
Amendment to: Highly Secure and Efficient Routing
Ioannis Avramopoulos and Hisashi Kobayashi

Dept. of Electrical Engineering
School of Engineering and Applied Science
Princeton University, Princeton, NJ 08544
{iavramop, hisashi}@ee.princeton.edu

Randolph Wang
Dept. of Computer Science

School of Engineering and Applied Science
Princeton University, Princeton, NJ 08544

rywang@cs.princeton.edu

Arvind Krishnamurthy
Dept. of Computer Science

Yale University
New Haven, CT 06520

arvind@cs.yale.edu

I. INTRODUCTION

This is an addendum to paper “Highly Secure and Efficient
Routing” that appears in the Proceedings of IEEE Infocom
2004 [1]. The purpose of the addendum is to amend two
security vulnerabilities that we found in the protocols that are
proposed therein. We would like to kindly ask the readers
of “Highly Secure and Efficient Routing” to reference this
addendum in addition to the published paper.

In particular, we will modify Sections III.B, III.C, and V.

II. REGARDING SECTION III.B OF [1]

In Section III.B of [1] we state that the authentication struc-
ture, consisting of message of authentication codes (MACs),
that is used for packets, should be used for ACKs and FAs
as well. However, if this structure is used for ACKs and
FAs, then it gives the adversary the advantage to discredit
any link in the path between the source and the adversarial
router. We will illustrate this with an example. Consider a
path < s, n1, n2, n3, x, . . . >. In this path, s, n1, n2, and n3

are non-faulty, whereas x is faulty. On receipt of a packet from
s, router x generates an FA with valid MACs for routers n3

and n2, and an invalid MAC for router n1. Routers n2 and
n3 will forward the FA, whereas n1 will drop it and, thus, the
source will account a fault to non-faulty link (s, n1).

In the following we amend this vulnerability by providing
a novel way to construct the authenticators of ACKs and FAs.
ACKs and FAs must satify two properties. First, they must be
impractical to forge. Otherwise the adversary will be able to
deny packet delivery without the detection of the location of
the packet delivery failure even if the source and destination
are non-faulty (by forging ACKs) and will be able to discredit
non-faulty elements (by forging FAs). In both cases Byzantine
robustness would be violated. Second, if an ACK or FA verifies
at one non-faulty router in the path, then it must verify at all
other non-faulty routers in the path. Otherwise, the adversary
would gain the opportunity to discredit non-faulty elements as
shown above.

We assume that the source s shares secret keys with all the
routers n1, . . . , ni, . . . , nm in the path that communication will
be carried out. We denote Kni

s
the secret key shared between

the source s and router ni. We also assume a secret key is
shared for every pair of neighboring routers in the path. We

Date: February 24, 2004

will use a one-way hash function h(·). Given y and h(·) it is
impossible to derive any x such that h(x) = y.

Suppose that the sequence number of a packet is k and
its source route is < s, n1, . . . , ni, . . . , nm >, where s is the
source and nm is the destination. The source constructs m hash
chains each of length three. The first element r0

i
(k) of the hash

chain for node i, i = 1, . . . , m, is constructed by concatenating
the sequence number k and the key Kni

s
. The second and third

elements r1

i
(k) and r2

i
(k) are constructed by applying a one-

way hash function h(·) to the previous element. We will call
k the authenticator seed or seed, r1

i
(k) the authenticator, and

r2

i
(k) the authenticator anchor or anchor.
Subsequently the source announces with the packet the

anchors, i.e., elements r2

i
(k), which are protected by the

authentication tag of the packet. The authentication tag of the
packet is as in [1]: a MAC is computed for each downstream
router with the requirement that the MAC for router i is
computed on both the packet and the MACs for routers j, j >

i. Each recipient ni is able to construct r0

i
(k) by concatenating

the seed with the secret key shared with the destination and
then r1

i
(k) by applying h(·). The latter element is used as the

authenticator for the FA, if ni is an intermediate router, or the
ACK.

A. Security

The security of the protocol relies on the secrecy of the keys
and the aforementioned one-way property of hash function
h(·). I.e., a router j cannot derive the authenticator r1

i
(k) for

any other router i since j cannot infer r0

i
(k) because of the

secrecy of Kni

s
and since it is impossible to derive any x such

that h(x) = r2

i
(k). We should point out that a faulty source

can cause ACKs or FAs to be dropped at non-faulty routers
by providing wrong authenticators (i.e., an incorrect value of
r2

i
(k)). Requiring from downstream routers to sanity check

that h(r1

i
(k)) = r2

i
(k) would add unnecessary cryptographic

overhead since the source has other means to create the same
effect [1].

III. REGARDING SECTION III.D OF [1]

The aforementioned authentication mechanism does not im-
pose prefix span restrictions on the path calculation algorithm.

IV. REGARDING SECTION V OF [1]

In Section V.A of [1] two optimizations are proposed for
fault-free paths. Packets are distinguished in two types: normal



and query. FAs do not need to be generated for normal packets
but, in the event of drops, enough state is maintained for query
packets to identify the locations of packet failures. Normal
packets still require a destination ACK which, for correctness,
must now be authenticated as in above (using a single hash el-
ement). Modifying the fault location identification mechanism
using the correct structure is straightforward.

In the second optimization of the same section the source
authenticates control parameters only of the packet to inter-
mediate routers but provides a MAC of the full packet to the
destination. The destination can, therefore, detect a modifica-
tion and, in such event, reflect in the ACK the hash of the
(modified) packet, which intermediate routers compare with
the hash of their stored packet in order to detect the location
of the modification. This protocol requires the destination to
authenticate an arbitrary message to upstream routers and,
therefore, a single hash element is not sufficient. Even with an
ACK of the structure of [1] the protocol is correct provided
that the source associates faults with the destination only (as
the destination can cause the ACK to be dropped at any non-
fault router, and, thus, discredit any non-faulty link).

Section V.B of [1] proposes a mechanism to mitigate the
delay that malicious router can introduce to packets without
being identified. This mechanism requires from downstream
routers to communicate to their correspoding upstream routers,
in a secure way, information on the delay that packets experi-
ence in them. Two methods to communicate this information
are suggested. In the first, each router authenticates to every
upstream router the delay information using the authentication
structure of data packets. This method is vulnerable to the
aforementioned attack (i.e., it gives adversarial routers the
possibility to discredit any of their upstream links by forging
MACs). The second method requires a single destination ACK.
This method is secure provided that

• faults are associated with the given destination only and
• the authentication tag of the ACK uses the structure of

data packets in Awerbuch et al.

We next provide the reason that the authentication tag of
ACKs in [1] is not sufficient. Consider the following path: <

s, . . . , x1, u, v, x2, . . . , t >. In this path routers x1 and x2 are
malicious. Suppose that the packet from the source s contains a
query for the delay. Router x1 instead of forwarding the packet
to u it detours the packet to x2. Router x2 before forwarding
the packet appends bogus query replies that appear to originate
from u and v. Destination t will reply with an ACK that will
arrive at x2 which will detour the packet to x1. The source
will accept bogus query replies from u and v.

This vulnerability can be amended if the authentication tag
of the ACK has the same structure as the source authentication
tag of Awerbuch et al., i.e., with an encryption step in addition
to the MAC computation, that enforces the ACK to follow the
complete list of routers in the path. Therefore, the approval of
the ACK by routers u and v in the above example cannot be
bypassed.

REFERENCES

[1] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy, “Highly
secure and efficient routing,” in Proc. IEEE Infocom 2004, Hong Kong,
Mar. 2004.


