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Abstract. We continue the study of multicast cost sharing from the
viewpoints of both computational complexity and economic mechanism
design. We provide fundamental lower bounds on the network complex-
ity of group-strategyproof, budget-balanced mechanisms. We also extend
a classical impossibility result in game theory to show that no strat-
egyproof mechanism can be both approximately efficient and approxi-
mately budget-balanced.

1 Introduction

In the standard unicast model of Internet transmission, each packet is sent to
a single destination. Although unicast service has great utility and widespread
applicability, it cannot efficiently transmit popular content, such as movies or
concerts, to a large number of receivers; the source would have to transmit a
separate copy of the content to each receiver independently. The multicast model
of Internet transmission relieves this problem by setting up a shared delivery
tree spanning all the receivers; packets sent down this tree are replicated at
branch points so that no more than one copy of each packet traverses each link.
Multicast thus greatly reduces the transmission costs involved in reaching large
user populations.
The large-scale, high-bandwidth multicast transmissions required for movies

and other potential sources of revenue are likely to incur substantial transmission
costs. The costs when using the unicast transmission model are separable in that
the total cost of the transmission is merely the sum of the costs of transmission to
each receiver. Multicast’s use of a shared delivery tree greatly reduces the overall
transmission costs, but, because the total cost is now a submodular but nonlinear
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function of the set of receivers, it is not clear how to share the costs among the
receivers. A recent series of papers has addressed the problem of cost sharing
for Internet multicast transmissions. In the first paper on the topic, Herzog,
Shenker, and Estrin [9], considered axiomatic and implementation aspects of the
problem. Subsequently, Moulin and Shenker [14] studied the problem from a
purely economic point of view. Several more recent papers [5, 2, 1, 7] adopt the
distributed algorithmic mechanism design approach, which augments a game-
theoretic perspective with distributed computational concerns.1 In this paper,
we extend the results of [5] by considering a more general computational model
and approximate solutions. We also extend a classic impossibility [8] result by
showing that no strategyproof mechanism can be both approximately efficient
and approximately budget-balanced.

1.1 Multicast Cost Sharing Model

We use the multicast-transmission model of [5]: There is a user population P re-
siding at a set of network nodes N , which are connected by bidirectional network
links L. The multicast flow emanates from a source node αs ∈ N ; given any set
of receivers R ⊆ P , the transmission flows through a multicast tree T (R) ⊆ L
rooted at αs and spans the nodes at which users in R reside. It is assumed that
there is a universal tree T (P ) and that, for each subset R ⊆ P , the multicast tree
T (R) is merely the minimal subtree of T (P ) required to reach the elements in R.
This approach is consistent with the design philosophy embedded in essentially
all multicast-routing proposals.
Each link l ∈ L has an associated cost c(l) ≥ 0 that is known by the nodes on

each end, and each user i assigns a utility value ui to receiving the transmission.
Note that ui is known only to user i a priori, and hence user i can strategize by
reporting any value vi ≥ 0 in place of ui. A cost-sharing mechanism determines
which users receive the multicast transmission and how much each receiver is
charged. We let xi ≥ 0 denote how much user i is charged and σi denote whether
user i receives the transmission; σi = 1 if the user receives the multicast transmis-
sion, and σi = 0 otherwise. We use u to denote the input vector (u1, u2, . . . , u|P |).
The mechanismM is then a pair of functionsM(u) = (x(u), σ(u)). The practical
feasibility of deploying the mechanism on the Internet depends on the network
complexity of computing the functions x(u) and σ(u). It is important to note
that both the inputs and outputs of these functions are distributed throughout
the network; that is, each user inputs his ui from his network location, and the
outputs xi(u) and σi(u) must be delivered to him at that location.
The receiver set for a given input vector is R(u) = {i | σi = 1}. A user’s

individual welfare is given by wi = σiui−xi. The cost of the tree T (R) reaching
a set of receivers R is c(T (R)), and the overall welfare, or net worth, is NW (R) =
uR − c(T (R)), where uR =

∑

i∈R ui and c(T (R)) =
∑

l∈T (R) c(l). The overall

1 In particular, these recent papers study the network complexity of the problem. This
measure of complexity takes into account both local computational costs and several
aspects of communication costs; see [6] for a thorough introduction to distributed
algorithmic mechanism design.
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welfare measures the total benefit of providing the multicast transmission (the
sum of the utilities minus the total cost).

Our goal is to explore the relationship between incentives and computational
complexity, but, before we do so, we first comment on several aspects of the
model. The cost model we employ is a poor reflection of reality, in that trans-
mission costs are not per-link; current network-pricing schemes typically only
involve usage-based or flat-rate access fees, and the true underlying costs of
network usage, though hard to determine, involve small incremental costs (i.e.,
sending additional packets is essentially free) and large fixed costs (i.e., installing
a link is expensive). However, we are not aware of a well-validated alternative
cost model, and the per-link cost structure is intuitively appealing, relatively
tractable, and widely used.

There are certainly cases, such as the high-bandwidth broadcast of a long-
lived event such as a concert or movie, in which the bandwidth required by the
transmission is much greater than that required by a centralized cost-sharing
mechanism (i.e., sending all the link costs and utility values to a central site at
which the receiver set and cost shares could be computed). For these cases, our
feasibility concerns would be moot. However, Internet protocols are designed to
be general-purpose; what we address here is the design of a protocol that would
share multicast costs for a wide variety of uses, not just long-lived and high-
bandwidth events. Thus, the fact that there are scenarios (e.g., the transmission
of a shuttle mission, as explained below) in which our feasibility concerns are
relevant is sufficient motivation; they need not be relevant in all scenarios.

In comparing the bandwidth required for transmission to the bandwidth re-
quired for the cost-sharing mechanism, one must consider several factors. First,
and most obvious, is the transmission rate b of the application. For large multi-
cast groups, it will be quite likely that there will be at least one user connected
to the Internet by a slow modem. Because the multicast rate must be chosen to
accommodate the slowest user, one can’t assume that b will be large. Second, the
bandwidth consumed on any particular link by centralized cost sharing mecha-
nisms scales linearly with the number of users p = |P |, but the multicast’s usage
of the link is independent of the number of users. Third, one must consider the
time increment ∆ over which the cost accounting is done. For some events, such
as a movie, it would be appropriate to calculate the cost shares once (at the
beginning of the transmission) and not allow users to join after the transmission
has started. For other events, such as the transmission of a shuttle mission, users
would come and go during the course of the transmission. To share costs accu-
rately in such cases, the time increment ∆ must be fairly short. The accounting
bandwidth on a single link scales roughly as p, which must be compared to
the bandwidth ∆b used over a single accounting interval. Although small multi-
cast groups with large ∆ and b could easily use a centralized mechanism, large
multicast groups with small ∆ and b could not.

We have assumed that budget-balanced cost sharing, where the sum of the
charges exactly covers the total incurred cost, is the goal of the charging mech-
anism. If the charging mechanism were being designed by a monopoly network
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operator, then one might expect the goal to be maximizing revenue. There have
been some recent investigations of revenue-maximizing charging schemes for mul-
ticast (see, e.g., [7]), but here we assume, as in [9, 14, 5, 2, 1], that the charging
mechanism is decided by society at large (e.g., through standards bodies) or
through competition. Competing network providers could not charge more than
their real costs (or otherwise their prices would be undercut) nor less than their
real costs (or else they would lose money), and so budget balance is a reasonable
goal in such a case. For some applications, such as big-budget movies, the band-
width costs will be insignificant compared to the cost of the content, and then
different charging schemes will be needed, but for low-budget or free content
(e.g., teleconferences) budget-balanced cost-sharing is appropriate.
Lastly, in our model it is the users who are selfish. The routers (represented

by tree nodes), links, and other network-infrastructure components are obedi-
ent. Thus, the cost-sharing algorithm does not know the individual utilities ui,
and so users could lie about them, but once they report them to the network
infrastructure (e.g., by sending them to the nearest router or accounting node),
the algorithms for computing x(u) and σ(u) can be reliably executed by the
network. Ours is the simplest possible strategic model for the distributed algo-
rithmic mechanism-design problem of multicast cost sharing, but, even in this
simplest case, determining the inherent network complexity of the problem is
non-trivial. Alternative strategic models (e.g., ones in which the routers are
selfish, and their strategic goals may be aligned or at odds with those of their
resident users) may also present interesting distributed algorithmic mechanism-
design challenges. Preliminary work along these lines is reported in [15].

1.2 Statement of Results

In order to state our results more precisely, we need additional notation and
terminology.
A strategyproof cost-sharing mechanism is one that satisfies the property

that wi(u) ≥ wi(u|iµi), for all u, i, and µi. (Here, (u|iµi)j = uj , for j 6= i, and
(u|iµi)i = µi. In other words, u|iµi is the utility profile obtained by replacing
ui by µi in u.) Strategyproofness does not preclude the possibility of a group of
users colluding to improve their individual welfares. Any reported utility profile v
can be considered a group strategy for any group S ⊇ {i | vi 6= ui}. A mechanism
M is group-strategyproof (GSP) if there is no group strategy such that at least
one member of the strategizing group improves his welfare while the rest of the
members do not reduce their welfare. In other words, if M is GSP, the following
property holds for all u, v, and S ⊇ {i|ui 6= vi}: either wi(v) = wi(u), ∀i ∈
S, or ∃i ∈ S such that wi(v) < wi(u).
In general, we only consider mechanisms that satisfy four natural require-

ments2:
No Positive Transfers (NPT): xi(u) ≥ 0; in other words, the mechanism
cannot pay receivers to receive the transmission.

2 The one exception is Section 4, in which we do not assume SYM; that section contains
an impossibility result, and so not making this assumption only makes the section
stronger.
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Voluntary Participation (VP): wi(u) ≥ 0; this implies that users are not
charged if they do not receive the transmission and that users who do receive
the transmission are not charged more than their reported utilities.
Consumer Sovereignty (CS): For given T (P )3 and link costs c(·), there exists
some κ such that σi(u) = 1 if ui ≥ κ; this condition ensures that the network
cannot exclude any agent who is willing to pay a sufficiently large amount,
regardless of other agents’ utilities.
Symmetry4 (SYM): If i and j are at the same node or are at different nodes
separated by a zero-cost path, and ui = uj , then xi = xj .
In addition to these basic requirements, there are certain other desirable

properties that one could expect a cost-sharing mechanism to possess. A cost-
sharing mechanism is said to be efficient if it maximizes the overall welfare, and
it is said to be budget-balanced if the revenue raised from the receivers covers the
cost of the transmission exactly. It is a classical result in game theory [8] that
a strategyproof cost-sharing mechanism that satisfies NPT, VP, and CS cannot
be both budget-balanced and efficient. Moulin and Shenker [14] have shown that
there is only one strategyproof, efficient mechanism, called marginal cost (MC)
that satisfies NPT, VP, and CS. They have also shown that, while there are
many GSP, budget-balanced mechanisms that satisfy NPT, VP, and CS, the
most natural one to consider is the Shapley value (SH), defined in Section 2
below, because it minimizes the worst-case efficiency loss.
Both MC and SH also satisfy the SYM property. The egalitarian (EG) mech-

anism of Dutta and Ray [3] is another well studied GSP, budget-balanced mech-
anism that satisfies the four basic requirements. Jain and Vazirani [11] present a
novel family of GSP, approximately budget-balanced mechanisms5 that satisfy
NPT, VP, and CS. Each mechanism in the family is defined by its underlying
cost-sharing function, and the resulting mechanism satisfies the SYM property
whenever the underlying function satisfies it. We use the notation JV to refer to
the members of the Jain-Vazirani family that satisfy SYM.
It is easy to see (and is noted in [5]) that both MC and SH are polynomial-

time computable by centralized algorithms. Furthermore, there is a distributed
algorithm given in [5] that computes MC using only two short messages per link
and two simple calculations per node. By contrast, [5] notes that the obvious
algorithm that computes SH requires Ω(|P | · |N |) messages in the worst case
and shows that, for a restricted class of algorithms (called “linear distributed
algorithms”), there is an infinite set of instances with |P | = O(|N |) that require
Ω(|N |2) messages. Jain and Vazirani [11] give centralized, polynomial-time algo-
3 For brevity, we often use T (P ) to denote four components of a multicast cost-sharing
problem instance: the node-set N , the link-set L, the locations of the agents, and
the multicast-source location αs.

4 This straightforward definition is less restrictive than the one given by Moulin and
Shenker [14]. The SH, JV, and EG mechanisms that we use as examples satisfy the
more stringent definition of symmetry in [14] as well.

5 The mechanisms in [11] actually satisfy a more stringent definition of approximate
budget balance than we use; thus, our network-complexity lower bounds apply to
them a fortiori.
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rithms to compute the approximately budget-balanced mechanisms in the class
JV.
In this paper, we show that:

– Any distributed algorithm, deterministic or randomized, that computes a
budget-balanced, GSP multicast cost-sharing mechanism must send Ω(|P |)
bits over linearly many links in the worst case. This lower bound applies, in
particular, to the SH and EG mechanisms.

– Any distributed algorithm, deterministic or randomized, that computes an
approximately budget-balanced, GSP multicast cost-sharing mechanism must
send Ω(log(|P |)) bits over linearly many links in the worst case. This lower
bound applies, in particular, to the SH, EG, and JV mechanisms.

In order to prove the first of these lower bounds (i.e., the one for exact budget
balance), we first prove a lower bound that holds for all mechanisms that cor-
respond to strictly cross-monotonic cost-sharing functions. Cross-monotonicity,
a technical property defined precisely in Section 2, means roughly that the cost
share attributed to any particular receiver cannot increase as the receiver set
grows; the SH and EG cost-sharing functions for a broad class of multicast trees
are examples of strictly cross-monotonic functions but not the only examples.
Our lower bound on the network complexity of strictly cross-monotonic mecha-
nisms may be applicable to problems other than multicast.
Finally, we prove the following generalization of a classical result in game

theory [8]:

– There is no strategyproof multicast cost-sharing mechanism satisfying NPT,
VP, and CS that is both approximately efficient and approximately budget-
balanced.

In what follows, most proofs and technical details are omitted because of
space limitations. They can be found in our journal submission [4].

2 Exact submodular cost sharing

In this section, we prove a basic communication-complexity lower bound that
applies to the distributed computation of many submodular cost-sharing mech-
anisms. We first prove this lower bound for all mechanisms that satisfy “strict
cross-monotonicity” as well as the four basic properties discussed in Section 1.
We then show that, whenever the underlying cost function is strictly subadditive,
the resulting Shapley-value mechanism is strictly cross-monotonic and hence has
poor network complexity. Finally, we discuss the special case of multicast cost
sharing and describe very general conditions under which the multicast cost will
be strictly subadditive. In particular, we present an infinite family of instances
that have strictly subadditive costs and show that any cost-sharing mechanism
that satisfies the four basic requirements must have poor network complexity on
these instances.
Consider the general situation in which we want a mechanism to allow the

users to share the cost of a common service. We restrict our attention to the case
of binary preferences: User i is either “included,” by which he attains utility ui,
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or he is “excluded” from the service, giving him 0 utility. A mechanism can use
the utility vector u as input to compute a set R(u) of users who receive the
service and a payment vector x(u). Further, suppose that the cost of serving a
set S ⊆ P of the users is given by C(S). This cost function is called submodular
if, for all S, T ⊆ P , it satisfies: C(S ∪ T ) + C(S ∩ T ) ≤ C(S) + C(T ).
Submodularity is often used to model economies of scale, in which the marginal

costs decrease as the serviced set grows. One example of a submodular cost func-
tion is the one presented in Section 1, where the cost of delivering a multicast
to a set R of receivers is the sum of the link costs in the smallest subtree of the
universal tree that includes all locations of users in R.
Moulin and Shenker [13, 14] have shown that any mechanism for submodular

cost sharing that satisfies budget-balance, GSP, VP, and NPT must belong to
the class of cross-monotonic cost-sharing mechanisms. A mechanism in this class
is completely characterized by its set of cost-sharing functions g = {gi : 2P →
<≥0}. Here gi(S) is the cost that g attributes to user i if the receiver set is
S. For brevity, we will refer to g = {gi} as a “cost-sharing function,” rather
than a set of cost-sharing functions. We say that g is cross-monotonic if, ∀i ∈
S,∀T ⊆ P, gi(S ∪ T ) ≤ gi(S). In addition, we require that gi(S) ≥ 0 and,
∀j /∈ S, gj(S) = 0. Then, the corresponding cross-monotonic mechanism Mg =
(σ(u), x(u)) is defined as follows: The receiver set R(u) is the unique largest set
S for which gi(S) ≤ ui, for all i. This is well defined, because, if sets S and T
each satisfy this property, then cross-monotonicity implies that S ∪ T satisfies
it. The cost shares are then set at xi(u) = gi(R(u)).
There is a natural iterative algorithm to compute a cross-monotonic cost-

sharing mechanism [14, 5]: Start by assuming the receiver set R0 = P , and
compute the resulting cost shares x0

i = gi(R
0). Then drop out any user j such

that uj < x0
j ; call the set of remaining users R

1. The cost shares of other users

may have increased, so we need to compute the new cost shares x1
i = gi(R

1)
and iterate. This process ultimately converges, terminating with the receiver set
R(u) and the final cost shares xi(u).
Now, we consider a subclass of the cross-monotonic mechanisms:

Definition 1 A cross-monotonic cost-sharing function g = {gi : 2P → <≥0} is
called strictly cross-monotonic if, for all S ⊂ P, i ∈ S, and j /∈ S, gi(S∪ j) <
gi(S). The corresponding mechanism Mg is called a strictly cross-monotonic
mechanism.
We now prove a lower bound on the communication complexity of strictly

cross-monotonic cost-sharing mechanisms. Our proof is a reduction from the
set disjointness problem: Consider a network consisting of two nodes A and B,
separated by a link l. Node A has a set S1 ⊆ {1, 2, . . . , r}, node B has another
set S2 ⊆ {1, 2, . . . , r}, and one must determine whether the sets S1 and S2 are
disjoint. It is known that any deterministic or randomized algorithm to solve
this problem must send Ω(r) bits between A and B. (Proofs of this and other
basic results in communication complexity can be found in [12].)
Theorem 1 Suppose Mg is a strictly cross-monotonic mechanism correspond-
ing to a cost-sharing function g and satisfying VP, CS, and NPT. Further, sup-
pose that the mechanism must be computed in a network in which a link (or set
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of links) l is a cut and there are Ω(|P |) users on each side of l. Then, any deter-
ministic or randomized algorithm to compute Mg must send Ω(|P |) bits across
l in the worst case.

Proof. For simplicity, assume that the network consists of two nodes A and B
connected by one link l and that there are r = |P |/2 users at each of the two
nodes. (The proof of the more general case is identical.) Arbitrarily order the
users at each node. We can now call the users a1, a2, . . . , ar and b1, b2, . . . , br.
Because the mechanism Mg is strictly cross-monotonic, we can find a real value
d > 0 such that, for all S ⊂ P, i ∈ S, j /∈ S, gi(S ∪ j) < gi(S)− d.
For each user i ∈ P , we will define two possible utility values tLi and t

H
i . For

k = 1, 2, · · · , |P |2 ,

tHak
= gak

({a1, a2, . . . , ak, b1, b2, . . . , bk}), tLak
= tHak

− d

tHbk
= gbk

({a1, a2, . . . , ak, b1, b2, . . . , bk}), tLbk
= tHbk

− d

Now, we show how to reduce from the set disjointness problem to the mech-
anism Mg. Node A gets a subset S1 ⊆ {1, . . . , r} and constructs a utility vector
u for the users at A, defined by, ∀i ∈ S1, uai

= tHai
, and, ∀i /∈ S1, uai

= tLai
.

Similarly, node B is given set S2 and constructs a utility vector v for the users
at B, defined by, ∀i ∈ S2, vbi

= tHbi
, and, ∀i /∈ S2, vbi

= tLbi
.

They now run mechanism Mg on input (u, v) and check whether the receiver
set Rg(u, v) is empty.
Claim: Rg(u, v) is empty iff S1 and S2 are disjoint.
Proof of claim: To show the “if” direction, we can simulate the iterative al-
gorithm to compute the receiver set. We start with R = P . Then, because S1

and S2 are disjoint, either r /∈ S1 or r /∈ S2. Assume, without loss of gener-
ality, that r /∈ S1. Now, uar

= tLar
< gar

(R), and hence ar must drop out of
the receiver set R. But now, because of strict cross-monotonicity, it follows that
gbr
(P − {ar}) > gbr

(P ) + d > tHbr
, and so br must also drop out of the receiver

set. Repeating this argument for r−1, r−2, . . . , 1, we can show that the receiver
set must be empty.
To show the “only if” direction, assume that i ∈ S1 ∩ S2. Then, let T =

{a1, . . . , ai, b1, . . . , bi}. uai
= tHai

= gai
(T ), and vai

= tHbi
= gbi

(T ). Further, for

all j < i, it follows from strict cross-monotonicity that gaj
(T ) < tLaj

≤ uaj
,

and gbj
(T ) < tLbj

≤ vbj
(T ). Thus, the receiver set Rg(u, v) ⊇ T , and hence it is

nonempty. 2
Theorem 1 follows from this claim and the communication complexity of set

disjointness. ut

2.1 Strictly Subadditive Cost Functions

In this section, we show that, for a class of submodular cost functions, the
Shapley-value mechanism (which is perhaps the most compelling mechanism
from an economic point of view) is strictly cross-monotonic and hence has poor
network complexity. We also show that this is not a property peculiar to the
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Shapley-value mechanism alone; for these cost functions, the poor network com-
plexity holds for a large class of mechanisms.

Theorem 1 provides a sufficient condition, strict cross-monotonicity, for a
mechanism to have poor network complexity. However, for some submodular cost
functions, it is possible that no mechanism satisfies this condition: If the costs are
additive, i.e., if the cost of serving a set S is exactly the sum of the costs of serving
each of its members individually, then there is a unique mechanism satisfying
the basic properties. This mechanism is defined by R(u) = {i|ui ≥ C({i})} and
xi(u) = C({i}) if i ∈ R(u), and xi(u) = 0 otherwise. This mechanism is very
easy to compute, either centrally or in a distributed manner, because there is no
interaction among the users’ utilities; in essence, we have |P | independent local
computations to perform.

We need to exclude these trivial cost functions in order to prove general
lower bounds for a class of submodular functions. This leads us to consider
submodular cost functions that are strictly subadditive: ∀S ⊆ P , S 6= ∅, and,
∀i ∈ P , C(S ∪ {i}) < C(S) + C({i}).
For a given cost function C, there may be many g = {gi} for which the

corresponding mechanism Mg satisfies the basic properties NPT, VP, CS, and
SYM. However, Moulin and Shenker [13, 14] have shown that, for any given
submodular cost function, the cross-monotonic mechanism that minimizes the
worst-case efficiency loss is the Shapley-value mechanism (SH). This is a cross-
monotonic cost-sharing mechanism corresponding to a function gSH , defined by:

∀S ⊆ P ∀i ∈ S, gSHi (S) =
∑

R⊆S−{i}

|R|!(|S| − |R| − 1)!
|S|! [C(R ∪ {i})− C(R)]

The SH mechanism is therefore a natural mechanism to choose for submodular
cost sharing. The following lemma shows that this mechanism has poor network
complexity.

Lemma 1. The Shapley-value mechanism for a strictly subadditive cost function
is strictly cross-monotonic.

Corollary 1. For a strictly subadditive cost function, any algorithm (determin-
istic or randomized) that computes the SH mechanism in a network must com-
municate Ω(|P |) bits across any cut that has Θ(|P |) users on each side of the
cut. ut

Note that the network may consist of a root node αs with no resident users,

a node A with |P |
2 resident users, another node B with |P |

2 resident users, a link
from αs to A, and a path from A to B consisting of |N | − 3 nodes, each with no
resident users. Each link in the path from A to B is a cut with Θ(|P |) users on
each side, and thus Ω(|P |) bits must be sent across linearly many links. In what
follows, we call these the path instances.
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2.2 Multicast cost sharing

We now return to the special case of multicast cost sharing. Recall that the cost
function associated with an instance of the multicast cost-sharing problem is
determined by the structure of the universal multicast tree T , the link costs,
and the locations of the users in the tree; so the cost C(S) of serving user set
S ⊆ P is

∑

l∈T (S) c(l), where T (S) is the smallest subtree of T that includes all
nodes at which users in S reside. It is not hard to show that there are many
instances that give rise to strictly subadditive functions C. In fact, we have the
following lemma:

Lemma 2. Consider any instance of multicast cost sharing in which, for any
two potential receivers i and j, there exists a link l ∈ T ({i}) ∩ T ({j}) such that
c(l) > 0. The cost function associated with this instance is strictly subadditive.

For example, whenever the source of the multicast has only one link from it,
and this link has non-zero cost, the associated cost function is strictly subad-
ditive. One such family of instances are path instances with cost C on the link
from αs to A and cost 0 on all the other links.
It follows immediately from Corollary 1 that the Shapley-value mechanism

for this family of trees requires Ω(|P |) bits of communication across linearly
many links. In addition, we now show that any mechanism that satisfies the
basic properties must be identical to the SH mechanism on these path instances;
thus, the lower bound extends to all such mechanisms.

Lemma 3. Consider multicast cost-sharing problems induced by path instances.
Let Mg be a cross-monotonic cost-sharing mechanism that satisfies SYM, corre-
sponding to a cost-sharing function g = {gi}. Then, g (and Mg) are completely
determined on these instances by ∀S ⊆ P,∀i ∈ S, gi(S) =

C
|S| .

It follows from Lemma 3 that any such mechanism must be strictly cross-
monotonic on this family of instances. Thus, Theorem 1 and Lemma 3 imply the
following lower bound for multicast cost sharing.

Theorem 2 Any distributed algorithm, deterministic or randomized, that com-
putes a budget-balanced, GSP multicast cost-sharing mechanism exactly must
send Ω(|P |) bits over linearly many links in the worst case. ut
Note that this lower bound applies to the EG mechanism for multicast cost-

sharing defined in Section 1.

3 Network complexity of approximately budget-balanced
mechanisms

For our purposes in this section, a κ-approximately budget-balanced mechanism,
where κ > 1 is a constant, is a mechanism (σ, x) with the following properties:
VP, NPT, CS, SYM, and

∀c(·), T (P ), and u : (1/κ) · c(T (R(u))) ≤
∑

i∈R(u)

xi(u) ≤ κ · c(T (R(u))).
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An approximately budget-balanced mechanism is one that is κ-approximately
budget-balanced for some κ > 1.

Theorem 3 Any distributed algorithm, deterministic or randomized, that com-
putes a κ-approximately budget-balanced, GSP multicast cost-sharing mecha-

nism, where κ ≤
√
2 − ε, for some fixed ε > 0, must send Ω( log |P |log κ ) bits of

communication over linearly many links in the worst case.

Once again, the worst-case instances include the path instances defined in
Section 2. For the proof of Theorem 3, please refer to our journal submission [4].
For a general discussion of what it means to “approximate a mechanism,” see,
e.g., [16, 2, 6].

4 An impossibility result for approximate budget-balance
and approximate efficiency

In this section, we do not assume that the cost-sharing mechanisms have the
SYM property; the impossibility result that we present here does not require
this assumption. Furthermore, this result only requires the mechanism to be
strategyproof, not GSP as in Section 3.
We first review the definition of the MC mechanism, which was shown by

Moulin and Shenker [14] to be the only efficient mechanism that satisfies VP,
NPT, and CS. Given an input utility profile u, the MC receiver set is the unique
largest efficient set of users. To compute it, as shown in [5], one recursively
computes the welfare (also known as net worth or efficiency) of each node β ∈ N :

W (β) =











∑

γ∈Ch(β)
W (γ)≥0

W (γ)











− c(l) +
∑

i∈Res(β)

ui ,

where Ch(β) is the set of children of β in the tree, Res(β) is the set of users
resident at β, and c(l) is the cost of the link connecting β to its parent node.
Then, the largest efficient set R(u) is the set of all users i such that every node
on the path from i to the root αS has nonnegative welfare. The total efficiency
is NW (R(u)) =W (αS).
Let X(i, u) be the node with minimum welfare value in the path from i to

its root in its partition. Then, the cost share xi(u) of user i is defined as

xi(u) = max(0, ui −W (X(i, u))) ∀i ∈ R(u)

xi(u) = 0 ∀i /∈ R(u)

If multiple nodes on the path have the same welfare value, we let X(i, u) be the
one nearest to i.
By a γ-approximately efficient mechanism, where 0 < γ < 1, we mean one

that always achieves total efficiency that is at least γ times the total efficiency
achieved by MC.
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Theorem 4 A strategyproof mechanism for multicast cost sharing that satisfies
the basic requirements of NPT, VP, and CS cannot achieve both γ-approximate
efficiency and κ-approximate budget-balance for any pair of constants κ and γ.

Both the proof of Theorem 4 and an explicit family of instances on which
no strategyproof mechanism satisfying the basic requirements achieves approx-
imate efficiency and approximate budget balance can be found in our journal
submission [4].
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