

Today's topics

- Teaching Algorithms
- Active Learning in Algorithms
- Big Ideas: Solving Problems in Practice
- Mysore / Theory Discussion

Text books

University of Washington Course

CSE 421 Introduction to Algorithms (3)
Techniques for design of efficient algorithms. Methods for showing lower bounds on computational complexity. Particular algorithms for sorting, searching, set manipulation, arithmetic, graph problems, pattern matching. Prerequisite: CSE 322; CSE 326.

- Algorithm Design, by Jon Kleinberg and Eva Tardos, 2005.
- Ten week term
- 3 lectures per week (50 minutes)
- Midterm, Final

July 3, $2008 \quad$ IUCEE: Algorithms

Analyzing the course and content

- What is the purpose of each unit?
- Long term impact on students
-What are the learning goals of each unit? - How are they evaluated
- What strategies can be used to make material relevant and interesting?
- How does the context impact the content

Overall course context

- Senior level elective
- Students are not required to take this class
- Approximately half the students take this course
- Theory course: no expectation of programming
- Data structures is a pre-requisite
- Little coordination with data structures course
- Some overlap in material
- Generally different instructors
- Text book highly regarded by faculty
- Course is "algorithms by techniques"

July 3, 2008
IUCEE: Algorithms

Stable Marriage

- Very interesting choice for start of the course
- Stable Marriage is a non-standard topic for the class
- Advanced algorithm to start the class with new ideas
- Show a series of different algorithmic techniques

All of Computer Science is the Study of Algorithms

Introductory Problem: Stable Matching

- Setting:
- Assign TAs to Instructors
- Avoid having TAs and Instructors wanting changes
- E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

How to study algorithms

- Zoology
- Mine is faster than yours is
- Algorithmic ideas
- Where algorithms apply
- What makes an algorithm work
- Algorithmic thinking

Example (1 of 3)

- $m_{1}: w_{1} W_{2}$
- $m_{2}: w_{2} w_{1}$
- $\mathrm{w}_{1}: \mathrm{m}_{1} \mathrm{~m}_{2}$
- $w_{2}: m_{2} m_{1}$
m_{1} ○
${ }^{\circ} W_{1}$
$\mathrm{m}_{2} \bigcirc \mathrm{~W}_{2}$

Example (2 of 3)

- $\mathrm{m}_{1}: \mathrm{w}_{1} \mathrm{w}_{2}$
- $\mathrm{m}_{2}: \mathrm{w}_{1} \mathrm{~W}_{2}$
- $\mathrm{w}_{1}: \mathrm{m}_{1} \mathrm{~m}_{2}$
- $w_{2}: m_{1} m_{2}$

Example (3 of 3)

- $\mathrm{m}_{1}: \mathrm{w}_{1} \mathrm{w}_{2}$
- $\mathrm{m}_{2}: \mathrm{w}_{2} \mathrm{~W}_{1}$
- $w_{1}: m_{2} m_{1}$
- $w_{2}: m_{1} m_{2}$

W_{1}
- Stable matchings are not necessarily fair

| $m_{1}:$ | w_{1} | w_{2} | w_{3} | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $m_{2}:$ | w_{2} | w_{3} | w_{1} | |
| $m_{3}:$ | w_{3} | w_{1} | w_{2} | |
| $w_{1}:$ | m_{2} | m_{3} | m_{1} | |
| $w_{2}:$ | m_{3} | m_{1} | m_{2} | |
| $w_{3}:$ | m_{1} | m_{2} | m_{3} | |
| w many stable matchings can you find? | | | | |

Intuitive Idea for an Algorithm

- m proposes to w
- If w is unmatched, w accepts
- If w is matched to m_{2}
- If w prefers m to m_{2}, w accepts
- If w prefers m_{2} to m, w rejects
- Unmatched m proposes to highest w on its preference list that m has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m
w highest on m's list that m has not proposed to if w is free, then match (m, w) else
suppose $\left(m_{2}, w\right)$ is matched
if w prefers m to m_{2} unmatch $\left(m_{2}, w\right)$
match (m, w)

Claim: The algorithm stops in at most n^{2} steps

- Why?

Does this work?

- Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
- m's proposals get worse
- Once w is matched, w stays matched
- w's partners get better (have lower w-rank)

When the algorithms halts, every w is matched
-Why?

- Hence, the algorithm finds a perfect matching

The resulting matching is stable

- Suppose
$-m_{1}$ prefers w_{2} to w_{1}
- How could this happen?

- Simple, $O\left(n^{2}\right)$ algorithm to compute a stable matching
- Corollary
- A stable matching always exists

Basic Graph Algorithms

- This material is necessary review
- Terminology varies so cover it again
- Formal setting for the course revisited - Big Oh notation again
- Debatable on how much depth to go into formal proofs on simple algorithms

Ignoring constant factors

- Express run time as $\mathrm{O}(\mathrm{f}(\mathrm{n}))$
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award

Graph Theory

- $G=(V, E)$
- V - vertices
- E-edges
- Undirected graphs
- Edges sets of two vertices $\{u, v\}$
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time
- Run time as a function of problem size
- Run time: count number of instructions executed on an underlying model of computation
$-T(n)$: maximum run time for all problems of size at most n
- Why Polynomial Time?
- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Formalizing growth rates

- $T(n)$ is $O(f(n))$
$\left[\mathrm{T}: \mathrm{Z}^{+} \rightarrow \mathrm{R}^{+}\right]$
- If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
- Exist $\mathrm{c}, \mathrm{n}_{0}$, such that for $\mathrm{n}>\mathrm{n}_{0}, \mathrm{~T}(\mathrm{n})<\mathrm{c} f(\mathrm{n})$
- $T(n)$ is $O(f(n))$ will be written as:
$T(n)=O(f(n))$
- Be careful with this notation
\qquad

Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of s in layer 2
- Neighbors of layer 2 in layer 3 . . .

Testing Bipartiteness

- If a graph contains an odd cycle, it is not bipartite

July 3, 2008
IUCEE: Algorithms

Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Greedy Algorithms

- Introduce an algorithmic paradigm
- Its hard to give a formal definition of greedy algorithms
- Proof techniques are important
- Need to formally prove that these things work
- New material to students

July 3, 2008
IUCEE: Algorithms

Greedy solution based on earliest finishing time

Scheduling all intervals

- Minimize number of processors to schedule all intervals
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Algorithm

- Sort by start times
- Suppose maximum depth is d, create d slots
- Schedule items in increasing order, assign each item to an open slot
- Correctness proof: When we reach an item, we always have an open slot

Scheduling tasks

- Each task has a length t_{i} and a deadline d_{i}
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal minimize maximum lateness
- Lateness $=f_{i}-d_{i}$ if $f_{i}>=d_{i}$

July 3, 2008
IUCEE: Algorithms

Determine the minimum lateness

Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order

Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal

Analysis

- Suppose the jobs are ordered by deadlines, $d_{1}<=d_{2}<=\ldots<=d_{n}$
- A schedule has an inversion if job j is scheduled before i where j > i
- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O
\qquad

Assume all edges have non-negative cost

Dijkstra's Algorithm

$S=\{; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$ While S != V

Choose v in V-S with minimum $d[v]$
Add v to S
For each w in the neighborhood of v
$d[w]=\min (d[w], d[v]+c(v, w))$

http://www.cs.utexas.edu/users/EWD/

- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
- algorithm design
- programming languages
- program design
- operating systems
- distributed processing
- formal specification and verification
- design of mathematical arguments

Greedy Algorithm 1 Prim's Algorithm

- Extend a tree by including the cheapest out going edge

$$
\mathrm{T}(\mathrm{n})<=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} ; \mathrm{T}(2)<=\mathrm{c} \text {; }
$$

Recurrence Analysis

- Solution methods
- Unrolling recurrence
- Guess and verify
- Plugging in to a "Master Theorem"

Recurrence Examples

- $T(n)=2 T(n / 2)+c n$
$-O(n \log n)$
- $T(n)=T(n / 2)+c n$
- O(n)
- More useful facts:
$-\log _{k} n=\log _{2} n / \log _{2} k$
$-\mathrm{k}^{\log \mathrm{n}}=\mathrm{n}^{\log \mathrm{k}}$

July 3, 2008
IUCEE: Algorithms

Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

July 3, 2008
IUCEE: Algorithms
$T(n)=a T(n / b)+f(n)$

Juys,2008	
IUCEE Asorimims	

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ($x>1$)
- The bottom level wins
- Geometrically decreasing ($x<1$)
- The top level wins
- Balanced ($x=1$)
- Equal contribution

Strassen's Algorithm

$$
\begin{aligned}
& \text { Multiply } 2 \times 2 \text { Matrices: }
\end{aligned}
$$

$$
\begin{aligned}
& |t \quad u|=\left\lvert\, \begin{array}{ll}
\mathrm{c} & \mathrm{~d} \mid \\
\mid f & \mathrm{~h}
\end{array}\right. \\
& p_{1}=(b+d)(f+g) \\
& p_{2}=(c+d) e \\
& p_{3}=a(g-h) \\
& p_{4}=d(f-e) \\
& p_{5}=(a-b) h \\
& p_{6}=(c-d)(e+g) \\
& p_{7}=(b-d)(f+h)
\end{aligned}
$$

Divide and Conquer

- Classical algorithmic technique
- This is the texts weak point
- Students are probably already familiar with the sorting algorithms
- Lectures generally show off classical results
- FFT is a very hard result for the students - CSE students have little to tie it to

Closest Pair Problem

- Given a set of points find the pair of points p, q that minimizes $\operatorname{dist}(p, q)$

FFT, Convolution and Polynomial Multiplication

- Preview
-FFT-O(n $\log n)$ algorithm
- Evaluate a polynomial of degree n at n points in $O(n \log n)$ time
- Computation of Convolution and Polynomial Multiplication (in O(n $\log n$)) time

Divide and Conquer Algorithms

- Split into sub problems
- Recursively solve the problem
- Combine solutions
- Make progress in the split and combine stages
- Quicksort - progress made at the split step
- Mergesort - progress made at the combine step
\qquad IUCEE: Algorithms

Karatsuba's Algorithm

Multiply n -digit integers x and y
Let $x=x_{1} 2^{n / 2}+x_{0}$ and $y=y_{1} 2^{n / 2}+y_{0}$ Recursively compute

$$
\mathrm{a}=\mathrm{x}_{1} \mathrm{y}_{1}
$$

$$
b=x_{0} y_{0}
$$

$$
p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)
$$

$$
\text { Return } a 2^{n}+(p-a-b) 2^{n / 2}+b
$$

Recurrence: $T(n)=3 T(n / 2)+c n$

July 3, 2008
IUCEE: Algorithms

Complex Analysis

- Polar coordinates: re ${ }^{\theta i}$
- $\mathrm{e}^{\theta \mathrm{i}}=\cos \theta+\mathrm{i} \sin \theta$
- a is $a n^{\text {th }}$ root of unity if $a^{n}=1$
- Square roots of unity: $+1,-1$
- Fourth roots of unity: $+1,-1, i,-i$
- Eighth roots of unity: $+1,-1, i,-i, \beta+i \beta$, $\beta-i \beta,-\beta+i \beta,-\beta-i \beta$ where $\beta=\operatorname{sqrt}(2)$

Dynamic Programming

- I consider this to be the most important part of the course
- Goal is for them to be able to apply this technique to new problems
- Key concepts need to be highlighted so students start to see the structure of dynamic programming solutions

July 3, 2008
IUCEE: Algorithms

Subset Sum Problem

- Let $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}=\{6,8,9,11,13,16,18,24\}$
- Find a subset that has as large a sum as possible, without exceeding 50

FFT Algorithm

// Evaluate the $2 \mathrm{n}-1^{\text {th }}$ degree polynomial A at
$/ / \omega_{0,2 n}, \omega_{1,2 n}, \omega_{2,2 n}, \ldots, \omega_{2 n-1,2 n}$
FFT(A, 2n)
Recursively compute FFT($A_{\text {even }}, n$)
Recursively compute FFT($A_{\text {odd }}, n$)
for $\mathrm{j}=0$ to $2 \mathrm{n}-1$

$$
\mathrm{A}\left(\omega_{\mathrm{j}, 2 \mathrm{n}}\right)=\mathrm{A}_{\text {even }}\left(\omega_{\mathrm{j}, 2 \mathrm{n}}^{2}\right)+\omega_{\mathrm{j}, 2 \mathrm{n}} \mathrm{~A}_{\text {odd }}\left(\omega_{\mathrm{j}, 2 \mathrm{n}}^{2}\right)
$$

July 3, 2008
IUCEE: Algorithms

Dynamic Programming

- The most important algorithmic technique covered in CSE 421
- Key ideas
- Express solution in terms of a polynomial number of sub problems
- Order sub problems to avoid recomputation

Subset Sum Recurrence

- Opt[j, K] the largest subset of $\left\{w_{1}, \ldots, w_{j}\right\}$ that sums to at most K

Subset Sum Grid

$$
\operatorname{Opt}[\mathrm{j}, \mathrm{~K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)
$$

$\{2,4,7,10\}$
July 3, 2008

Knapsack Recurrence

Subset Sum Recurrence:
$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$
Knapsack Recurrence:

Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items $\left\{I_{1}, I_{2}, \ldots I_{n}\right\}$
- Weights $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
- Values $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- Bound K
- Find set S of indices to:
- Maximize $\sum_{i \varepsilon S} \mathrm{~V}_{\mathrm{i}}$ such that $\sum_{\mathrm{i} \varepsilon \mathrm{S}} \mathrm{w}_{\mathrm{i}}<=\mathrm{K}$

July 3, 2008
IUCEE: Algorithms

Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible
- Typographical considerations:
- Avoid excessive white space
- Limit number of hyphens
- Avoid widows and orphans
- Etc.

Longest Common Subsequence

- Application of dynamic programming
- LCS is one of the classic DP algorithms
- Space efficiency discussed
- Space more expensive than time
- If we just want the length of the string, $O(n)$ space is easy
- Very clever algorithm allows reconstruction of LCS in O(n) space as well
- Included as an advanced topic

Longest Common Subsequence

- $C=c_{1} \ldots c_{g}$ is a subsequence of $A=a_{1} \ldots a_{m}$ if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

ocurranec	attacggct
occurrence	tacgacca

July 3, 2008

LCS Optimization

- $A=a_{1} a_{2} \ldots a_{m}$
- $B=b_{1} b_{2} \ldots b_{n}$
- Opt $[\mathrm{j}, \mathrm{k}]$ is the length of $\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{j}, b_{1} b_{2} \ldots b_{k}\right)$

If $\mathrm{a}_{\mathrm{j}}=\mathrm{b}_{\mathrm{k}}, \operatorname{Opt}[\mathrm{j}, \mathrm{k}]=1+\operatorname{Opt}[\mathrm{j}-1, \mathrm{k}-1]$

If $\mathrm{a}_{\mathrm{j},}$! $=\mathrm{E}_{\mathrm{owa}} \mathrm{b}_{\mathrm{k}}, \operatorname{Opt}[\mathrm{j}, \mathrm{k}]=\max (\mathrm{Opt}[\mathrm{j}-1, \mathrm{k}]$, Opt $[\mathrm{j}, \mathrm{k}-1])$

How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 100,000 on a standard desktop PC? Why or why not.

Dynamic Programming

Computation

Algorithm Performance

- $\mathrm{O}(\mathrm{nm})$ time and $\mathrm{O}(\mathrm{nm})$ space
- On current desktop machines
$-n, m<10,000$ is easy
$-n, m>1,000,000$ is prohibitive
- Space is more likely to be the bounding resource than time

Computing LCS in $\mathrm{O}(\mathrm{nm})$ time and $\mathrm{O}(\mathrm{n}+\mathrm{m})$ space

- Divide and conquer algorithm
- Recomputing values used to save space

Divide and Conquer Algorithm

- Where does the best path cross the middle column?

- For a fixed i , and for each j , compute the LCS that has a_{i} matched with b_{j}

Algorithm Analysis

- $T(m, n)=T(m / 2, j)+T(m / 2, n-j)+c n m$

July 3, 2008

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
- $\mathrm{O}(\mathrm{mlog} \mathrm{n})$ time, positive cost edges
- General case - handling negative edges
- If there exists a negative cost cycle, the shortest path is not defined
- Bellman-Ford Algorithm
- $\mathrm{O}(\mathrm{mn})$ time for graphs with negative cost edges

Divide and Conquer

- $A=a_{1}, \ldots, a_{m}$
$B=b_{1}, \ldots, b_{n}$
- Find j such that
$-\operatorname{LCS}\left(a_{1} \ldots a_{m / 2}, b_{1} \ldots b_{j}\right)$ and
$-\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$ yield optimal solution
- Recurse

July 3, 2008 IUCEE: Algorithms

Shortest Paths

- Shortest paths revisited from the dynamic programming perspective
- Dynamic programming needed if edges have negative cost

Shortest paths with a fixed number

 of edges- Find the shortest path from v to w with exactly k edges
- Express as a recurrence
- Opt $_{k}(w)=\min _{x}\left[\mathrm{Opt}_{\mathrm{k}-1}(\mathrm{x})+\mathrm{c}_{\mathrm{xw}}\right]$
$-\mathrm{Opt}_{0}(\mathrm{w})=0$ if $\mathrm{v}=\mathrm{w}$ and infinity otherwise

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If $P[w]=x$ then $M[w]>=M[x]+\operatorname{cost}(x, w)$
- Equal when w is updated
- $M[x]$ could be reduced after update
- Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}$ be a cycle in the pointer graph with $\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1}\right)$ the last edge added
- Just before the update
- $M\left[v_{j}\right]>=M\left[v_{j+1}\right]+\operatorname{cost}\left(v_{j+1}, v_{j}\right)$ for $j<k$
- $M\left[v_{k}\right]>M\left[v_{1}\right]+\operatorname{cost}\left(v_{1}, v_{k}\right)$
- Adding everything up
- $0>\operatorname{cost}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\operatorname{cost}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\ldots+\operatorname{cost}\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1}\right)$
 IUCEE: Algorithms

Network Flow

- This topic move the course into combinatorial optimization
- Key is to understand what the network flow problem is, and the basic combinatorial theory behind it
- Many more sophisticated algorithms not covered

[^0]Flow assignment and the residual graph

Find a maximum flow

Ford-Fulkerson Algorithm (1956)
while not done
Construct residual graph G_{R}
Find an s-t path P in G_{R} with capacity $b>0$
Add b units along in G

If the sum of the capacities of edges leaving S is at most C , then the algorithm takes at most C iterations

MaxFlow - MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_{R} reachable from s with paths of positive capacity

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Converting Matching to Network

 Flow

Bipartite Matching

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if the vertices can be partitioned into disjoints sets X, Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible
\qquad IUCEE: Algorithms

Open Pit Mining

- Each unit of earth has a profit (possibly negative)
- Getting to the ore below the surface requires removing the dirt above
- Test drilling gives reasonable estimates of costs
- Plan an optimal mining operation

Image Segmentation

Setting the costs

- If $p(v)>0$,
$-\operatorname{cap}(v, t)=p(v)$
$-\operatorname{cap}(\mathrm{s}, \mathrm{v})=0$
- If $p(v)<0$
$-c a p(s, v)=-p(v)$
$-\operatorname{cap}(\mathrm{v}, \mathrm{t})=0$
- If $p(v)=0$
$-\operatorname{cap}(s, v)=0$
$-\operatorname{cap}(\mathrm{v}, \mathrm{t})=0$

Image analysis

- a_{i} : value of assigning pixel it the foreground
- b_{i} : value of assigning pixel i to the background
- $p_{i j}$: penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A, B)=\Sigma_{\{i \text { in } A\}} a_{i}+\Sigma_{\{j \text { in } B\}} b_{j}-\Sigma_{\{(i, j) \text { in } E, i \text { in } A, j \text { in } B\}} p_{i j}$

July 3, 2008
IUCEE: Algorithms

NP Completeness

- Theory topic from the algorithmic perspective
- Students will see different aspects of NPCompleteness in other courses
- Complexity theory course will prove Cook's theorem
- The basic goal is to remind students of specific NP complete problems
- Material is not covered in much depth because of the "last week of the term" problem

Theory of NP-Completeness
The Universe

July 3, 2008
IUCEE: Algorithms

What is NP?

- Problems solvable in non-deterministic polynomial time . . .
- Problems where "yes" instances have polynomial time checkable certificates

July 3, 2008
IUCEE: Algorithms

NP-Completeness

- A problem X is NP-complete if
$-X$ is in NP
- For every Y in NP, $Y<_{p} X$
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and $X<_{p} Z$
- Then Z is NP-Complete

History

- Jack Edmonds - Identified NP
- Steve Cook
- Cook's Theorem - NP-Completeness
- Dick Karp
- Identified "standard" collection of NP-Complete Problems
- Leonid Levin
- Independent discovery of NP-Completeness in USSR

July 3, 2008
IUCEE: Algorithms

Populating the NP-Completeness Universe

- Circuit Sat $<_{p} 3-S A T$
- 3-SAT $<_{p}$ Independent Set
- 3-SAT <p Vertex Cover
- Independent Set < ${ }_{p}$ Clique
- 3-SAT $<_{p}$ Hamiltonian Circuit
- Hamiltonian Circuit $<_{p}$ Traveling Salesman
- 3-SAT <p Integer Linear Programming
- 3-SAT $<_{p}$ Graph Coloring
- 3-SAT $<_{p}$ Subset Sum
- Subset Sum $<_{p}$ Scheduling with Release times and deadlines

Find a satisfying truth assignment
$(x||y|| z) \& \&(!x| |!y| |!z) \& \&(!x| | y) \& \&(x||\mid y) \& \&(y|\mid!z) \& \&(!y| | z)$

$$
I S<_{p} V C
$$

- Lemma: A set S is independent iff V - S is a vertex cover
- To reduce IS to VC, we show that we can determine if a graph has an independent set of size K by testing for a Vertex cover of size n-K

What we don't know

- P vs. NP

Graph Coloring

What about 'negative instances'

- How do you show that a graph does not have a Hamiltonian Circuit
- How do you show that a formula is not satisfiable?

What about 'negative instances'

- How do you show that a graph does not have a Hamiltonian Circuit
- How do you show that a formula is not satisfiable?

IUCEE: Algorithms

[^0]: July 3, 2008

