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Abstract

We present an approach to showing that a linear code is resilient to random
errors. We use this approach to obtain decoding results for both transitive codes
and Reed-Muller codes. We give three kinds of results about linear codes in
general, and transitive linear codes in particular.

1. We give a tight bound on the weight distribution of every transitive linear
code C ⊆ FN

2 : Prc∈C [|c| = αN ] ≤ 2−(1−h(α))·dim(C).

2. We give a criterion that certifies that a linear code C can be decoded on the
binary symmetric channel. Let Ks(x) denote the Krawtchouk polynomial of
degree s, and let C⊥ denote the dual code of C. We show that bounds on

Ec∈C⊥ [KϵN (|c|)2] imply that C recovers from errors on the binary symmetric
channel with parameter ϵ. Weaker bounds can be used to obtain list-decoding
results using similar methods. One consequence of our criterion is that
whenever the weight distribution of C⊥ is sufficiently close to the binomial
distribution in some interval around N

2 , C is resilient to ϵ-errors.

3. We combine known estimates for the Krawtchouk polynomials with our
weight bound for transitive codes, and with known weight bounds for
Reed-Muller codes, to obtain list-decoding results for both these families
of codes. In some regimes, our bounds for Reed-Muller codes achieve the
information-theoretic optimal trade-off between rate and list size.
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�Supported by NSERC PGSD3-545945-2020 and NSF CCF-2131899.
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1 Introduction

In his seminal 1948 paper, Shannon laid out the bases of coding theory and introduced
the concept of channel capacity, which is the maximal rate at which information can
be transmitted over a communication channel [Sha48]. The two channels that have
received the most attention are the Binary Symmetric Channel (BSC), where each bit is
independently flipped with some probability ϵ, and the Binary Erasure Channel (BEC),
where each bit is independently replaced by an erasure symbol with some probability ϵ.
Shannon’s work initiated a decades-long search for explicit codes that can achieve high
rates over a noisy channel.

Explicit construction of codes often have a lot of symmetry. In particular, many
known constructions of codes are transitive. The group of symmetries of a code is the
subgroup G of permutations π : {1, . . . , N} → {1, . . . , N} such that permuting the
coordinates of each of the codewords using π does not change the code. A code is
transitive if for every two coordinates i, j, there is a permutation π ∈ G with π(i) = j.
A code is 2-transitive if for every i ̸= k, j ̸= ℓ there is a permutation π ∈ G with
π(i) = j, π(k) = ℓ. Many known constructions of codes are cyclic, and every cyclic code
is transitive. Reed-Solomon codes, BCH codes and Reed-Muller codes are all transitive.

The binary code that is arguably the cleanest explicit candidate to achieving capacity
over both the BSC and the BEC is the family of Reed-Muller codes. The codewords of
the Reed-Muller code RM(n, d) are the evaluation vectors (over all points in Fn

2 ) of all
multivariate polynomials of degree d in n variables.

Reed-Muller codes enjoy strong symmetry beyond transitivity: their symmetry
group is the group of invertible affine transformations over Fn

2 . Using fundamental
results from Fourier analysis about the influences of symmetric boolean functions
[KKL88, Tal94, BK97] has led to a very successful line of work, with [KKM+16]
showing that Reed-Muller codes achieve capacity over the BEC and [HSS21] showing
that they are polynomially close to achieving capacity over the BSC. In fact, [KKM+16]
show that if a linear code C ⊆ FN

2 has a 2-transitive symmetry group G such that
for every S ⊆ {1, . . . , N} with |S| = (s logN)0.99, |{π(S) : π ∈ G}| ≥ N s, then C can
tolerate ϵ− O(1/s) fraction of random erasures. Given these results, it is natural to
investigate the types of symmetry that lead to good codes. In this paper, we prove
three kinds of results relevant to understanding the error resilience of general linear
codes, transitive linear codes, and Reed-Muller codes.

1. We give a clean and tight weight distribution bound for every transitive linear
code. We show that for any such code C ⊆ FN

2 ,

Pr
c∈C

[|c| = αN ] ≤ 2−(1−h(α))·dim(C).

This bound is proved by combining transitivity with the subadditivity of entropy.
In some regimes, it improves on all previously known weight bounds for Reed-
Muller codes (see Appendix A).
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2. We give a new criterion to validate that a code can be decoded over the BSC. Let

Kt(x) =
t∑

j=0

(−1)j
(
x

j

)(
N − x

t− j

)

denote the Krawtchouk polynomial of degree t, and let C⊥ denote the dual code
of C. In spirit, our criterion says that any code C satisfying

E
c∈C⊥

[KϵN(|c|)2] < (1 + o(N−1)) ·
(
N

ϵN

)
can be uniquely decoded on the BSC with high probability. Our actual result is
a little more technically involved (see Theorem 2). This criterion implies that
any code whose dual codewords are distributed sufficiently close to the binomial
distribution must be resilient to ϵ-errors (see Corollary 3). Moreover, if the

above expectation is bounded by o(k
(
N
ϵN

)−1
), then we prove that the code can be

list-decoded with a list size of about k.

3. Finally, we combine known estimates for the Krawtchouk polynomials with our
weight bound for transitive codes, and with known weight bounds for Reed-Muller
codes, to obtain list-decoding results for both families of codes. In some regimes,
our bounds for Reed-Muller codes achieve the information-theoretic optimal
trade-off between rate and list size.

Next, we discuss our results more rigorously. We note that throughout this section,
for any set X we denote the uniform distribution over X by D(X).

I. Weight Bounds for Transitive Codes
We bound the weight distribution of any transitive linear code over any prime field. See
section 6 for the proof.

Theorem 1. Let C ⊆ FN
q be a transitive linear code. Then for any α ∈ (0, 1− 1/q) we

have
Pr

c∼D(C)

[
|c| = αN

]
≤ q−(1−hq(α))dim C ,

where D(C) is the uniform distribution over all codewords in C, |c| is the number of
non-zero coordinates of c, and hq is the q-ary entropy

hq(α) = (1− α) logq
1

1− α
+ α logq

q − 1

α
.

Note that h2(α) denotes the binary entropy function. We note that in some regimes
(for e.g. when the degree satisfies 0.38n < d < 0.499n and α is larger than some
constant depending on d/n), the bound above improves on all previously proven weight
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distribution bounds for Reed-Muller codes, even though the only feature of the code
that we use is transitivity. See Appendix A for some details.

II. A Criterion for Decoding on the BSC
We develop a new approach for proving decoding results over the BSC, i.e. the
communication channel whose errors z ∈ FN

2 are sampled from the ϵ-noisy distribution

Pϵ(z) = ϵ|z|(1− ϵ)N−|z|

for some ϵ ∈ (0, 1). Our approach is based on Fourier analysis, although unlike
[KKM+16] and [HSS21], the ideas we use do not rely on bounds on influences. We
obtain the following result (recall that D(C⊥) denotes the uniform distribution over
C⊥):

Theorem 2. Let C ⊆ FN
2 be any linear code, and denote by C⊥ ⊆ FN

2 its dual code.
Then for any ϵ ∈ (0, 1

2
), there exists a decoding function d : FN

2 → FN
2 such that for all

c ∈ C we have

Pr
ρ∼Pϵ

[d(c+ ρ) ̸= c] ≤ 2e−
√
N

3ϵ +N max
S⊆{ϵN±N3/4}

1≤|S|≤2

{ 1(
N
S

) E
c∼D(C⊥)

[
KS(|c|)2

]
− 1

}
,

where
(
N
S

)
=

∑
j∈S

(
N
S

)
, and where KS(x) =

∑
j∈S Kj(x) for Kj the Krawtchouk

polynomial of degree j.

We will now consider one interesting consequence of Theorem 2. Let ϵ ∈ (0, 1
2
) be

arbitrary, and define

Aϵ = {αN : h(α) > 1− h(ϵ)−N−1/5}.

Our next corollary states that whenever the dual codewords of C are distributed
sufficiently close to the binomial distribution for all weights in Aϵ, the code C must be
resilient to ϵ-errors. See Appendix B for the proof.

Corollary 3. Let C ⊆ FN
2 be a linear code, and let ϵ ∈ (0, 1

2
) be arbitrary. Suppose that

for every j ∈ Aϵ we have

Pr
y∼D(C⊥)

[
|y| = j

]
≤

(
1 + o(N−1)

)(Nj )
2N

,

and suppose that

Pr
y∼D(C⊥)

[
|y| /∈ Aϵ

]
≤ 2N

3
4 ·

∑
i/∈Aϵ

(
N
i

)
2N

.

Then C is resilient to ϵ-errors.
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As a proof of concept, we note that a uniformly random linear code of dimension
(1− h(ϵ))N +

√
N satisfies all these conditions simultaneously with high probability.

III. List Decoding Results
Using a generalized version of Theorem 2 (namely, Theorem 21 in section 5), we obtain
list decoding bounds for both transitive codes and Reed-Muller codes. We start with
our bound for Reed-Muller codes.

Theorem 4. Let ϵ ∈ (0, 1
2
) and γ ∈ (0, 1) be such that 1 − γ ≥ 2

− 2ϵ
(ln 2)2 . Then the

Reed-Muller code RM(n, d) of dimension
(

n
≤d

)
= (1 − γ)N can with high probability

list-decode ϵ-errors using a list T of size

|T | = 2(h(ϵ)−γ)N+o(N) + 24ϵN+o(N).

Although our lists have exponential size, for small ϵ the list size is non-trivial, in
the sense that it is much smaller than the number of noise vectors (which is about(
N
ϵN

)
≈ 2h(ϵ)N) and the number of codewords in the code (which is 2dim C). In fact,

a standard calculation (see Appendix C) shows that any code C ⊆ FN
2 of dimension

(1− γ)N that can successfully list-decode errors of probability ϵ with list size |T | must
satisfy

|T | ≳ 2(h(ϵ)−γ)N . (1)

Our bound in Theorem 4 shows that Reed-Muller codes achieve these optimal parameters,
at least in some regimes (for e.g. when

(
n
≤d

)
≥ 1− 1.99ϵ

ln 2
and ϵ is small enough). We now

turn to our list-decoding bound for transitive codes.

Theorem 5. Fix any ϵ ∈ (0, 1
2
), η ∈ (0, 1), and N >

(
5
ϵ

)20
. Then any transitive linear

code C ⊆ FN
2 of dimension dim C = ηN can with high probability list-decode ϵ-errors

using a list T of size

|T (x)| = 2ϵN log( 2
1−η

)+o(N) + 24ϵN .

As an explicit example of the types of bounds one gets from Theorem 5, we have that
any transitive linear code of dimension dim C = (1− 4ϵ

e
)N can with high probability

list-decode ϵ-errors using a list T of size

|T | = 2(h(ϵ)−ϵ+ ϵ2

ln 2
)N+o(N) + 24ϵN .

For comparison, recall that our lower bound (1) states that any code C of dimension

(1− 4ϵ
e
)N requires a list size of at least about 2(h(ϵ)−

4ϵ
e
)N .

1.1 Techniques

Our weight distribution bound for transitive linear codes (Theorem 1) is proven by
showing that the entropy of a uniformly random codeword of weight αN is small. To do

5



this, we analyze the entropy of the coordinates corresponding to linearly independent
columns of the generator matrix. Transitivity implies that every coordinate in the code
has the same entropy, and subadditivity of entropy can then be used to bound the
entropy of the entire distribution.

To obtain our decoding criterion, we make use of a connection between the probability
of a decoding error and the ℓ2 norm of the coset distribution of the code. To explain the
intuition, let us start by assuming that exactly ϵN of the coordinates in the codeword
are flipped, although our results actually hold over the BSC as well. Let z be the vector
in FN

2 that represents the errors introduced by the channel, and let H be the parity
check matrix of the code. Then by standard arguments, if z can be recovered from
Hz⊺, the codeword can be decoded. In the case where z is uniformly distributed on
vectors of weight ϵN , this amounts to showing that with high probability, the coset of z
does not contain any string of weight ϵN (in other words, there is no w ∈ FN

2 of weight
|w| = ϵN such that Hz⊥ = Hw⊥). This can be understood by computing the norm

∥f∥22 =
1

2N

∑
y

f(y)2 =
1

2N

∑
y

Pr[Hz⊺ = y⊺]2,

where f(y) = Pr[Hz⊺ = y⊺]. The norm above is always at least 2−N
(
N
ϵN

)−1
, and if it is

close to 2−N
(
N
ϵN

)−1
then the code can be decoded with high probability. If ∥f∥22 is larger

than 2−N
(
N
ϵN

)−1
, then we show that the code can be list-decoded with high probability,

where the size of the list is related to 2N
(
N
ϵN

)
∥f∥22.

Thus, to understand decoding, we need to understand ∥f∥22. Using Fourier analysis,
we express this quantity as

∥f∥22 =
N∑
j=0

Pr[|c⊥| = j] ·KϵN(j)
2, (2)

where c⊥ is a uniformly random codeword in the dual code and KϵN is the Krawtchouk
polynomial of degree ϵN . We note that such relations for the coset weight distribution
have been used to understand the discrepancy of subsets of the sphere, as well as subsets
of other homogeneous spaces. In particular, (2) was proven in a slightly different form
in [Bar21] (see Theorem 2.1 and Lemma 4.1), whereas over RN results of this type had
previously been derived in [BDM18, Skr19].

Using estimates for the magnitude of Krawtchouk polynomials and bounds for the
weight distribution of the dual code C⊥, one can thus bound the norm ∥f∥22 in the set-up
where the error string z is a random vector of weight exactly ϵN . Using essentially
the same techniques, one can also bound the norm ∥f∥22 when the error string z is
a random vector of weight ≈ ϵN , i.e. z is taken uniformly at random from the set
S = {x ∈ FN

2 : |x| = ϵN ±N3/4}.
Our next step is then to show that the ℓ2 norm corresponding to the ϵ-biased

distribution is very similar to the ℓ2 norm corresponding to the uniform distribution
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over S. Intuitively, this is because S only contains a very small range of weights, so
the ϵ-biased distribution and the uniform distribution must behave very similarly over
strings of weight in S. It then follows that their corresponding ℓ2 norms must be similar
as well.

Our decoding criteria (Theorem 2, Corollary 3) are thus obtained by bounding the
norm ∥f∥22 using estimates for Krawtchouk polynomials and for the weight distribu-
tion of the dual code C⊥. Our list-decoding results (Theorems 4 and 5) then follow
from our weight bound for transitive codes (Theorem 1) and from a weight bound of
Samorodnitsky for Reed-Muller codes (Theorem 6).

1.2 Related Work

It has been shown that LDPC codes achieve capacity over Binary Memoryless Symmetric
Channels (BMS) [LMS+97, KRU13, Gal62], which includes both the BSC and the BEC.
These constructions are not deterministic, and it is only with the advent of polar
codes [Ari09] that we obtained capacity-achieving codes with both a deterministic
constructions and efficient encoding and decoding algorithms.

Polar codes are closely related to Reed-Muller codes, in the sense that they also
consist of subspaces that correspond to polynomials over F2[Ari09]. In [Ari09] it was
shown that Polar codes achieve capacity over the BSC, and algorithms were given to
both encode and decode them.

It has long been believed that Reed-Muller codes achieve capacity, and significant
progress has been made in that direction over the last few years. (See [ASY21] for
a discussion on the subject, as well as a thorough exposition to Reed-Muller codes).
Abbe, Shpilka and Wigderson first showed that Reed-Muller codes achieve capacity over
the BSC and the BEC for sub-constant and super-constant rates [ASW15]. Kudekar,
Kumar, Mondelli, Pfister, Sasoglu and Urbanke then proved that in the constant rate
regime, Reed-Muller codes achieve capacity over the BEC channel [KKM+16]. Abbe and
Ye showed that the Reed-Muller transform polarizes the conditional mutual information,
and proved that some non-explicit variant of the Reed-Muller code achieves capacity
[AY19]. (They conjecture that this variant is in fact the Reed-Muller code itself). Hazla,
Samorodnitsky and Sberlo then proved that Reed-Muller codes of constant rates can
decode a constant fraction of errors on the BSC [HSS21]; this had previously been
shown for Almost-Reed-Muller codes by Abbe, Hazla and Nachum [AHN21]. Most
recently, Reeves and Pfister showed that Reed-Muller codes achieve capacity over all
BMS channels under bit-MAP decoding [RP21], i.e. that one can with high probability
recover any single bit of the original codeword (but not with high enough probability
that one could take a union bound). Despite these breakthroughs, the conjecture that
Reed-Muller codes achieve capacity over all BMS channels under block-MAP decoding
(i.e. recover the whole codeword with high probability) is ultimately still open.

Weight Bounds for Reed-Muller Codes
Several past works have proven bounds on the weight distribution of Reed-Muller codes.
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Kaufman, Lovett and Porat gave asymptotically tight bounds on the weight distribution
of Reed-Muller codes of constant degree [KLP12]. Abbe, Shpilka and Wigderson then
built on these techniques to obtain bounds for all degrees smaller than n

4
[ASW15],

before Sberlo and Shpilka again improved the approach and obtained bounds for all
degrees [SS20]. Most recently, Samorodnitsky used completely different ideas to obtain
weight bounds in the regime where both the rate of the code and the normalized
weight of the codeword are Θ(1) [Sam20]. We will later use his following result in our
list-decoding arguments:

Theorem 6 ([Sam20]). Let
(

n
≤d

)
= η2n = ηN for some η ∈ (0, 1), and denote by D(n, d)

the uniform distribution over all codewords in RM(n, d). Then for any α ∈ (0, 1
2
) we

have

Pr
c∼D(n,d)

[|c| ≤ αN ] ≤ 2o(N)

(
1

1− η

)2 ln 2·αN

2−ηN .

These bounds are strong when α ≪ 1/2. For α close to 1/2, the first results we are
aware of are due to Ben-Eliezer, Hod and Lovett [BHL12]. Their bounds, which were
extended to Reed-Muller codes over prime fields by Beame, Oveis Gharan and Yang
[BGY20], are strongest when the degree is sublinear. Sberlo and Shpilka then obtained
bounds for all degrees in [SS20], while Samorodnitsky again obtained bounds in the
regime where both α and η are Θ(1) [Sam20].

We note that in some regimes (for e.g. when the degree satisfies 0.38n < d < 0.499n
and α is larger than some constant depending on d/n), our Theorem 1 improves on all
the aforementioned weight bounds. See Appendix A for some details.

List Decoding
List decoding was proposed by Elias in 1957 as an alternative to unique decoding [Eli57].
In the list decoding framework, the receiver of a corrupted codeword is asked to output
a list of potential codewords, with the guarantee that with high probability one of these
codewords is the original one. This of course allows for a greater fraction of errors to
be tolerated.

The list decoding community has largely focused on proving results for the adversarial
noise model, and many codes are now known to achieve list-decoding capacity. For
example uniformly random codes achieve capacity, as do uniformly random linear codes
[GHSZ02, LW18, GHK11]. Folded Reed-Solomon codes were the first explicit codes
to provably achieve list-decoding capacity [GR08], followed by several others a few
years later [GX12, Kop15, HRW17, MRR+20]. For the rest of this paper however,
we will exclusively work in the model where the errors are stochastic. In this model,
the strongest known list decoding bound for the code RM(n, d) with

(
n
≤d

)
= ηN >

N −N log(1 + 2
√

ϵ(1− ϵ)) is, to our knowledge, that one can output a list T of size

|T | = 2
ϵN log

4ϵ(1−ϵ)

(1−η)4 ln 2+o(N)
(3)
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and succeed with high probability in decoding ϵ-errors. This result, although not
explicitly stated in [Sam20], can be obtained from his weight bound of Theorem 6
by bounding the expected number of codewords that end up closer to the received
string than the original codeword, and then applying Markov’s inequality. We note
that the expression in (3) stays strictly below the optimal size of 2h(ϵ)N−(1−η)N+o(N) (see
Appendix D.1 for a proof of this).

Krawtchouk polynomials
The Krawtchouk polynomial of degree s is the polynomial

Ks(x) =
s∑

j=0

(−1)j
(
x

j

)(
N − x

s− j

)
.

For any subset S ⊆ {0, ..., N}, we will be interested in the corresponding polynomial
KS(x) :=

∑
s∈S Ks(x). For v ∈ FN

2 , we will sometimes abuse notation and use Ks(v) to
mean KS(|v|). The following proposition follows from standard results (see for instance
[KL99], or Theorem 16 in [MS77]).

Proposition 7. For any N and any S ⊆ {1, ..., N}, we have

2−N∑
s∈S

(
N
s

) N∑
j=0

(
N

j

)
KS(j)

2 = 1.

Good estimates for Krawtchouk polynomials of any degree were obtained in [KL95,
IS98, Pol19] (see for e.g. [Pol19], Lemma 2.1). These estimates are asymptotically
tight in the exponent. Note that |Ks(x)| = |Ks(N − x)| = |KN−s(x)|, so it suffices to
understand the case x, s ≤ N

2
.

Theorem 8 ([KL95, IS98, Pol19]). Let ϵ, δ ∈ (0, 1
2
) be arbitrary. If δ ≥ 1

2
−
√

ϵ(1− ϵ),
then

|KϵN(δN)| ≤ 2(1+h(ϵ)−h(δ))N
2 .

If δ < 1
2
−

√
ϵ(1− ϵ), define ω =

1−2δ−sgn(1−2δ)
√

(1−2δ)2−4ϵ(1−ϵ)

2(1−2δ)
. Then

|KϵN(δN)| ≤ (1− ω)δN(1 + ω)(1−δ)N

ωϵN
.

As the second expression can be somewhat cumbersome to use, [Pol19] also gives
the following weaker bound (see Lemma 2.2 and equation 2.10 in [Pol19]):

Theorem 9 ([Pol19]). For any ϵ ∈ (0, 1
2
) and any δ < 1

2

√
ϵ(1− ϵ), we have

|KϵN(δN)| ≤ 2h(ϵ)N+ϵN log(1−2δ).

We will need the above estimates when using our Theorem 2 to obtain list-decoding
results for transitive codes and Reed-Muller codes.
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2 Notation, Conventions and Preliminaries

For the sake of conciseness, we will use the notation

{a± l} = {a− l, ..., a+ l},

the notation (
n

≤ d

)
=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

d

)
,

and for S ⊆ {0, ..., N} the notation(
N

S

)
=

∑
s∈S

(
N

s

)
.

Let N = 2n. We will be working with the vector spaces Fn
2 and FN

2 . For convenience,
we associate Fn

2 with the set [N ] = {1, 2, . . . , N}, by ordering the elements of Fn
2

lexicographically. For x ∈ FN
2 , we write |x| = |{j ∈ [N ] : xj = 1}| to denote the weight

of x.

2.1 Linear Codes

An N -bit code is a subset C ⊆ FN
2 . Whenever C is a subspace of FN

2 , we say that C is a
linear code. Any linear code C ⊆ FN

2 can be represented by its generator matrix, which
is a dim C×N matrix G whose rows form a basis for C. The matrix G generates all
codewords of C in the sense that

C = {vG : v ∈ Fdim C
2 }.

Another useful way to describe a linear code C ⊆ FN
2 is via its parity-check matrix,

which is an (N − dim C)×N matrix H whose rows span the orthogonal complement
of C. The linear code C can then be expressed as

C = {c ∈ FN
2 : Hc⊺ = 0}.

One property that will play an important role is transitivity, which we define below:

Definition 1. A set C ⊆ FN
2 is transitive if for every i, j ∈ [N ] there exists a permuta-

tion π : [N ] → [N ] such that

(i) π(i) = j

(ii) For every element v = (v1, ..., vN) ∈ C we have (vπ(1), ...vπ(N)) ∈ C

We note that the dual code of a transitive code is also transitive (see Appendix D.2
for the proof).

Claim 10. The dual code C⊥ of a transitive code C ⊆ FN
2 is transitive.
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2.2 Reed-Muller Codes

We will denote by RM(n, d) the Reed-Muller code with n variables and degree d.
Throughout this section, we let M be the generator matrix of RM(n, d); this is an(

n
≤d

)
×N matrix whose rows correspond to sets of size at most d, ordered lexicographically,

and whose columns correspond to elements of Fn
2 . For S ⊆ [n], |S| ≤ d and x ∈ Fn

2 , the
corresponding entry is MS,x =

∏
j∈S xj. If S is empty, this entry is set to 1.

If v ∈ F(
n
≤d)

2 is a row vector, v can be thought of as describing the coefficients of a
multilinear polynomial in F2[X1, . . . , Xn] of degree at most d. The row vector vM is
then the evaluations of this polynomial on all inputs from Fn

2 . It is well known that M
has full rank,

(
n
≤d

)
. In fact we have the following standard fact (see Appendix D.3 for

the proof):

Fact 11. The columns of M that correspond to the points x ∈ Fn
2 with |x| ≤ d are

linearly independent.

The parity-check matrix of the Reed-Muller code is known to be the same as the
generator matrix of a different Reed-Muller code. Namely, let H be the

(
n

≤n−d−1

)
×N

generator matrix for the code RM(n, n− d− 1). Then H has full rank, and MH⊺ = 0.
So, the rows of H are a basis for the orthogonal complement of the span of the rows of
M . Reed-Muller codes also have useful algebraic features, notably transitivity:

Fact 12. For all n and all d ≤ n, the Reed-Muller code RM(n, d) is transitive.

See Appendix D.3 for the proof.

2.3 Entropy

The binary entropy function h : [0, 1] → R is defined to be

h(ϵ) = ϵ · log 1

ϵ
+ (1− ϵ) · log 1

1− ϵ
.

The following fact allows us to approximate binomial coefficients using the entropy
function:

Fact 13. For n/2 ≥ d ≥ 1,
√

8π
e4n

· 2h(d/n)·n ≤
(
n
d

)
≤

(
n
≤d

)
≤ 2h(d/n)·n.

The leftmost inequality is a consequence of Stirling’s approximation for the binomial
coefficients, and the rightmost is a consequence of the sub-additivity of entropy.

The following lemma, which is essentially a 2-way version of Pinsker’s inequality,
gives a useful way to control the entropy function near 1/2.

Lemma 14. For any µ ∈ (0, 1), we have

µ2

2 ln 2
≤ 1− h

(
1− µ

2

)
≤ µ2.

See Appendix D.4 for the proof.
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2.4 Probability Distributions

There are two types of probability distributions that we will use frequently. The first
one is the ϵ-Bernoulli distribution over FN

2 , which we will denote by

Pϵ(z) = ϵ|z|(1− ϵ)N−|z|.

The second one is the uniformly random distribution over some set T , which we will
denote by

D(T )(z) =

{
1
|T | if z ∈ T ,

0 otherwise.
.

There are two particular cases for the uniform distribution that will occur often enough
that we attribute them their own notation. The first one is the uniform distribution
over Ft

2, which we will denote by

µt = D(Ft
2).

The second one is the uniform distribution over all vectors z ∈ FN
2 of weight |z| ∈ S,

for some S ⊆ {0, ..., N}. We will denote this probability distribution by

λS = D({z ∈ FN
2 : |z| ∈ S}).

2.5 Probability Theory

We will need two very standard results of probability theory (see for e.g. [BLM13]):
Markov’s inequality and Chernoff’s bound. We start with Markov’s inequality.

Lemma 15. Let X be a nonnegative random variable. Then for any a > 0, we have

Pr[X ≥ a] ≤ E[X]

a
.

We will also need Chernoff’s bound:

Lemma 16. Let X1, ..., Xn be i.i.d. random variables taking values in {0, 1}, and define
X = X1 + ...+Xn. Then for any δ ∈ (0, 1), we have

Pr
[∣∣X − E[X]

∣∣ > δ · nE[X1]
]
≤ 2e−

δ2·n E[X1]
3 .

2.6 Fourier Analysis

The Fourier basis is a useful basis for the space of functions mapping FN
2 to the

real numbers. We recall some of its properties below (see for e.g. [dW08]). For
f, g ∈ FN

2 → R, define the inner product

⟨f, g⟩ = 1

2N

∑
x∈FN

2

f(x)g(x).

12



For every x, y ∈ FN
2 , define the character

χy(x) = (−1)
∑N

j=1 xjyj .

These functions form an orthonormal basis, namely for y, y′ ∈ FN
2 ,

⟨χy, χy′⟩ =

{
1 if y = y′,

0 otherwise.

We define the Fourier coefficients f̂(y) = ⟨f, χy⟩. Then for f, g : FN
2 → R, we have

⟨f, g⟩ =
∑
y∈FN

2

f̂(y) · ĝ(y).

In particular,

∥f∥22 = ⟨f, f⟩ =
∑
y

f̂(y)2.

3 Outline of the Paper

The main question we will be looking into is whether or not a family of list-decoding codes
{CN}, with CN ⊆ FN

2 , is asymptotically resilient to independent errors of probability ϵ.
Formally, we are given a list size k = k(N) and want to know if there exists a family

of decoding functions {dN}, with dN : FN
2 →

(
FN
2

)⊗k
, such that for every sequence of

codewords {cN} we have

lim
N→∞

Pr
ρN∼Pϵ

[
cN /∈ dN(cN + ρN)

]
= 0.

We note that the unique decoding problem can be seen as setting k = 1 in the above
set-up. Our general approach will be based on trying to identify the error string ρ ∈ FN

2

from its image Hρ⊺. In particular, we will be interested in the max-likelihood decoder

Dk(x) = argmax
{z1,...,zk}⊆FN

2
Hzi

⊺=x for all i

{Pϵ(z1) + ...+ Pϵ(zk)}

= argmin
{z1,...,zk}⊆FN

2

Hz⊺i =x for all i

{|z1|+ ...+ |zk|}. (4)

We show in the following lemma that if the max-likelihood decoder is able to identify
the error string ρ, then it is possible to recover the original codeword.

Lemma 17. Let H be the t × N parity-check matrix of the linear code C, and let

D : Ft
2 →

(
FN
2

)⊗k
be an arbitrary function. Then there exists a decoding function

d : FN
2 →

(
FN
2

)⊗k

13



such that for every c ∈ C we have

Pr
ρ∼Pϵ

[c /∈ d(c+ ρ)] ≤ Pr
ρ∼Pϵ

[ρ /∈ D(Hρ⊺)].

Proof. Given D : Ft
2 →

(
FN
2

)⊗k
, define d : FN

2 →
(
FN
2

)⊗k
to be

d(z) = {z + y : y ∈ D(Hz⊺)}.

We will show that whenever ρ satisfies ρ ∈ D(Hρ⊺), ρ also satisfies c ∈ d(c + ρ) for
every c ∈ C. Suppose ρ ∈ D(Hρ⊺). Note that since H is the parity-check matrix of
C, every c ∈ C satisfies Hc⊺ = 0. So for every c ∈ C, any ρ that satisfies ρ ∈ D(Hρ⊺)
must also satisfy ρ ∈ D(H(c⊺ + ρ⊺)). It then follows by definition of d(c+ ρ) that

c = c+ ρ+ ρ ∈ d(c+ ρ).

From this point onward, our goal will thus be to prove that the max-likelihood
decoder in (4) succeeds in recovering ρ with high probability. In section 4, we relate the
decoding error probability of the max-likelihood decoder Dk to the collision probability∑

x∈Ft
2

Pr[Hz⊺ = x]2.

In section 5, we build on this result to obtain a bound on the performance of Dk in
terms of the weight distribution of the dual code. We then present new bounds on the
weight distribution of transitive codes in section 6. These bounds are interesting in
their own right, and we show that they are essentially tight. In section 7, we combine
these bounds with our results from section 5 to obtain list-decoding results for transitive
linear codes. We then repeat this argument with Samorodnitsky’s Theorem 6 in section
8 to obtain a stronger list-decoding bound for Reed-Muller codes.

4 Collisions vs Decoding

Recall that we denote by Pϵ the ϵ-Bernoulli distribution over FN
2 , i.e. the distribution

Pϵ(z) = ϵ|z|(1− ϵ)N−|z|.

Recall also that for any subset S ⊆ {0, ..., N}, we denote by λS the uniform distribution
over all strings z ∈ FN

2 of weight |z| ∈ S, i.e.

λS(z) =

{
1∑

j∈S (
N
j )

if |z| ∈ S,

0 otherwise.
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The goal of this section will be to analyze the relationship between the decoding of
an error string ρ ∈ FN

2 and the collision probability of strings z ∈ FN
2 within the map

z 7→ Hz⊺. Intuitively, the more collisions there are within this mapping, the harder it is
for our decoder to correctly identify the error string ρ ∈ FN

2 upon seeing only its image
Hρ⊺ ∈ Ft

2. However, certain error strings might be unlikely enough to occur that our
decoder can safely ignore them. For example, if we are interested in an ϵ-noisy error
string ρ, then ρ is unlikely to have weight |ρ| far away from ϵN . We could thus choose
to ignore all strings whose weights do not lie in the set S = {ϵN − l, ..., ϵN + l}, for
some integer l. In order to analyze the collisions that occur when strings are required
to have weight z ∈ S, we define for every z ∈ FN

2 and every S ⊆ {0, ..., N} the set
of S-colliders of z, i.e. the set of strings y that lie in the coset of z and have weight
|y| ∈ S:

Definition 2. For any z ∈ FN
2 and any subset S ⊆ {0, ..., N}, define

ΩS
z =

{
y ∈ FN

2 : |y| ∈ S and Hy⊺ = Hz⊺
}
.

This definition captures a natural parameter for how large of a list we need before we
can confidently claim that it contains the error string: if we are given Hρ⊺ and are told
that with high probability the error string ρ has weight |ρ| ∈ S, then we should output
the list ΩS

ρ . For unique decoding we want to argue that |ΩS
ρ | = 1 with high probability,

whereas for list decoding we want to argue that |ΩS
ρ | ≤ k with high probability, for some

integer k > 1. The expectation of |ΩS
ρ | will thus be a key quantity in our analysis. We

will call this expectation the ”collision count,” because it will later be useful to interpret
it as the renormalized collision probability of the map z 7→ Hz⊺ (see for instance the
proof of Proposition 20).

Definition 3. For any subset S ⊆ {0, .., N} and any t×N matrix H, define

CollH(S) = E
z∼λS

[
|ΩS

z |
]
.

In the following lemma, we use Markov’s inequality to bound the probability of a
list decoding error in terms of CollH(S).

Lemma 18. For any subset S ⊆ {0, ..., N}, any matrix H with N columns, and any
integer k ≥ 1, we have

Pr
ρ∼λS

[
|ΩS

ρ | > k
]
≤ CollH(S)− 1

k
.

Proof. Note that |ΩS
z | ≥ 1 for any z ∈ FN

2 with weight |z| ∈ S, so the random variable
|ΩS

z | − 1 is always non-negative. Applying Markov’s inequality (i.e. Lemma 15), we
then have

Pr
ρ∼λS

[
|ΩS

ρ | > k
]
= Pr

ρ∼λS

[
|ΩS

ρ | − 1 ≥ k
]

≤ CollH(S)− 1

k
.
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When the error string ρ is sampled uniformly at random from the set {z ∈ FN
2 : |z| ∈

S}, the above lemma allows us to relate the decoding error probability to the collision
count CollH(S). The problem we are most interested in, however, is when ρ is sampled
not from some uniform distribution, but from the ϵ-noisy probability distribution Pϵ.
We will now show how to connect these two decoding problems. The intuition is that
by the Chernoff bound, we only need to concern ourselves with strings whose weights
lie in S = {ϵN ± l}, for some appropriately chosen l. But in this weight band all
strings have similar weight, and so are given similar probability under the distribution
Pϵ. Intuitively, the Pϵ-decoder must then perform very similarly to the λS-decoder.
The following theorem makes this idea precise, and then uses Lemma 18 to bound the
probability of a decoding error. Recall that Dk : Ft

2 → (FN
2 )

⊗k is the max-likelihood
decoder

Dk(x) = argmin
{z1,...,zk}⊆FN

2

Hz⊺i =x for all i

{|z1|+ ...+ |zk|}.

Theorem 19. Fix ϵ < 1
2
, let H be any matrix with N columns, and let k = (2l+1)m+1

for some integers m ≥ 0 and l ≤ (1
2
− ϵ)N . Then

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
l2

3ϵN +
4(l + 1)

k
max

S⊆{ϵN±l}
1≤|S|≤1+1{k=1}

{
CollH(S)− 1

}
,

where 1{k = 1} is 1 when k = 1 and 0 otherwise

Proof. We will consider the unique decoding case (k = 1, i.e. m = 0) and the list-
decoding case (k > 1, i.e. m ∈ N) separately.
Case 1: Unique decoding, i.e. k = 1
Let t be the number of rows in the matrix H. We will show that a slightly less
performant decoder D̃1 : Ft

2 → FN
2 satisfies the desired probability bound. We define

D̃1 as follows: upon receiving input x ∈ Ft
2, D̃1 outputs the minimum-weight string

from the set {z ∈ FN
2 : Hz⊥ = x, |z| = ϵN ± l}. If there is no such string, the decoder

fails. It is clear that

Pr
ρ∼Pϵ

[ρ ̸= D1(Hρ⊺)] ≤ Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)],

since D1 always returns the most likely string whereas D̃1 may not. We thus turn to
proving the desired bound for D̃1. Letting

B = {z ∈ FN
2 :

∣∣|z| − ϵN
∣∣ > l}},

we have by Chernoff’s bound (i.e. Lemma 16) that

Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)] ≤ Pr
ρ∼Pϵ

[ρ ∈ B] + Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)
∣∣ρ /∈ B]

≤ 2e−
l2

3ϵN + Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)
∣∣ρ /∈ B]. (5)
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We want to bound the second term. For any ρ /∈ B, we define the set of ”problematic
weights” S(ρ) = {ϵN − l, ..., |ρ|} . We note that for ρ /∈ B, our decoder D̃1 can only
fail if there is some string z ̸= ρ satisfying Hz⊥ = Hρ⊥ and |z| ∈ S(ρ). Recalling the
definition ΩS

ρ = {z : Hz⊥ = Hρ⊥, |z| ∈ S}, we can then rewrite our equation (5) as

Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)] ≤ 2e−
l2

3ϵN + Pr
ρ∼Pϵ

[
|ΩS(ρ)

ρ | > 1
∣∣ρ /∈ B

]
.

Considering the most problematic weight level w within the region {ϵN ± l} and using
a union bound over all lower levels w′ ≤ w, we get

Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)] ≤ 2e−
l2

3ϵN + max
w∈{ϵN±l}

{
Pr
ρ∼Pϵ

[
|ΩS(ρ)

ρ | > 1
∣∣|ρ| = w

]}
≤ 2e−

l2

3ϵN + (2l + 1) max
w,w′∈{ϵN±l}

w′≤w

{
Pr
ρ∼Pϵ

[
|Ω{w,w′}

ρ | > 1
∣∣|ρ| = w

]}
.

We now note that under the condition |ρ| = w, the probability distributions Pϵ(ρ) and
λw,w′(ρ) are identical (they are both uniform on strings of weight w). We can thus
rewrite our last inequality as

Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)] ≤ 2e−
l2

3ϵN + (2l + 1) max
w,w′∈{ϵN±l}

w′≤w

{
Pr

ρ∼λw,w′

[
|Ω{w,w′}

ρ | > 1
∣∣|ρ| = w

]}
.

But by basic conditional probability we know that

Pr
ρ∼λw,w′

[
|Ω{w,w′}

ρ | > 1
]
≥ Pr

ρ∼λw,w′

[
|ρ| = w

]
· Pr
ρ∼λw,w′

[
|Ω{w,w′}

ρ | > 1
∣∣|ρ| = w

]
,

so we can bound our previous expression by

Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)] ≤ 2e−
l2

3ϵN + (2l + 1) max
w,w′∈{ϵN±l}

w′≤w

{
Prρ∼λw,w′

[
|Ω{w,w′}

ρ | > 1
]

Prρ∼λw,w′

[
|ρ| = w

] }
.

Now for any w < N
2
and w′ ≤ w, we have Prρ∼λ{w,w′}

[
|ρ| = w

]
=

(Nw)
( N
{w,w′})

≥ (Nw)
(Nw)+(

N
w′)

≥ 1
2
.

It then follows that

Pr
ρ∼Pϵ

[
ρ /∈ D̃1(Hρ⊥)

]
≤ 2e−

l2

3ϵN + 2(2l + 1) · max
S⊆{ϵN±l}
|S|∈{1,2}

{
Pr

ρ∼λS

[
ΩS

ρ > 1
]}

.

The theorem statement then follows from Lemma 18.

Case 2: List decoding, i.e. k > 1
Let t be the number of rows in the matrix H. We will show that a slightly less
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performant decoding function Dk,l : Ft
2 → (FN

2 )
⊗k satisfies the desired probability

bound. We define Dk,l as follows: upon receiving input x ∈ Ft
2, Dk,l outputs

k−1
2l+1

strings

from {z ∈ FN
2 : Hz = x, |z| = w}, for each w ∈ {ϵN ± l}. If there are fewer than k−1

2l+1

strings in some level w, the decoder returns all of them. It is clear that for any l we
have

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ Pr
ρ∼Pϵ

[ρ /∈ Dk,l(Hρ⊺)],

since Dk returns the k most likely strings while Dk,l returns at most k − 1 strings. We
thus turn to proving the desired bound for Dk,l. We first bound the probability that
the error string |ρ| be far away from its mean. Letting

B =
{
z ∈ FN

2 :
∣∣|z| − ϵN

∣∣ > l
}
,

we have, by Chernoff’s bound (i.e. Lemma 16), that

Pr
ρ∼Pϵ

[ρ /∈ Dk,l(Hρ⊺)] ≤ Pr
ρ∼Pϵ

[ρ ∈ B] + Pr
ρ∼Pϵ

[ρ /∈ Dk,l(Hρ⊺)
∣∣ρ /∈ B]

≤ 2e−
l2

3ϵN + max
w∈{ϵN±l}

Pr
ρ∼Pϵ

[ρ /∈ Dk,l(Hρ⊺)
∣∣|ρ| = w].

Since the distribution Pϵ gives the same probability to any two strings of equal weights,
we get

Pr
ρ∼Pϵ

[ρ /∈ Dk,l(Hρ⊺)] ≤ 2e−
l2

3ϵN + max
w∈{ϵN±l}

Pr
ρ∼λ{w}

[ρ /∈ Dk,l(Hρ⊺)]

≤ 2e−
l2

3ϵN + max
w∈{ϵN±l}

Pr
ρ∼λ{w}

[|Ω{w}
ρ | > k − 1

2l + 1
].

Applying Lemma 18, we get

Pr
ρ∼Pϵ

[ρ /∈ Dk,l(Hρ⊺)] ≤ 2e−
l2

3ϵN +
2l + 1

k − 1
· max
w∈{ϵN±l}

{
CollH(S)− 1

}
≤ 2e−

l2

3ϵN +
2(l + 1)

k
· max
w∈{ϵN±l}

{
CollH(S)− 1

}
,

where in the last line we used that a
b
≤ a+1

b+1
whenever a ≤ b.

5 A Criterion for Decoding

In this section, we give a criterion that certifies that a linear code C ⊆ FN
2 is resilient

to errors of probability ϵ. We give such a criterion for both unique decoding and
list decoding. The function we will need to make this connection is the Krawtchouk
polynomial of degree s, which as we recall is defined as

Ks(x) =
s∑

j=0

(−1)j
(
x

j

)(
N − x

s− j

)
.
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For vectors v ∈ FN
2 , we will abuse notation and write Ks(v) to mean Ks(|v|). For

convenience, we also define for any S ⊆ {0, ..., N} the function

KS(x) =
∑
s∈S

Ks(x).

In the following proposition, we use basic Fourier analysis tools to rewrite the collision
count CollH(S) in terms of the Krawtchouk polynomial KS. We note that Proposition
20 was previously proven in a different form in [Bar21] (see Theorem 2.1 and Lemma
4.1), and can be seen as describing the coset weight distribution of the code. Recall
that we use µt to denote the uniform distribution over all vectors in Ft

2, and that we
use the notation

(
N
S

)
=

∑
s∈S

(
N
s

)
.

Proposition 20. Fix ϵ ∈ (0, 1
2
), and let H be a t×N matrix with entries in F2. Then

for any S ⊆ {1, ..., N}, we have

CollH(S) =
1(
N
S

) E
v∼µt

[KS(vH)2].

Proof. The main tool we will use is Parseval’s Identity, which relates the evaluations
f(x) of a function f : Ft

2 → R to its Fourier coefficients f̂(y) by

1

2t

∑
x∈Ft

2

f(x)2 =
∑
y∈Ft

2

f̂(y)2. (6)

We will first need to rewrite CollH(S) as the ℓ2 norm of some function f . For this, we
recall the definition |ΩS

z | =
{
y ∈ FN

2 : |y| ∈ S and Hy⊺ = Hz⊺
}
and note that

CollH(S) :=
1(
N
S

) ∑
z∈FN

2 :|z|∈S

|ΩS
z |

=

(
N

S

) ∑
z∈FN

2 :|z|∈S

1

|ΩS
z |

Pr
a∼λS

[Ha⊺ = Hz⊺]2

=

(
N

S

) ∑
x∈Ft

2

Pr
z∼λS

[Hz⊺ = x]2.

We are now ready to apply Parseval’s Identity. Letting f(x) = Prz∼λS
[Hz⊺ = x] in

equation (6), we get

CollH(S) =

(
N

S

) ∑
x∈Ft

2

f(x)2

= 2t
(
N

S

)∑
y∈Ft

2

f̂(y)2.
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But by definition we have f̂(y) := 2−t
∑

x∈Ft
2
f(x) · (−1)y·x

⊺
, so the last equation can be

rewritten as

CollH(S) = 2−t

(
N

S

)∑
y∈Ft

2

( ∑
x∈Ft

2

f(x) · (−1)y·x
⊺
)2

. (7)

Define the function LS(z) to be 1 if z ∈ FN
2 satisfies |z| ∈ S, and 0 otherwise. We can

then express f(x) as

f(x) = Pr
z∼λS

[Hz⊺ = x] =
1(
N
S

) ∑
z∈FN

2
Hz⊺=x

LS(z). (8)

Combining expressions (7) and (8) and applying the definition of the Fourier transform,
we get

CollH(S) = 2−t

(
N

S

)∑
y∈Ft

2

( ∑
z∈FN

2

LS(z)(
N
S

) · (−1)yHz⊺
)2

=
22N−t(

N
S

) ∑
y∈Ft

2

L̂S(yH)2

=
2−t(
N
S

) ∑
y∈Ft

2

KS(yH)2.

We will now combine Theorem 19 and Proposition 20 to obtain Theorem 2, i.e. to
obtain a bound on the decoding error probability in terms of the Fourier coefficients of
the level function Lϵ. We prove a generalized version of Theorem 2 below. To recover
Theorem 2, set k = 1 and l = N3/4. (You want to think of the parameter l as being

l >>
√
N in both the case k = 1 and the case k > 1, so that the error term e−

√
N

3ϵ is
small).

Theorem 21. Fix ϵ ∈ (0, 1
2
), let H be any t×N Boolean matrix, and let k = (2l+1)m+1

for any integers m ≥ 0 and l ≤ (1
2
− ϵ)N . Then

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
l2

3ϵN +
4(l + 1)

k
max

S⊆{ϵN±l}
1≤|S|≤1+1{k=1}

{ 1(
N
S

) E
v∼µt

[
KS(vH)2

]
− 1

}
,

where the function 1{k = 1} is 1 when k = 1, and 0 otherwise.

Proof. Applying Theorem 19 and Proposition 20, we have

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
l2

3ϵN +
4(l + 1)

k
max

S⊆{ϵN±l}
1≤|S|≤1+1{k=1}

{
CollH(S)− 1

}
= 2e−

l2

3ϵN +
4(l + 1)

k
max

S⊆{ϵN±l}
1≤|S|≤1+1{k=1}

{ 1(
N
S

) E
v∼µt

[
KS(vH)2

]
− 1

}
.
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One consequence of Theorem 21 is Corollary 3, which states that C is resilient to
ϵ-errors if the weight distribution of C⊥ is close enough to the binomial distribution
(see Appendix B for the proof). As another application of Theorem 21, we present the
following bound on the probability of making a list-decoding error for a code C. We
note that once again, our bound depends only on the weight distribution of the dual
code C⊥.

Proposition 22. Fix any ϵ ∈ (0, 1
2
), and define β =

1−2
√

ϵ̃(1−ϵ̃)

2
for ϵ̃ = ϵ+N−1/4. Let

B = {βN, ..., (1− β)N}, and let k∗ = (2N3/4 + 1)m+ 1 for some integer m ≥ 0. Then

for all N >
(
5
ϵ

)20
and all integers k ≥ k∗, we have that any t×N matrix H with entries

in F2 satisfies

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
√
N

3ϵ +
N

k∗ max
j∈B

{
Pr
v∼µt

[|vH| = j] · 2N(
N
j

) − 1

}

+
2h(ϵ)N+N

4
5

k∗ max
j /∈B

{
Pr
v∼µt

[
|vH| = j

]
· 22ϵN log |1− 2j

N
|
}
.

Proof. We will use Theorem 21 to bound the decoding error probability in terms of the
Krawtchouk polynomials KS(j) and the probability factors Prv∼µt

[
|vH| = j

]
. Some of

these terms will then be bounded using Proposition 7, and some will be bounded using
Theorem 9. We proceed with the proof; letting l = N3/4 in Theorem 21, we get

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
√
N

3ϵ +
N

k∗ max
S⊆{ϵN±N3/4}

1≤|S|≤2

{ 1(
N
S

) N∑
j=0

Pr
v∼µt

[
|vH| = j

]
KS(j)

2 − 1
}
.

(9)

We want to bound the summation in the second term. We will start with the central
terms j ∈ B. For these we rely on Proposition 7, which states that 2−N

(NS)

∑N
j=0

(
N
j

)
·

KS(j)
2 = 1 for all S ⊆ {0, ..., N}. For any S ⊆ {0, ..., N}, we then get

1(
N
S

) ∑
j∈B

Pr
v∼µt

[
|vH| = j

]
KS(j)

2 ≤ 1(
N
S

) max
j∈B

{
Pr
v∼µt

[|vH| = j] · 1(
N
j

)}∑
j∈B

(
N

j

)
·KS(j)

2

≤ 2N max
j∈B

{
Pr
v∼µt

[|vH| = j] · 1(
N
j

)} . (10)

We then want to bound the contribution of the faraway terms j /∈ B to the summation
in (9), i.e. we want to bound

max
S⊆{ϵN±N3/4}

1≤|S|≤2

{ 1(
N
S

) ∑
j /∈B

Pr
v∼µt

[
|vH| = j

]
KS(j)

2
}
. (11)
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We will want to apply Theorem 9 to every term in this sum. Note that by definition of
Krawtchouk polynomials, for any w,w′ we have

K{w,w′}(y) = Kw(y) +Kw′(y)

≤ 2 ·max
{
Kw(y), Kw′(y)

}
.

We can then bound equation 11 by

(11) ≤ 1(
N

ϵN−N3/4

) ·N max
S⊆{ϵN±N3/4}

1≤|S|≤2
j /∈B

{
Pr
v∼µt

[
|vH| = j

]
KS(j)

2
}

≤ N(
N

ϵN−N3/4

) max
w∈{ϵN±N3/4}

j /∈B

{
Pr
v∼µt

[
|vH| = j

]
· 4Kw(j)

2
}
.

Applying Theorem 9, we get

(11) ≤ 4N( N

ϵN−N
3
4

) max
w∈{ϵN±N

3
4 }

j /∈B

{
Pr
v∼µt

[
|vH| = j

]
· 22h(w)N+2w log |1− 2j

N
|
}

≤ 2N
4/5

N
· 2h(ϵ)N max

j<βN

{
Pr
v∼µt

[
|vH| = j

]
· 22ϵN log(1− 2j

N
)

}
.

Combining this bound for the faraway terms with our bound (10) for the central terms
of the summation, we bound the right-hand side of equation (9) by

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
√
N

3ϵ +
N

k∗ max
j∈B

{
Pr
v∼µt

[|vH| = j] · 2N(
N
j

) − 1

}

+
2h(ϵ)N+N

4
5

k∗ max
j<βN

{
Pr
v∼µt

[
|vH| = j

]
· 22ϵN log(1− 2j

N
)

}
.

6 The Weight Distribution of Transitive Linear Codes

We will now prove Theorem 1. We note that the bound we get is essentially tight, since
for η ∈ (0, 1) the repetition code

C =
{
(z, ..., z) ∈ FN

q : z ∈ FηN
q

}
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is transitive, has dimension ηN , and has weight distribution

Pr
c∼D(C)

[
|c| = αN

]
= q−ηN ·

(
ηN

(1− α)ηN

)
(q − 1)αηN

≥ q−ηN ·
√

8π

e4ηN
· 2h(α)ηN · qαηN logq(q−1)

=

√
8π

e4ηN
· q−(1−hq(α))ηN

for all α ∈ (0, 1). We recall and prove our Theorem 1 below:

Theorem. Let C ⊆ FN
q be a transitive linear code. Then for any α ∈ (0, 1− 1/q) we

have
Pr

c∼D(C)

[
|c| = αN

]
≤ q−(1−hq(α))dim C ,

where D(C) is the uniform distribution over all codewords in C, |c| is the number of
non-zero coordinates of c, and hq is the q-ary entropy

hq(α) = (1− α) logq
1

1− α
+ α logq

q − 1

α
.

Proof. Let M be the t × N generator matrix of C, and let r = rank M = dim C.
Without loss of generality, suppose that the first r columns of M span the column-space
of M . Define

C(α) = {c ∈ C : |c| = αN},

and let Z = (Z1, ..., ZN ) be a uniformly random codeword in C(α). Now C is transitive,
so for every j, k ∈ {1, ..., N} the random variables Zj and Zk are identically distributed.
By linearity of expectation and by definition of C(α), we thus have that for every
j ∈ {1, ..., N},

Pr
Z∼D(C(α))

[Zj = 0] = 1− α. (12)

But under condition (12), Zj has maximal entropy when its remaining mass is uniformly
distributed over {1, ..., q − 1}, i.e. when Pr[Zj = m] = α

q−1
for all m ∈ {1, ..., q − 1}.

The entropy of Zj is thus bounded by

H
Z∼D(C(α))

(Zj) ≤ (1− α) log
1

1− α
+ (q − 1) · α

q − 1
log

q − 1

α

= hq(α) log(q). (13)

We will now show that H(Zj|Z1, ..., Zj−1) = 0 for every j > r. To this end, fix some
j > r. Recall that the columns {M1, ...,Mr} span the column-space of M , so we can
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write the column Mj as Mj =
∑r

k=1 βkMk for some β1, ..., βr ∈ Fq. But any codeword
c ∈ C can be expressed as v(c)M for some v(c) ∈ Ft

q, so any codeword c ∈ C satisfies

cj = v(c)Mj =
r∑

k=1

βkv
(c)Mk =

r∑
k=1

βkck.

The random variable Zj is thus determined by {Z1, ..., Zr}, and so we indeed have

H
Z∼D(C(α))

(Zj|Z1, ..., Zj−1) = 0

for every j > r. Applying (13) and the chain rule for entropy then gives

H(Z) = H(Z1) +
N∑
i=2

H(Zi|Z1, ..., Zi−1)

≤
r∑

i=1

H(Zi)

= r · hq(α) log(q)

Now Z is sampled uniformly from C(α), so H(Z) = log
(
|C(α)|

)
. We thus have

Pr
c∼D(C)

[
|c| = αN

]
=

∣∣C(α)
∣∣

qr

= 2H(Z) · q−r

≤ q−(1−hq(α))·r.

For Reed-Muller codes, we will abuse notation and denote by D(n, d) the uniform
distribution over all codewords in RM(n, d).

Theorem 23. For any n, d < n, and α ∈ (0, 1), the Reed-Muller code RM(n, d) over
the prime field Fq satisfies

Pr
c∼D(n,d)

[
|c| = αN

]
≤ q−(1−hq(α))·( n

≤d).

Proof. This follows immediately from Theorem 1, Fact 12, and Fact 11.

7 List Decoding for Transitive Codes

We now turn to proving Theorem 5. Recall that in section 5 we bounded the minimum
size for the decoding list of a linear code in terms of the weight distribution of its dual
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code. But as we mentioned in the preliminaries, the dual code of a transitive code is
also transitive. For any transitive linear code C, we can thus apply our Theorem 1 for
the weight distribution of C⊥ to get a bound on the size of the decoding list for C. We
restate and prove our Theorem 5 below.

Theorem. Fix any ϵ ∈ (0, 1
2
), η ∈ (0, 1), and N >

(
5
ϵ

)20
. Then any transitive linear

code C ⊆ FN
2 of dimension dim C = ηN can with high probability list-decode ϵ-errors

using a list T of size

|T (x)| = 2N
5/6 · (24ϵηN + 2ϵN log( 2

1−η
)).

Proof. We will show that there exists a function T mapping every x ∈ FN
2 to a subset

T (x) ⊆ C of size

|T (x)| = 2N
5/6 · (24ϵηN + 2ϵN log( 2

1−η
)),

with the property that for every codeword c ∈ C we have

Pr
ρ∼Pϵ

[
c /∈ T (c+ ρ)

]
≤ 2

N
.

Let H denote the parity-check matrix of C. By Lemma 17, it is sufficient to show that

for any N >
(
5
ϵ

)20
and any k > 1 we have

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 1

N
+

2N
5/6

Nk
· (24ϵηN + 2ϵN log( 2

1−η
)). (14)

We will thus prove (14). Recall that for k > N , Proposition 22 yields the following
bound on the left-hand side of (14):

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
√
N

3ϵ +
2N

k
max
j∈B

{
Pr
v∼µt

[|vH| = j] · 2N(
N
j

)}

+
2h(ϵ)N+N

4
5+1

k
max
j /∈B

{
Pr
v∼µt

[
|vH| = j

]
· 22ϵN log(1− 2j

N
)

}
, (15)

where β = 1
2

(
1− 2

√
ϵ̃(1− ϵ̃)

)
for ϵ̃ = ϵ + N−1/4, and B = {βN, ..., (1 − β)N}. Our

goal will be to bound both the central terms j ∈ B and the faraway terms j /∈ B by
using our bounds on the weight distribution of transitive codes. As we’ve seen in section
2, the dual code C⊥ is a transitive linear code of dimension N − dim C. By Theorem 1,
we thus have that for all j ∈ {0, ..., N},

Pr
v∼µt

[
|vH| = j

]
≤ 2−(1−h( j

N
))(1−η)N . (16)
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For any j ∈ B, we then have by Fact 13 that

Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

) ≤ 2−(1−h(j/N))(1−η)N · 2N√
8π
e4N

· 2h(j/N)N

=

√
e4N

8π
· 2(1−h(j/N))ηN .

But for j ∈ B we have β < j
N

< 1− β, so the right-hand side is maximized at j = βN .
Applying Lemma 14, we get

max
j∈B

{
Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

)} ≤
√

e4N

8π
· 2(1−h(β))ηN

≤
√

e4N

8π
· 24ϵ̃(1−ϵ̃)ηN . (17)

We now turn to the faraway terms of equation (15). By equation (16), we have

max
j<βN

{
Pr
v∼µt

[|vH| = j] · 22ϵN log(1− 2j
N
)

}
≤ max

δ<β

{
2−(1−h(δ))(1−η)N · 22ϵN log(1−2δ)

}
.

Note that by definition of β, any δ < β can be written as δ =
1−2

√
αϵ̃(1−ϵ̃)

2
for some

α > 1. By Lemma 14, we can then rewrite our previous expression as

max
j<βN

{
Pr
v∼µt

[|vH| = j] · 22ϵN log(1− 2j
N
)

}
≤ max

α>1

{
2−

2αϵ̃(1−ϵ̃)
ln 2

(1−η)N · 2ϵN log(4αϵ̃(1−ϵ̃))
}
.

But for any positive constant c, the derivative of log(α)− cα is 1
α·ln 2

− c, and the second
derivative is always negative. Thus, the above expression achieves its maximum when
α = ϵ

2ϵ̃(1−ϵ̃)(1−η)
. We then get

max
j<βN

{
Pr
v∼µt

[|vH| = j] · 22ϵN log(1− 2j
N
)

}
≤ 2−

ϵN
ln 2 · 2ϵN log( 2ϵ

1−η
)

≤ 2−h(ϵ)N · 2ϵN log( 2
1−η

), (18)

where in the last line we used the inequality log(1 − x) ≥ − x
(1−x) ln 2

for x < 1 to get

h(ϵ) ≤ −ϵ log(ϵ) + ϵ
ln 2

. We now use equations (17) and (18) to bound the central and
faraway terms of (15) respectively. This gives

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
√
N

3ϵ +
2N

k
·
√

e4N

8π
· 24ϵ̃(1−ϵ̃)ηN +

2N
4
5+1

k
· 2ϵN log( 2

1−η
)

≤ 1

N
+

2N
5/6

Nk
· (24ϵηN + 2ϵN log( 2

1−η
)).

We have shown (14), and so we are done.
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8 List Decoding for Reed-Muller Codes

We will now turn to proving our list-decoding bounds for Reed-Muller codes. The dual
code of the Reed-Muller code RM(n, d) is the code RM(n, n− d− 1), so we can apply
Samorodnitsky’s Theorem 6 to our Proposition 22. We restate and prove our Theorem
4 below.

Theorem. Let ϵ ∈ (0, 1
2
) and γ ∈ (0, 1) be such that 1 − γ ≥ 2

− 2ϵ
(ln 2)2 . Then the

Reed-Muller code RM(n, d) of dimension
(

n
≤d

)
= (1 − γ)N can with high probability

list-decode ϵ-errors using a list T of size

|T | = 2h(ϵ)N−γN+o(N) + 24ϵN+o(N).

Proof. We will show that there exists a function T mapping every x ∈ FN
2 to a subset

T (x) ⊆ RM(n, d) of size

|T | = 2h(ϵ)N−γN+o(N) + 24ϵN+o(N),

with the property that for every codeword c ∈ RM(n, d) we have

Pr
ρ∼Pϵ

[
c /∈ T (c+ ρ)

]
≤ 2

N
.

Let H denote the parity-check matrix of RM(n, d). By Lemma 17, it is sufficient to

show that for any N >
(
5
ϵ

)20
and any k > 1 we have

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 1

N
+

2o(N)

kN

(
24ϵN + 2h(ϵ)N−(1−η)N

)
. (19)

We will thus prove (19). Recall that for k > N , Proposition 22 yields the following
bound on the left-hand side of (19):

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
√
N

3ϵ +
2N

k
max
j∈B

{
Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

)}

+
2h(ϵ)N+N

4
5+1

k
max
j /∈B

{
Pr
v∼µt

[
|vH| = j

]
· 22ϵN log |1− 2j

N
|
}
, (20)

where β = 1
2

(
1− 2

√
ϵ̃(1− ϵ̃)

)
for ϵ̃ = ϵ + N−1/4, and B = {βN, ..., (1 − β)N}. Our

goal is to bound every term in these sums by using the weight distribution bounds
given in Theorems 1 and 6. We bound the central terms in exactly the same way as in
Theorem 5: by Theorem 23 we know that the weight distribution of the Reed-Muller
code satisfies

Pr
v∼µt

[
|vH| = j

]
≤ 2−(1−h( j

N
))(1−η)N ,
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so by Fact 13 we have

max
j∈B

{
Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

)} ≤ max
j∈B

2−(1−h(j/N))(1−η)N · 2N√
8π
e4N

· 2h(j/N)N


= max

j∈B

{√
e4N

8π
· 2(1−h(j/N))ηN

}
.

But B = {βN, ..., (1− β)N}, so by Lemma 14 we have

max
j∈B

{
Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

)} ≤
√

e4N

8π
· 2(1−h(β))ηN

≤
√

e4N

8π
· 24ϵ̃(1−ϵ̃)ηN . (21)

For the faraway terms, we use the weight bound from Theorem 6. By symmetry, we
get that

max
j /∈B

{
Pr
v∼µt

[|vH| = j] · 22ϵN log |1− 2j
N
|
}

≤ 2o(N) ·max
j≤N

2

{
2−(1−η)N

(
1

η

)2j ln 2

· 22ϵN log |1− 2j
N
|

}
= 2o(N) · 2−(1−η)N max

j≤N
2

{
2−2j ln 2·log(η)+2ϵN log(1− 2j

N
)
}
.

(22)

Now the function

g(j) = −2j ln 2 · log(η) + 2ϵN log(1− 2j

N
)

has first derivative
dg

dj
= −2 ln 2 · log(η)− 4ϵ

ln 2 · (1− 2j
N
)
,

and second derivative
dg2

d2j
= − 8ϵ

ln 2 ·N(1− 2j
N
)2

< 0.

Thus g(j) achieves its maximum at j∗ = N
2
+ ϵN

(ln 2)2 log(η)
and is decreasing over [j∗, N

2
].

Whenever η > 2
− 2ϵ

(ln 2)2 , we have j∗ ≤ 0; in that case the argument in equation (22) is
maximized at j = 0, and we get

max
j /∈B

{
Pr
v∼µt

[|vH| = j] · 22ϵN log |1− 2j
N
|
}

≤ 2−(1−η)N+o(N).

Combining this bound for the faraway terms with the bound (21) for the central terms,
we bound the right-hand side of (20) by

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 1

N
+

2o(N)

kN

(
24ϵηN + 2h(ϵ)N−(1−η)N

)
.

We have shown (19), and so we are done.
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A Weight Bounds Comparisons

In this section, we will compare our Theorem 23 with previously known bounds on the
weight distribution of Reed-Muller codes. We recall our Theorem 23 below. Note that
throughout this section, D(n, d) will denote the uniform distribution over all codewords
in RM(n, d), and |c| will denote the number of non-zero coordinates of c.

Theorem. For any n, d < n, and α ∈ (0, 1), the Reed-Muller code RM(n, d) over the
prime field Fq satisfies

Pr
c∼D(n,d)

[
|c| = αN

]
≤ q−(1−hq(α))·( n

≤d),

where we have defined

hq(α) = (1− α) logq
1

1− α
+ α logq

q − 1

α
.

Reed-Muller codes over odd prime fields
We start with Reed-Muller codes over odd prime fields, for which the only preexisting
weight bound we are aware of is the following result of [BGY20]:

Theorem 24 ([BGY20]). For any 0 < δ < 1
2
, there are constants c1, c2 > 0 such that

for any odd prime q and for any integers d, n such that d ≤ δn, we have

Pr
c∼D(n,d)

[ |c|
N

≤ 1− 1

q
− q−c1

n
d

]
≤ q−c2( n

≤d).

This was a generalization of [BHL12], who proved the same result for Reed-Muller
codes over F2. Theorem 24 is very strong for small degrees, but gets weaker as the
degree increases. When d is linear in n we have q−c1

n
d = Θ(1), meaning that in this

regime Theorem 24 can only give a nontrivial bound on normalized weights that are
at least a constant away from 1− 1

q
. Our Theorem 23 gives nontrivial bounds for all

normalized weights < 1− 1
q
, for all degrees d < n.

Reed-Muller codes over F2

We now turn to Reed-Muller codes over F2, for which more results are known. The
same bound as Theorem 24 was proven over F2 by [BHL12]. For comparison with our
Theorem 23, see the discussion above.

In the constant-rate regime (i.e. d = n
2
±O(

√
n)), the strongest known bounds for

contant weights are the following two results of [Sam20]:
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Theorem 25 ([Sam20]). Let
(

n
≤d

)
= η2n = ηN for some η ∈ (0, 1). Then for any

α ∈ (0, 1
2
) we have

Pr
c∼D(n,d)

[|c| ≤ αN ] ≤ 2o(N)

(
1

1− η

)2 ln 2·αN

2−ηN .

This result is strong when α is away from 1/2. For α close to 1/2, the following
bound is stronger.

Theorem 26 ([Sam20]). Let
(

n
≤d

)
= η2n = ηN for some η ∈ (0, 1), and define

A = {1−η2 ln 2

2
, ..., 1

2
}. Then for any α ∈ (0, 1

2
),

Pr
c∼D(n,d)

[|c| ≤ αN ] ≤ 2o(N) ·

{
( N
αN)
2N

if α ∈ A,
1

(1−η2 ln 2)αN (1+η2 ln 2)(1−α)N otherwise.

We note that the combination of Theorems 25 and 26 is stronger than our Theorem
23 whenever both the rate of the code and the normalized weight of the codeword are
constant (i.e. α = Θ(1) and d = n

2
±O(

√
n)).

However, when the normalized weight is subconstant or when the degree is away
from n

2
(i.e. α = o(1) or d = n

2
−Θ(n)), the 2o(N) term becomes too large for Theorems

25 and 26 to give a strong bound. An approach that has been fairly successful in
these two regimes (subonstant rate or subconstant weight) is the line of work of
[KLP12, ASW15, SS20]. To our knowledge, the strongest results for these regimes are
due to [SS20]. We start with their bound for lower weights, i.e. for weights in [0, N

4
].

Theorem 27 ([SS20]). For any integers j, n, d, we have

Pr
c∼D(n,d)

[|c| ≤ 2−j · 2n] ≤ 2
−
(
1−17( j

1− d
n

+
2− d

n

(1− d
n )2

)( d
n
)j−1

)
( n
≤d)+O(n4)

.

We claim that for every d > n
34
, there is some weight threshold Ad < 1

4
for which

our Theorem 23 is stronger than Theorem 27 for all weights larger than AdN . One way
to see this is to note that our Theorem 23 satisfies

Pr[|c| ≤ 2−j · 2n] ≤ 2−
(
1−h(2−j)

)
( n
≤d)

≤ 2−(1−2j·2−j)( n
≤d),

while the expression in Theorem 27 satisfies

2
−
(
1−17( j

1− d
n

+
2− d

n

(1− d
n )2

)( d
n
)j−1

)
( n
≤d) ≥ 2−

(
1−17j( d

n
)j−1

)
( n
≤d).

Thus our Theorem 23 is stronger than Theorem 27 whenever j · 2−(j−1) < 17j · ( d
n
)j−1,

i.e. whenever

j <
log 17

log n
2d

+ 1.
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For any d > n
34
, this gives a nontrivial range.

This concludes our comparison of Theorem 23 with Theorem 27, which was the
bound of [SS20] for weights in [0, N

4
]. We now turn to their bounds for larger weights.

Theorem 28 ([SS20]). Let j, n ∈ N and let 0 < γ(n) < 1
2
−Ω

(√
logn
n

)
be a parameter

(which may be constant or depend on n) such that
j+log 1

1−2γ

(1−2γ)2
= o(n). Then

Pr
c∼D(n,γn)

[|c| ≤ 1− 2−j

2
N ] ≤ 2−2−c(γ,j)( n

≤d)+O(n4),

where c(γ, j) = O

(
γ2j+γ log 1

1−2γ

1−2γ
+ γ

)
.

This bound holds when the degree is smaller than n
2
. For arbitrary degree, [SS20]

gives the following:

Theorem 29 ([SS20]). For any integers n, d and any δ > 0, we have

Pr
c∼D(n,d)

[|c| ≤ 1− δ

2
N ] ≤ e−

δ2

2
·2d .

We will start by comparing our Theorem 23 with Theorem 29. Applying Lemma 14, we
get from Theorem 23 that

Pr
c∼D(n,d)

[|c| ≤ 1− δ

2
N ] ≤ 2−(1−h( 1−δ

2
))·( n

≤d)

≤ e−
δ2

2
·( n

≤d).

Thus our Theorem 23 is strictly stronger than Theorem 29 for all d < n. We will now
compare our Theorem 23 with Theorem 28. Applying Lemma 14, we get from Theorem
23 that

Pr
c∼D(n,d)

[|c| ≤ 1− 2−j

2
N ] ≤ 2−(1−h( 1−2−j

2
))·( n

≤d)

≤ 2−
2−2j

2 ln 2
·( n

≤d).

It follows that our Theorem 23 is stronger than Theorem 28 whenever 2−(2j+1) ≥ 2−c(γ,j),
i.e. whenever

2j + 1 ≤ c(γ, j).

But c(γ, j) := O

(
γ2

1−2γ
· j + γ log 1

1−2γ

1−2γ
+ γ

)
, and γ2

1−2γ
→ ∞ as γ → 1/2. Thus there

exists some constant γ∗ ∈ (0, 1
2
) such that our Theorem 23 is stronger than Theorem 28

whenever d > γ∗n. In private correspondence with Amir Shpilka and Ori Sberlo, we
learned that γ∗ can be computed to be γ∗ ≈ 0.38.
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B Proof of Corollary 3

Recall that for any ϵ ∈ (0, 1) we defined

Aϵ = {αN : h(α) > 1− h(ϵ)−N−1/5},

and that for any code C we denote by D(C⊥) the uniform distribution over the dual
code C⊥. We now restate and prove our Corollary 3.

Corollary. Let C ⊆ FN
2 be a linear code, and let ϵ ∈ (0, 1

2
) be arbitrary. Suppose that

for every j ∈ Aϵ we have

Pr
y∼D(C⊥)

[
|y| = j

]
≤

(
1 + o(N−1)

)(Nj )
2N

,

and suppose that

Pr
y∼D(C⊥)

[
|y| /∈ Aϵ

]
≤ 2N

3
4 ·

∑
i/∈Aϵ

(
N
i

)
2N

.

Then C is resilient to ϵ-errors.

Proof. From Theorem 2, we know that there exists some decoder d : FN
2 → C such that

for all c ∈ C,

Pr
ρ∼Pϵ

[d(c+ ρ) ̸= c] ≤ 2e−
√

N
3ϵ +N max

S⊆{ϵN±N3/4}
1≤|S|≤2

{ 1(
N
S

) N∑
j=0

Pr
c∼C⊥

[
|c| = j

]
KS(j)

2 − 1
}
, (23)

where
(
N
S

)
=

∑
s∈S

(
N
s

)
and where KS =

∑
s∈S Ks for Ks the Krawtchouk polynomial

of degree s. Let ν be such that h(ν) = 1− h(ϵ)−N−1/5, and define the set of weights

Aϵ = {νN, ..., (1− ν)N}.

We will start by bounding the central terms j ∈ Aϵ in equation (23). Applying
Proposition 7 and the first condition in our theorem statement, we immediately get
that for any S ⊆ {0, ..., N},

1(
N
S

) ∑
j∈Aϵ

Pr
c∼C⊥

[
|c| = j

]
KS(j)

2 ≤ 1 + o
( 1

N

)
. (24)

We now turn to the faraway terms j /∈ Aϵ. For these we note that by definition of
Krawtchouk polynomials, for any integer s we have

Ks(x) =
s∑

j=0

(−1)j
(
x

j

)(
N − x

s− j

)
≤

s∑
j=0

(
x

j

)(
N − x

s− j

)
=

(
N

s

)
.
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For any S ⊆ {0, ..., N}, we can then bound the faraway terms j /∈ Aϵ of equation (23)
by

1(
N
S

) ∑
j /∈Aϵ

Pr
c∼C⊥

[
|c| = j

]
KS(j)

2 ≤
(
N

S

)
Pr

[
|y| /∈ Aϵ

]
.

Applying the second condition in our theorem statement in combination with Fact 13
and the subbaditivity of entropy, we get that

max
S⊆{ϵN±N3/4}

1≤|S|≤2

{ 1(
N
S

) ∑
j /∈Aϵ

Pr
c∼C⊥

[
|c| = j

]
KS(j)

2
}
≤ 2

(
N

ϵN +N3/4

)
· 2 · 2−h(ϵ)N−N4/5+N3/4

≤ 4 · 2h(ϵ)N+h(N−1/4)N · 2−h(ϵ)N−N4/5+N3/4

≤ o(
1

N
).

Combining this bound for the faraway terms with our bound (24) for the central terms,
we bound equation (23) by

Pr
ρ∼Pϵ

[d(c+ ρ) ̸= c)] ≤ 2e−
√
N

3ϵ +N · o
( 1

N

)
≤ o(1).

C Lower Bounds on List Decoding

Claim 30. Let ϵ ∈ (0, 1
2
) be arbitrary, and consider any N > 10

ϵ2
. Suppose a code

C ⊆ FN
2 and a decoder dk : FN

2 → C⊗k satisfy

Pr
ρ∼Pϵ

c∼D(C)

[c ∈ dk(c+ ρ)] ≥ 3

4
,

for Pϵ the ϵ-noisy distribution and D(C) the uniform distribution on C. Then we must
have

k ≥ |C| · 2−(1−h(ϵ))N · 2
−h(ϵ)N3/4

8
.

Proof. We will first show that in order for the decoder dk to succeed with high probability,
there must be many codewords c ∈ C for which

|{x ∈ FN
2 : c ∈ dk(x)}| ≳ 2h(ϵ)N .

Intuitively this is because the sphere of radius ϵN around any codeword c contains
≈ 2h(ϵ)N points (and for any sent codeword c, with high probability the received message
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m will satisfy |m+ c| ≈ ϵN). We will then simply double-count the number of pairs
(x, c) for which c ∈ dk(x). On the one hand, there are 2N · k such pairs, since every
received message is mapped to k codewords; on the other hand, there must be at least
about |C| · 2h(ϵ)N pairs, since as we’ve just argued most codewords in C need to be
matched to at least ≈ 2h(ϵ)N points. It follows that we must have

k ≳ |C| · 2
h(ϵ)N

2N
.

Formally, we first note that the theorem condition implies that at least |C|
2

codewords
c ∈ C must satisfy

Pr
ρ∼Pϵ

[c ∈ dk(c+ ρ)] ≥ 1

2
. (25)

Fix any such c. Now from Chernoff’s bound (i.e Lemma 16), we have for N large
enough that

Pr
ρ∼Pϵ

[
|ρ| ≤ ϵN − ϵN3/4

]
≤ 1

4
.

In order for c to satisfy c ∈ dk(c+ ρ) with probability at least 1
2
, there must then be a

subset Sc ⊆ {x ∈ FN
2 : |c+ x| ≥ ϵN − ϵN3/4} satisfying both

x ∈ Sc =⇒ c ∈ dk(x) (26)

and

Pr
ρ∼Pϵ

[
ρ ∈ Sc

]
≥ 1

4
. (27)

But every element x ∈ Sc satisfies |c+ x| ≥ ϵN − ϵN3/4, so every x ∈ Sc satisfies

Pr
ρ∼Pϵ

[
ρ = c+ x

]
≤ ϵϵN−ϵN3/4

(1− ϵ)(1−ϵ)N+ϵN3/4

≤ 2−(1−N−1/4)h(ϵ)N (28)

Equations (27) and (28) imply that any c ∈ C that can be list-decoded by dk with

probability ≥ 1
2
must satisfy |Sc| ≥ 2(1−N−1/4)h(ϵ)N

4
. It then follows from (26) that any

such c must satisfy ∣∣{x ∈ FN
2 : c ∈ dk(x)}

∣∣ ≥ 2(1−N−1/4)h(ϵ)N

4
.

By double counting, we get

2N · k =
∑
c∈C

∣∣{x ∈ FN
2 : c ∈ dk(x)}

∣∣
≥ |C|

2
· 2

(1−N−1/4)h(ϵ)N

4

=
|C|
8

· 2h(ϵ)N−h(ϵ)N3/4

.

The result then follows from rearranging terms.
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D Other Proofs for Sections 1 and 2

D.1 On Known List-Decoding Bounds for Reed-Muller Codes

We recall the known list-decoding bound for Reed-Muller codes (see equation (3) in
section 1):

|T | = 2
ϵN log

4ϵ(1−ϵ)

(1−η)4 ln 2+o(N)

We claim this bound never achieves the information-theoretic 2h(ϵ)N−(N−dim C)+o(N).

Claim 31. For any ϵ ∈ (0, 1
2
) and any γ = γ(ϵ) ∈ (0, 1), we have

ϵ log
4ϵ(1− ϵ)

γ4 ln 2
> h(ϵ)− γ.

Proof. We will show that for any ϵ ∈ (0, 1
2
) and c = γ

ϵ
< 1

ϵ
we have

ϵ log
4ϵ(1− ϵ)

(cϵ)2
> h(ϵ)− cϵ,

i.e. that

f(ϵ, c) := log(1− ϵ) + 2ϵ− 2ϵ log c+ cϵ > 0. (29)

We first fix some ϵ ∈ (0, 1
2
) and compute the c maximizing f(ϵ, c). Note that

∂

∂c
f(ϵ, c) = − 2ϵ

c ln 2
+ ϵ

and

∂2

∂c2
f(ϵ, c) =

2ϵ

c2 ln 2
> 0,

so f(ϵ, c) is minimized at c = 2
ln 2

and increasing over c ∈ [0, 2
ln 2

]. We thus have

min
c< 1

ϵ

f(ϵ, c) =

{
f(ϵ, 2

ln 2
) if ϵ < ln 2

2
,

f(ϵ, 1
ϵ
) otherwise.

(30)

We deal with each case separately. For the case ϵ < ln 2
2
, we want to show that

f(ϵ,
2

ln 2
) = log(1− ϵ) + 2ϵ log(ln 2) +

2ϵ

ln 2
≥ 0.

The first derivative is

∂

∂ϵ
f(ϵ,

2

ln 2
) = − 1

(1− ϵ) ln 2
+ 2 log(ln 2) +

2

ln 2
,
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and the second derivative is

∂2

∂ϵ2
f(ϵ,

2

ln 2
) = − 1

(1− ϵ)2 ln 2
< 0.

Thus the function f(ϵ, 2
ln 2

) is maximized at ϵ∗ = 1 − 1
(2 log(ln 2)+ 2

ln 2
) ln 2

≈ 0.21, and

monotone on each side of ϵ∗. In particular, since ϵ∗ ∈ [0, ln 2
2
] we know that over the

interval [0, ln 2
2
] the function f(ϵ, 2

ln 2
) achieves its minimum at either ϵ = 0 or ϵ = ln 2

2
.

But f(0, 2
ln 2

) = 0 < f( 2
ln 2

, ln 2
2
), so we indeed have that

f(ϵ,
2

ln 2
) ≥ 0

for all ϵ < ln 2
2
. This deals with the first case of (30). For the second case of (30), we

want to show that for all ϵ ∈ (0, 1
2
) we have

f(ϵ,
1

ϵ
) ≥ 0.

But

f(ϵ,
1

ϵ
) = log(1− ϵ) + 2ϵ+ 2ϵ log ϵ+ 1

is decreasing in ϵ and f(1
2
, 2) = 0, so we indeed have f(ϵ, 1

ϵ
) ≥ 0 for all ϵ.

D.2 Duals of Transitive Codes - Proof of Fact 10

Claim. The dual code C⊥ of a transitive code C ⊆ FN
2 is transitive.

Proof. Let i, j ∈ [N ] be arbitrary. Since C is transitive, we know there exists a
permutation π : [N ] → [N ] such that π(j) = i and that for any c = (c1, ..., cN) ∈ C,
we have cπ := (cπ(1),...,π(N)) ∈ C . Clearly π−1 satisfies π−1(i) = j, and we claim that
it also satisfies that vπ−1 ∈ C⊥ for all v ∈ C⊥. For this we note that since cπ ∈ C for
every c ∈ C, we have by definition that every v ∈ C⊥ satisfies∑

k

vkcπ(k) = 0 for all c ∈ C.

We thus have

v ∈ C⊥ =⇒
∑
k

vkcπ(k) = 0 for all c ∈ C

=⇒
∑
k

vπ−1(k)ck = 0 for all c ∈ C

=⇒ vπ−1 ∈ C⊥.
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D.3 Basic Properties of Reed-Muller Codes - Proof of Facts
11 and 12

Fact. Let M be the
(

n
≤d

)
×N generator matrix of the Reed-Muller code. The columns

of M that correspond to the points x ∈ Fn
2 with |x| ≤ d are linearly independent.

Proof. Let M ′ be the submatrix of M whose columns correspond to the points v ∈ Fn
2

with |v| ≤ d. It suffices to show that when you order the columns M ′
v of M

′ in increasing
order of |v|, every column is linearly independent from the preceding ones. But this is
clearly the case, as for the monomial m =

∏
i:vi=1 xi we have Mm,v = 1 and Mm,v′ = 0

for all v′ preceding v.

Fact. For all n and all d < n, the Reed-Muller code RM(n, d) ⊆ FN
2 is transitive.

Proof. Recall that we view each coordinate i ∈ [N ] as a point vi ∈ Fn
2 , and that every

codeword in RM(n, d) is the evaluation vector
(
f(v1), ..., f(vN)

)
of a polynomial f of

degree ≤ d in n variables.
Now fix two points vi, vj ∈ Fn

2 . We want to show that there is a permutation
π : Fn

2 → Fn
2 such that

(i) π(vi) = vj

(ii) If
(
zv1 , ..., zvN

)
∈ RM(n, d) then

(
zπ(v1), ..., zπ(vN )

)
∈ RM(n, d)

To this end, we choose the permutation π(x) = x+ vi + vj. Then:

(i) π(vi) = vi + vi + vj = vj.

(ii) If
(
zv1 , ..., zvN

)
is a codeword, it can be written as

(
zv1 , ..., zvN

)
=

(
f(v1), ..., f(vN )

)
for some polynomial f of degree ≤ d. But then the polynomial

g(x) = f(x + vi + vj) satisfies deg(g) = deg(f) ≤ d, so
(
g(v1), ..., g(vN)

)
must be a codeword. Then since g(x) = f ◦ π(x) by definition, we have that(
zπ(v1), ..., zπ(vN )

)
=

(
f ◦ π(v1), ..., f ◦ π(vN)

)
=

(
g(v1), ..., g(vN)

)
∈ RM(n, d).

D.4 A version of Pinsker’s inequality - Proof of Lemma 14

Lemma. For any µ ∈ (0, 1), we have

µ2

2 ln 2
≤ 1− h

(
1− µ

2

)
≤ µ2
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Proof.

1− h(
1− µ

2
) = 1 +

1− µ

2
log

(
1− µ

2

)
+

1 + µ

2
log

(
1 + µ

2

)
=

1− µ

2
log (1− µ) +

1 + µ

2
log (1 + µ)

=
1

2 ln 2

[
−(1− µ)

∞∑
i=1

µi

i
− (1 + µ)

∞∑
i=1

(−1)i
µi

i

]

=
1

2 ln 2

[
2µ

∞∑
i=1

µ2i−1

2i− 1
− 2

∞∑
i=1

µ2i

2i

]

=
1

ln 2

∞∑
i=1

µ2i

(
1

2i− 1
− 1

2i

)
=

1

2 ln 2

∞∑
i=1

µ2i

i(2i− 1)

Thus 1− h(1−µ
2
) ≥ µ2

2 ln 2
and 1− h(1−µ

2
) ≤ 1

2 ln 2

∑∞
i=1

µ2

i(2i−1)
= 1

2 ln 2
· 2 ln 2 · µ2 = µ2.
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