n): maximum run time for all problems of size at 
most n

• Why Polynomial Time?
– Generally, polynomial time seems to capture the 

algorithms which are efficient in practice
– The class of polynomial time algorithms has many 

good, mathematical properties
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Ignoring constant factors

• Express run time as O(f(n))
• Emphasize algorithms with slower growth 

rates
• Fundamental idea in the study of 

algorithms
• Basis of Tarjan/Hopcroft Turing Award
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Formalizing growth rates

• T(n) is O(f(n))               [T : Z+ R+]
– If n is sufficiently large, T(n) is bounded by a 

constant multiple of f(n)
– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is O(f(n)) will be written as:              
T(n) = O(f(n))
– Be careful with this notation
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Graph Theory
• G = (V, E)

– V – vertices
– E – edges 

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights
– Parallel edges
– Self loops
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Breadth first search

• Explore vertices in layers
– s in layer 1
– Neighbors of s in layer 2
– Neighbors of layer 2 in layer 3 . . .

s
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Testing Bipartiteness

• If a graph contains an odd cycle, it is not 
bipartite

July 3, 2008 31IUCEE:  Algorithms

Directed Graphs

• A Strongly Connected Component is a 
subset of the vertices with paths between 
every pair of vertices.
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Topological Sort

• Given a set of tasks with precedence 
constraints, find a linear order of the tasks

142 143

321

341

370 378

326

322 401

421

431
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Greedy Algorithms

• Introduce an algorithmic paradigm
• Its hard to give a formal definition of 

greedy algorithms
• Proof techniques are important

– Need to formally prove that these things work
• New material to students
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Greedy Algorithms

• Solve problems with the simplest possible 
algorithm

• The hard part: showing that something 
simple actually works

• Pseudo-definition
– An algorithm is Greedy if it builds its solution 

by adding elements one at a time using a 
simple rule
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Greedy solution based on earliest 
finishing time

Example 1

Example 2

Example 3
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Scheduling all intervals

• Minimize number of processors to 
schedule all intervals
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Algorithm

• Sort by start times
• Suppose maximum depth is d, create d 

slots
• Schedule items in increasing order, assign 

each item to an open slot

• Correctness proof: When we reach an 
item, we always have an open slot
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Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start
• One task may be worked on at a time
• All tasks must be completed

• Goal minimize maximum lateness
– Lateness = fi – di if fi >= di
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Example

2

3

2

4

DeadlineTime

2 3

23

Lateness 1

Lateness 3
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Determine the minimum lateness

2

3

4

5

6

4

5

12

DeadlineTime

July 3, 2008 41IUCEE:  Algorithms

Homework Scheduling

• Tasks to perform
• Deadlines on the tasks
• Freedom to schedule tasks in any order
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Greedy Algorithm

• Earliest deadline first
• Order jobs by deadline

• This algorithm is optimal
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Analysis

• Suppose the jobs are ordered by deadlines,     
d1 <= d2 <= . . . <= dn

• A schedule has an inversion if job j is scheduled 
before i where j > i

• The schedule A computed by the greedy 
algorithm has no inversions.

• Let O be the optimal schedule, we want to show 
that A has the same maximum lateness as O
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Shortest Paths and MST

• These graph algorithms are presented in 
the framework of greedy algorithms

• Students will have seen the algorithms 
previously

• Attempt is made to have students really 
understand the proofs
– Classical results
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Dijkstra’s Algorithm

S = {};    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

1
4

3

2

3

2

1

2

10
1

2 2

5

4

Assume all edges have non-negative cost
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Proof

• Let v be a vertex in V-S with minimum d[v]
• Let Pv be a path of length d[v], with an edge (u,v)
• Let P be some other path to v.  Suppose P first 

leaves S on the edge (x, y)
– P = Psx + c(x,y) + Pyv

– Len(Psx) + c(x,y) >= d[y]
– Len(Pyv) >= 0
– Len(P) >= d[y] + 0 >= d[v] s

y

v

x

u
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http://www.cs.utexas.edu/users/EWD/

• Edsger Wybe Dijkstra was one of the most 
influential members of computing science's 
founding generation. Among the domains in 
which his scientific contributions are 
fundamental are 
– algorithm design 
– programming languages 
– program design 
– operating systems 
– distributed processing 
– formal specification and verification 
– design of mathematical arguments 
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Greedy Algorithm 1
Prim’s Algorithm

• Extend a tree by including the cheapest 
out going edge

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e
c

g

f
b

s

u

v

Construct the MST 
with Prim’s 
algorithm starting 
from vertex a

Label the edges in 
order of insertionJuly 3, 2008 49IUCEE:  Algorithms

Application: Clustering

• Given a collection of points in an r-
dimensional space, and an integer K, 
divide the points into K sets that are 
closest together
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K-clustering
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Recurrences
• Big question on how much depth to cover 

recurrences
– Full mathematical coverage
– Intuition

• Students have little background on 
recurrences coming in
– Generally not covered in earlier courses

• My emphasis is in conveying the intuition
– Students can look up the formulas when they 

need them
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T(n) <= 2T(n/2) + cn; T(2) <= c;
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Recurrence Analysis

• Solution methods
– Unrolling recurrence
– Guess and verify
– Plugging in to a “Master Theorem”
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Unrolling the recurrence
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Recurrences

• Three basic behaviors
– Dominated by initial case
– Dominated by base case
– All cases equal – we care about the depth
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Recurrence Examples

• T(n) = 2 T(n/2) + cn
– O(n log n)

• T(n) = T(n/2) + cn
– O(n)

• More useful facts:
– logkn = log2n / log2k
– k log n = n log k
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T(n) = aT(n/b) + f(n)
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What you really need to know 
about recurrences

• Work per level changes geometrically with 
the level

• Geometrically increasing (x > 1)
– The bottom level wins

• Geometrically decreasing  (x < 1)
– The top level wins

• Balanced (x = 1)
– Equal contribution
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Strassen’s Algorithm

Multiply 2 x 2 Matrices:
| r    s |    | a    b|   |e    g|
| t     u|    | c    d|   | f    h|

r = p1 + p4 – p5 + p7

s = p3 + p5

t = p2 + p5

u = p1 + p3 – p2 + p7

Where:

p1 = (b + d)(f + g)

p2= (c + d)e

p3= a(g – h)

p4= d(f – e)

p5= (a – b)h

p6= (c – d)(e + g)

p7= (b – d)(f + h)

=
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Divide and Conquer

• Classical algorithmic technique
• This is the texts weak point
• Students are probably already familiar with 

the sorting algorithms
• Lectures generally show off classical 

results
• FFT is a very hard result for the students

– CSE students have little to tie it to
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Divide and Conquer Algorithms

• Split into sub problems
• Recursively solve the problem
• Combine solutions

• Make progress in the split and combine 
stages
– Quicksort – progress made at the split step
– Mergesort – progress made at the combine 

step
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Closest Pair Problem

• Given a set of points find the pair of points 
p, q that minimizes dist(p, q)
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Karatsuba’s Algorithm

Multiply n-digit integers x and y

Let   x = x1 2n/2 + x0 and  y = y1 2n/2 + y0
Recursively compute

a = x1y1
b = x0y0
p = (x1 + x0)(y1 + y0)  

Return a2n + (p – a – b)2n/2 + b

Recurrence:  T(n) = 3T(n/2) + cn
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FFT, Convolution and Polynomial 
Multiplication

• Preview
– FFT - O(n log n) algorithm

• Evaluate a polynomial of degree n at n points in 
O(n log n) time

– Computation of Convolution and Polynomial 
Multiplication (in O(n log n)) time
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Complex Analysis

• Polar coordinates:  reθi

• eθi = cos θ + i sin θ
• a is a nth root of unity if an = 1
• Square roots of unity: +1, -1
• Fourth roots of unity: +1, -1, i, -i
• Eighth roots of unity: +1, -1, i, -i, β + iβ, 
β - iβ, -β + iβ, -β - iβ where β = sqrt(2)
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Polynomial Multiplication

n-1 degree polynomials 
A(x) = a0 + a1x + a2x2 + … +an-1xn-1,
B(x) = b0 + b1x + b2x2 + …+ bn-1xn-1

C(x) = A(x)B(x)
C(x)=c0+c1x + c2x2 + … + c2n-2x2n-2

p1, p2, . . ., p2n

A(p1), A(p2), . . ., A(p2n)
B(p1), B(p2), . . ., B(p2n)

C(pi) = A(pi)B(pi)

C(p1), C(p2), . . ., C(p2n)
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FFT Algorithm
// Evaluate the 2n-1th degree polynomial A at
// ω0,2n, ω1,2n, ω2,2n, . . ., ω2n-1,2n
FFT(A, 2n)

Recursively compute FFT(Aeven, n) 
Recursively compute FFT(Aodd, n)

for j =  0 to  2n-1
A(ωj,2n) = Aeven(ω2

j,2n) + ωj,2nAodd(ω2
j,2n)

July 3, 2008 68IUCEE:  Algorithms

Dynamic Programming

• I consider this to be the most important 
part of the course

• Goal is for them to be able to apply this 
technique to new problems

• Key concepts need to be highlighted so 
students start to see the structure of 
dynamic programming solutions

July 3, 2008 IUCEE:  Algorithms 69

Dynamic Programming

• The most important algorithmic technique 
covered in CSE 421

• Key ideas
– Express solution in terms of a polynomial 

number of sub problems
– Order sub problems to avoid recomputation
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Subset Sum Problem

• Let w1,…,wn = {6, 8, 9, 11, 13, 16, 18, 24}
• Find a subset that has as large a sum as 

possible, without exceeding 50
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Subset Sum Recurrence

• Opt[ j, K ] the largest subset of {w1, …, wj} 
that sums to at most K
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Subset Sum Grid

4
3
2
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

{2, 4, 7, 10}

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + wj)
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Knapsack Problem
• Items have weights and values
• The problem is to maximize total value subject to 

a bound on weght
• Items {I1, I2, … In}

– Weights {w1, w2, …,wn}
– Values {v1, v2, …, vn}
– Bound K

• Find set S of indices to:

– Maximize ΣiεSvi such that ΣiεSwi <= K
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Knapsack Recurrence

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + wj)

Subset Sum Recurrence:

Knapsack Recurrence:
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Knapsack Grid

4
3
2
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Weights {2, 4, 7, 10}  Values: {3, 5, 9, 16}

Opt[ j, K] = max(Opt[ j – 1, K], Opt[ j – 1, K – wj] + vj)

July 3, 2008 76IUCEE:  Algorithms

Optimal line breaking and hyphen-
ation

• Problem: break lines and insert hyphens to 
make lines as balanced as possible

• Typographical considerations:
– Avoid excessive white space
– Limit number of hyphens
– Avoid widows and orphans
– Etc. 
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Longest Common 
Subsequence

• Application of dynamic programming
• LCS is one of the classic DP algorithms
• Space efficiency discussed

– Space more expensive than time
– If we just want the length of the string,  O(n) 

space is easy
– Very clever algorithm allows reconstruction of 

LCS in O(n) space as well
– Included as an advanced topic
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Longest Common Subsequence

• C=c1…cg is a subsequence of A=a1…am if 
C can be obtained by removing elements 
from A (but retaining order)

• LCS(A, B):  A maximum length sequence 
that is a subsequence of both A and B

ocurranec

occurrence
attacggct

tacgacca
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LCS Optimization

• A = a1a2…am

• B = b1b2…bn

• Opt[ j, k] is the length of          
LCS(a1a2…aj, b1b2…bk)

If aj = bk,  Opt[ j,k ] = 1 + Opt[ j-1, k-1 ]

If aj != bk,  Opt[ j,k] = max(Opt[ j-1,k], Opt[ j,k-1])
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Dynamic Programming 
Computation
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How good is this algorithm?

• Is it feasible to compute the LCS of two 
strings of length 100,000 on a standard 
desktop PC?  Why or why not.
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Algorithm Performance

• O(nm) time and O(nm) space
• On current desktop machines

– n, m < 10,000 is easy
– n, m > 1,000,000 is prohibitive

• Space is more likely to be the bounding 
resource than time
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Computing LCS in O(nm) time and 
O(n+m) space

• Divide and conquer algorithm
• Recomputing values used to save space
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Divide and Conquer Algorithm

• Where does the best path cross the 
middle column?

• For a fixed i, and for each j, compute the 
LCS that has ai matched with bj
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Divide and Conquer

• A = a1,…,am B = b1,…,bn

• Find j such that 
– LCS(a1…am/2, b1…bj) and
– LCS(am/2+1…am,bj+1…bn) yield optimal solution

• Recurse
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Algorithm Analysis

• T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm
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Shortest Paths

• Shortest paths revisited from the dynamic 
programming perspective
– Dynamic programming needed if edges have 

negative cost
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Shortest Path Problem

• Dijkstra’s Single Source Shortest Paths 
Algorithm
– O(mlog n) time, positive cost edges

• General case – handling negative edges
• If there exists a negative cost cycle, the 

shortest path is not defined
• Bellman-Ford Algorithm

– O(mn) time for graphs with negative cost 
edges
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Shortest paths with a fixed number 
of edges

• Find the shortest path from v to w with 
exactly k edges

• Express as a recurrence
– Optk(w) = minx [Optk-1(x) + cxw]
– Opt0(w) = 0 if v=w and infinity otherwise 
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If the pointer graph has a cycle, then 
the graph has a negative cost cycle
• If P[w] = x then M[w] >= M[x] + cost(x,w)

– Equal when w is updated
– M[x] could be reduced after update

• Let v1, v2,…vk be a cycle in the pointer graph 
with (vk,v1) the last edge added
– Just before the update

• M[vj] >= M[vj+1] + cost(vj+1, vj) for j < k
• M[vk] > M[v1] + cost(v1, vk)

– Adding everything up
• 0 > cost(v1,v2) + cost(v2,v3) + … + cost(vk, v1)

v2 v3

v1 v4
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Foreign Exchange Arbitrage

USD EUR CAD

USD ------ 0.8 1.2

EUR 1.2 ------ 1.6

CAD 0.8 0.6 -----

USD

CADEUR

1.2 1.2

0.6

USD

CADEUR

0.8 0.8

1.6July 3, 2008 92IUCEE:  Algorithms

Network Flow

• This topic move the course into 
combinatorial optimization

• Key is to understand what the network 
flow problem is, and the basic 
combinatorial theory behind it
– Many more sophisticated algorithms not 

covered
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Flow assignment and the residual 
graph

u

s t

v

15/20

20/20

15/30
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u
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5 20

15
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5
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Find a maximum flow

a

s

d

b

c f

e

g

h

i

t

25

5

20 20

20

30

20

55

5
20

5 10

20

5
20

10

5

20

20

5

5

20

30
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Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph GR

Find an s-t path P in GR with capacity b > 0

Add b units along in G

If the sum of the capacities of edges leaving S 
is at most C, then the algorithm takes at most 
C iterations
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MaxFlow – MinCut Theorem

• There exists a flow which has the same value of 
the minimum cut

• Proof: Consider a flow where the residual graph 
has no s-t path with positive capacity

• Let S be the set of vertices in GR reachable from 
s with paths of positive capacity

s t
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Network Flow Applications

• Applications of network flow are very 
powerful

• Problems that look very unlike flow can be 
converted to network flow

• Brings up the theme of problem mapping
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Problem Reduction

• Reduce Problem A to Problem B
– Convert an instance of Problem A to an instance 

Problem B
– Use a solution of Problem B to get a solution to 

Problem A
• Practical

– Use a program for Problem B to solve Problem A
• Theoretical

– Show that Problem B is at least as hard as Problem A
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Bipartite Matching

• A graph G=(V,E) is bipartite if the vertices 
can be partitioned into disjoints sets X,Y

• A matching M is a subset of the edges that 
does not share any vertices

• Find a matching as large as possible
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Converting Matching to Network 
Flow

ts
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Open Pit Mining

• Each unit of earth has a profit (possibly 
negative)

• Getting to the ore below the surface 
requires removing the dirt above

• Test drilling gives reasonable estimates of 
costs

• Plan an optimal mining operation
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Mine Graph 
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Setting the costs

• If p(v) > 0, 
– cap(v,t) = p(v)
– cap(s,v) = 0

• If p(v) < 0
– cap(s,v) = -p(v)
– cap(v,t) = 0

• If p(v) = 0
– cap(s,v) = 0
– cap(v,t) = 0

s
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Image Segmentation

• Separate foreground 
from background
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Image analysis

• ai: value of assigning pixel i to the foreground
• bi: value of assigning pixel i to the background
• pij: penalty for assigning i to the foreground, j to 

the background or vice versa
• A: foreground, B: background
• Q(A,B) = Σ{i in A}ai + Σ{j in B}bj - Σ{(i,j) in E, i in A, j in B}pij
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Mincut Construction

u v

s

t

bv

av

puv

pvu
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NP Completeness
• Theory topic from the algorithmic perspective
• Students will see different aspects of NP-

Completeness in other courses
• Complexity theory course will prove Cook’s 

theorem
• The basic goal is to remind students of 

specific NP complete problems
• Material is not covered in much depth 

because of the  “last week of the term”
problem

July 3, 2008 IUCEE:  Algorithms 108



Theory of NP-Completeness
The Universe

NP-Complete

NP

P
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What is NP?

• Problems solvable in non-deterministic 
polynomial time . . . 

• Problems where “yes” instances have 
polynomial time checkable certificates
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NP-Completeness

• A problem X is NP-complete if 
– X is in NP
– For every Y in NP,  Y <P X

• X is a “hardest” problem in NP

• If X is NP-Complete, Z is in NP and X <P Z
– Then Z is NP-Complete
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History

• Jack Edmonds
– Identified NP

• Steve Cook
– Cook’s Theorem – NP-Completeness

• Dick Karp
– Identified “standard” collection of NP-Complete 

Problems
• Leonid Levin

– Independent discovery of NP-Completeness in USSR
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Populating the NP-Completeness 
Universe

• Circuit Sat <P 3-SAT
• 3-SAT <P Independent Set
• 3-SAT <P Vertex Cover
• Independent Set <P Clique
• 3-SAT <P Hamiltonian Circuit
• Hamiltonian Circuit <P Traveling Salesman
• 3-SAT <P Integer Linear Programming
• 3-SAT <P Graph Coloring
• 3-SAT <P Subset Sum
• Subset Sum <P Scheduling with Release times and 

deadlines
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Find a satisfying truth assignment

(x || y || z) && (!x || !y || !z) && (!x || y) && (x || !y) && (y || !z) && (!y || z)
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IS <P VC

• Lemma: A set S is independent iff V-S is a 
vertex cover

• To reduce IS to VC, we show that we can 
determine if a graph has an independent 
set of size K by testing for a Vertex cover 
of size n - K
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Graph Coloring

• NP-Complete
– Graph K-coloring
– Graph 3-coloring

• Polynomial
– Graph 2-Coloring
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What we don’t know

• P vs. NP

NP-Complete

NP

P

NP = P
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What about ‘negative instances’

• How do you show that a graph does not 
have a Hamiltonian Circuit

• How do you show that a formula is not 
satisfiable?

July 3, 2008 118IUCEE:  Algorithms

What about ‘negative instances’

• How do you show that a graph does not 
have a Hamiltonian Circuit

• How do you show that a formula is not 
satisfiable?
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