
On the Use of Trace Sampling for
Architectural Studies of Desktop Applications

Patrick Crowley and Jean-Loup Baer
Department of Computer Science & Engineering

Box 352350
University of Washington
Seattle, WA 98195-2350�

pcrowley, baer � @cs.washington.edu

Abstract

This paper examines the feasibility of performing archi-
tectural studies with trace sampling for a suite of desktop
application traces on Windows NT. This paper makes three
contributions: we compare the accuracy of several sam-
pling techniques to determine cache miss rates for these
workloads, we present victim cache and branch prediction
architecture studies that demonstrate that sampling can be
used to drive such studies, and we show how sampling may
be used to accurately and efficiently derive the parameters
for Agarwal's analytical cache model [1]. Of the sampling
techniques used for the cache miss ratio determinations,
stitch, which assumes that the state of the cache at the be-
ginning of a sample is the same as the state at the end of the
previous sample, narrowly outperforms the more complex
INITMR technique of Wood et al. [12] for these workloads.
These two techniques are more accurate than the others and
are reliable for caches up to 64KB in size.

1. Introduction

Trace-driven simulation is a common approach for eval-
uating memory systems. Unfortunately, it also demands
large amounts of space and time, particularly for large
caches and long running applications. These demands can
be greatly reduced by employing sampling techniques at the
expense of providing only a statistical estimate of the prop-
erties of a full trace. Previous studies [10, 7, 6] contain
results for other workloads and caches and discuss the con-
ditions under which sampling may, or may not, be used.

This work was supported in part by NSF Grant MIP-9700970 and by
a gift from Intel Corporation.

Our interest in using sampling is three-fold. First, we are
interested in the behavior of commonly used desktop appli-
cations. When compared to benchmarks such as SPEC95,
these applications have larger working sets, are feature rich,
and, of course, can run for billions and billions of instruc-
tions. Hence, traces based on exhaustive or elaborate exe-
cutions of such applications will be extremely large. In this
work, we consider the usefulness and limitations of trace
sampling for a suite of five publicly available desktop ap-
plication traces for Windows NT on the Intel X86 platform.
Second, we want to demonstrate the utility of these sam-
pling techniques for architectural studies. Although it has
been shown that trace sampling is not very accurate for met-
rics such as hit rate when simulating large, multi-megabyte
caches [6], we want to demonstrate that sampling is useful
to assess trends not only for caches but also for other archi-
tectural structures whose state depends on the processing
of past references. Such techniques permit the testing of a
wide range of architectural parameters in a relatively short
amount of time. Third, we want to show that we can use
sampling to estimate parameters for analytical cache mod-
els in a manner at least as precise as estimates based on
whole reference traces and at a much lower computational
cost.

In order to determine the feasibility of sampling for the
desktop application traces, we present cache miss rate re-
sults for a large set of cache sizes and sampling techniques.
Most of our results are derived from traces of limited size
(from 0.1 billion to 1.5 billion references) so that we can
compare sampling results to “true” results. We have also
performed sampling experiments on much longer traces
and, in general, they show the same trends as those based
on a smaller number of samples. Two architectural studies
are presented here that apply sampling techniques. The first
study demonstrates how sampling, while only an approxi-
mation of actual miss rate, may be used to assess trends in

victim cache performance [5], and the second study uses
sampling to assess trends in branch prediction techniques.
Finally, we demonstrate that sampling may be used to ac-
curately estimate parameters for Agarwal's analytical cache
model [1].

The remainder of the paper is organized as follows. Sec-
tion 2 briefly reviews the details of trace sampling and pre-
viously published results. Section 3 introduces the bench-
marks and sampling techniques used in this study. Section 4
presents and discusses a selection of sampled cache miss
rate results. The victim cache and branch prediction archi-
tectural studies are given in Section 5. The application of
sampling techniques to the estimation of parameters for the
analytical model is presented in Section 6. The paper con-
cludes in Section 7.

2. Trace sampling

In trace sampling an observation, or sample, is obtained
by recording a fixed number, the sample size, of consec-
utive references from a reference stream1. Another fixed
number of references are ignored before the next observa-
tion is made. The sampling ratio is the percentage of total
references used in all the observations.

Sampling theory states that sets of random, unbiased ob-
servations from a population may be used to make infer-
ences about that population. As described above, observa-
tions in trace sampling are not random; they are system-
atic since they are evenly spaced throughout the trace. This
non-random pattern is not a problem, though, since system-
atic observations can be used to make even more precise
inferences than random observations under certain circum-
stances [2] (that is, when the variance of systematic obser-
vations is greater than the variance of the population). Un-
fortunately, however, trace sampling neither involves unbi-
ased observations nor a sufficient alternative. The problem
is that the state of the cache is unknown at the start of each
observation. In other words, since portions of the trace are
unexamined between observations, it is unknown whether
the first reference to each cache block will be a hit or a
miss. Such references are referred to as unknown [12] or
cold-start [7] references.

A number of techniques have been employed to miti-
gate the bias due to unknown references. One approach is
to make assumptions about, or construct, the state of the
cache at the start of each sample. These assumptions may
include: assuming an empty cache(i.e., assume that a com-
plete context switch occurred between samples; hereafter
denoted cold), assuming the state at the end of the previ-
ous sample [1] (stitch), and using some number of refer-
ences to prime the cache [4] (e.g., 20% of the sample, de-

1In statistics, the term sample is used to denote an entire collection of
observations. Like most other studies, we eschew this usage.

noted prime-20, and 50%, denoted half). The efficacy of
these assumptions depends on workload, cache organiza-
tion, and choice of sampling parameters(i.e., sample size
and sampling ratio.) If complete context switches occur in
a cache between samples from a given trace, then assum-
ing an empty cache at the start of each sample, as is the
case with cold, will be an accurate assumption. If most
misses are due to conflicts in a small number of cache lines,
then stitch may work well since only a small portion of the
working set is likely to change between samples. Priming
the cache will be effective if unknown references are few
relative to the sample size and are mostly included in the
priming set.

Another approach is to directly determine or approxi-
mate the miss ratio of unknown references, which we de-
note here as � . For example, cold can also be thought of as
an estimator that assumes all unknown references miss. In
[7], unknown references are not included in the estimate of
overall miss rate. That is, unknown references are used to
prime the cache but are not counted as hits or misses. As
noted in [12], this implicitly assumes that the miss ratio for
unknown references is equivalent to the miss ratio for all
other references. By employing a renewal-theoretic model
that depends on the percentage of time a given cache block
frame is alive or dead, Wood et al. show that � is higher
than the overall miss rate [12].

This model is used to estimate � by observing the prob-
ability that a reference to a cache line occurs within a dead
time (where time is measured in total references, and dead
time implies that the next reference to that cache line will
miss). This suggests that if a random time � has probabil-
ity � of occuring within a dead time for a given cache line,
then � is also the probability that an unknown reference
will miss in that cache line. This probability can be mea-
sured in a full trace by observing the average live and dead
time lengths for each cache line in a cache. In a sampled
trace, this probability must be estimated with observations
within each sample. This sampled probability is the basis
for INITMR, the miss rate estimator described in [6] and
[12].

Accurately coping with unknown references is partic-
ularly important when sampling for large caches, where
the number of unknown references can easily dominate the
number of known misses. Very large caches typically corre-
spond to a very small number of misses, and, hence, are in-
herently at odds with sampling [6]. As we will see, however,
when known misses dominate unknown references, several
approaches will be effective.

Table 1. Benchmarks used for this study. The traces of these applications were produced on a dual Pentium Pro 200 system
running Windows NT Workstation 4.0 service pack 3.

Application Description Instructions
Executed
(millions)

acrord32 Adobe Acrobat Reader 3.0: Reader for portable document format (PDF) files. The benchmark loads
acrobat.pdf (a 277 KB file) from the standard acrobat reader distribution, and navigates through the
document three different ways: through the hyperlinks in the document itself, through the forward
and back button provided by acrobat reader, and through a view of the document outline provided by
acrobat reader. Finally, the benchmark searches for the word “buy” in the document before closing the
program.

408

netscape Netscape Navigator 3.1 web browser. The benchmark opens four web pages:
www.cs.washington.edu, www.cnn.com, www.mtv.com, and www.washington.edu.
These pages were viewed on March 18, 1998. The java module for netscape was turned off because
Etch (our instrumentation tool) does not handle the dynamically generated code generated by the java
just-in-time compiler.

92

photoshp Adobe Photoshop 4.0 image editing package. The benchmark loads fruit.jpg (a 591 KB still-life pho-
tograph of fruit) from the standard distribution and applies the color pencil, accented edges, diffuse
glow, and add noise photo filters to the image.

1,511

powerpnt Microsoft PowerPoint 7.0b slide preparation package. The benchmark loads in a 311 KB 18-page
presentation (the presentation included five pages of graphs and six pages of figures in addition to text)
in slide mode, scrolls through 3 pages, edits a figure, and continues scrolling through until the end of
the document. The benchmark then goes into the outline mode and creates a new page and goes back
into the slide mode to move text around. Finally, the benchmark goes into slide sorter mode and moves
some slides around.

209

winword Microsoft Word 7.0 word processor. The benchmark simulates a user typing in seven paragraphs in an
eight page document (document size is 29K). The benchmark then performs four search and replace
commands on the document before saving a text version of the file. The interactive spell checker was
turned on.

351

Table 2. Application object file characteristics.
Application Executable Size with # DLLs used

Size (MB) DLLs (MB) (shared)

acrord32 2.26 9.73 34 (24)
netscape 3.17 9.95 28 (24)
photoshp 3.65 13.5 44 (25)
powerpnt 4.36 12.5 26 (21)
winword 3.78 11.2 26 (21)

3. Methodology

3.1. Benchmarks

Table 1 describes the 5 personal desktop applications that
we used as benchmarks and their corresponding workloads.
Table 2 presents the size of the original binaries as well as
DLL usage. A comparison between the execution character-
istics of these applications with those of the integer SPEC95
suite can be found in [9].

3.2. Sampling Techniques

After experimenting with various sample sizes and sam-
pling ratios, we settled on a sample size of 500,000 refer-

ences and a sampling ratio of 0.1. The process of tuning
these parameters for a given workload is important [10, 6].
The rationale for our choice for these Windows NT desktop
application traces is discussed in a technical report [3].

Table 3 describes the sampling techniques considered in
this study. As noted in the previous section, they differ by
the state of the cache at the beginning of a sample, or, al-
ternatively, by the method of estimating � . The techniques
not mentioned earlier are true-sample, non-uniform, hot and
tepid. true-sample simulates the caches over the full trace
and reports the miss ratio observed over the regions that are
sampled with the other techniques. It is therefore an un-
biased estimator of the miss ratio for the entire trace. Its
accuracy depends on how “fine-tuned” our sampling param-
eters, sample size and sampling ratio, are to a given cache

Table 3. Sampling techniques for coping with unknown references.
Technique Description

true-sample starts each observation with correct cache state
cold assumes that the cache is empty at the beginning of each observation (i.e., each

unknown reference misses)
hot assumes that each unknown reference hits
tepid arithmetic mean of cold and hot
INITMR calculates the miss rate based on the ���������	� estimator from [12]
prime-20 uses the first 20% of each observation to prime the cache
half uses the first 50% of each observation to prime the cache
stitch uses the end state of the previous observation as the initial cache state for the

current observation
non-uniform same as cold, except the observations are not evenly spaced (jittered by 20% of

the sample size

and workload. While true-sample is not a practical method,
it is however the basis for comparisons with the other tech-
niques which, in addition to the same sampling errors, will
have unknown reference biases. non-uniform is similar to
cold but uses non-uniform sampling intervals. hot assumes
that all unknown misses hit; that is, an unknown miss rate
of 0%. Note that hot and cold form definite bounds for the
other unknown reference miss rate estimators. tepid is sim-
ply the arithmetic mean of cold and hot, which is equivalent
to assuming a 50% miss rate for unknown references.

4. Determination of Miss Ratios

We simulated direct mapped and 4-way set-associative
instruction and data caches with sizes ranging from 8KB to
128KB and direct-mapped and 4-way set-associative com-
bined caches with sizes ranging from 256KB to 4MB. Due
to space considerations, select examples from these con-
figurations will be presented here, but complete results are
available [3]. In the figures to follow, each data point is the
arithmetic mean of the miss ratios observed with one sam-
pling method over each of the samples taken from the trace.
The error bars for each data point correspond to the 90% in-
terval of confidence based on the distribution of miss ratios
of the systematic samples [2]. The actual miss ratio for the
entire trace is indicated by the solid bar.

Figure 1 and Figure 2, respectively, display the miss rates
corresponding to the simulations of direct-mapped instruc-
tion caches for the acrord32 application and of 4-way set-
associative data caches for powerpnt. These figures are rep-
resentative of the complete set of simulations. The follow-
ing observations can be made:

1. true-sample sometimes underestimates the true miss
rate (cf. Figure 1) and sometimes overestimates it (cf.
Figure 2). Recall that true-sample's accuracy is linked

to the choices of sample size and sampling ratio. By
choosing a single (sample size, sampling ratio) pair for
all applications, we cannot tune these parameters for
each application. Note however that when true-sample
underestimates (resp. overestimates), it does so consis-
tently for all cache sizes for a given application. Also,
in all cases, the real miss rate is within the 90% interval
of confidence of true-sample.

2. All techniques work well, i.e., give results within the
90% interval of confidence for caches up to 32 KB.
Among these techniques, stitch works best and, stitch
and INITMR both give good, reliable results on all
traces for caches up to 64 KB. All techniques, ex-
cept those priming the cache and hot, tend to overes-
timate the true-sample miss ratio as a result of under-
estimating the miss ratio of the unknown references.
With larger caches, the bias gets larger since the num-
ber of unknown references is also larger. The priming
techniques have a slightly different behavior since the
statistics are gathered on a smaller number of refer-
ences. Nonetheless, their accuracy for caches of 32
KB and more is always inferior to that of stitch.

3. A general trend is that confidence intervals decrease
with cache size. It is not the case though that we
are more confident with the results for larger caches,
rather, the miss rates are simply smaller and, hence,
so are the confidence intervals. To make comparisons
between confidence intervals of different cache sizes,
it is necessary to consider the confidence interval as
a percentage of the miss rate. We see here that this
percentage remains roughly constant.

4. cold and non-uniform yield the same results, suggest-
ing that completely systematic samples are sufficient

and there is no need to inject randomness in intervals
between samples.

Figure 3 depicts the results based on the winword trace
for large, direct-mapped combined data and instruction
caches. In this case, we see that the errors due to the choice
of the sampling parameters are very small: true-sample is
highly accurate. However, the bias due to unknown refer-
ences is extremely high for all techniques except stitch, hot,
and INITMR. What we had seen for the larger caches in
Figure 1 becomes even more pronounced. For these larger
caches, no technique has a confidence interval that consis-
tently overlaps that of true-sample, although stitch comes
closest overall. If one were satisfied with a 95% rather than
a 90% confidence interval, stitch might be sufficient.

Long Trace Sampling Results: For the previous results
we have used traces of limited size (from 0.1 billion to 1.5
billion references) in order to compare sampling results to
“true” results. We have constructed a set of longer traces
(based on billions of references) of the same suite of appli-
cations to test a greater range of features more exhaustively
and to determine whether it is necessary or instructive to
use larger workloads to drive these applications. Figure 4
gives results for three of the sampling techniques based on
a “long” trace of netscape. This trace contains samples
amounting to 10% of the original reference stream which
contained approximately 2.5 billion instruction and data ref-
erences. Figure 4 compares the true miss rates for the origi-
nal short trace to some of the sampled miss rates. Since we
know stitch to be an accurate sampling technique for these
workloads and since our emphasis is on minimizing simu-
lation time, we report only those techniques that involve the
minimum amount of computation. For netscape and these
data caches, the differences are not dramatic. This suggests
that while the longer trace contains more instructions corre-
sponding to more features, they are not substantially differ-
ent, with respect to the cache, from the features represented
in the shorter trace. The full set of results for long traces and
cache configurations contains cases where differences are
either insignificant or pronounced (e.g., the sampled miss
ratios for data caches based on the longer acrord32 trace
were found to be nearly 70% higher.)

5. Trace sampling for architectural studies

Trace-driven simulation is used not only for the evalu-
ation of cache parameters but also for studying hardware
assists to the memory hierarchy or to the processor core.
Often these hardware assists contain structures which, like
caches, have states that depend on the recent history of data
references or instruction execution. In this section, we show
that trace sampling is sufficient to give accurate trends on
the efficiency of these assists and thus can save considerable

simulation time. The two hardware assists that we choose
to demonstrate this effect on are victim caches and branch
prediction mechanisms.

5.1. Victim caches

The scenario we consider here is that of an architect
who wishes to gather an efficient estimate of the expected
decrease in miss ratio for data caches when those caches
are augmented with victim caches with between one and
five entries. Our purpose here is not to study victim cache
trends, as that has been done elsewhere [5], but to demon-
strate how sampling techniques may be efficiently used in
this regard.

The results are presented in Figure 5 for the netscape
trace. Figure 5 compares the true results for the victim
cache simulation to the stitch sampled results. The sam-
pled results were obtained in one tenth of the time required
to generate the true miss rates since only one tenth of the
original trace was used. In addition to the actual miss rates
being very similar, the true miss rate is always either within
the 90% confidence interval or slightly outside, the trends
are precisely the same. Even if the actual miss rates didn't
agree as well, the predicted trends would be correct. In par-
ticular, the trends would be accurately represented even for
large caches.

5.2. Branch prediction

Trace sampling has traditionally been used in cache
memory simulations and the previous experiment on victim
caches falls into that category. The benefits of trace sam-
pling can be extended to other architectural studies that may
involve large workloads and expensive simulation. Branch
prediction is one such technique that is typically simulated
over the same workloads used to drive cache memory sim-
ulations. As these techniques increase in complexity, so do
the costs of simulation.

Branch prediction mechanisms rely on one or more ta-
bles that encode the result of previous branch outcomes and
that are used to predict the outcome of the current branch
instruction. The number of branch outcomes � necessary to
“warm” up the predictor depends on the particular imple-
mentation. Note that the situation is different from that of
a “cold” miss in the cache. In a cache, the first reference
to a cache line within each sample is an unknown reference
because the result of the reference (hit or miss) depends on
the previous reference; all the remaining references to that
cache line within that sample are correctly identified. In the
branch predictors, the first � references to a given entry in
a branch predictor will be unknown, given that a prediction
depends on the previous � references. The first � references
to an entry will still yield a prediction, and that prediction

8 16 32 64 128

Cache Size (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

M
is

s
R

at
e

(%
)

acrord32 (direct, icache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

Figure 1. Simulation results for acrord32.

8 16 32 64 128

Cache Size (KB)

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6

M
is

s
R

at
e

(%
)

powerpnt (4-way, dcache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

Figure 2. Simulation results for powerpnt.

256 512 1024 2048 4096

Cache Size (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

M
is

s
R

at
e

(%
)

winword (direct, ccache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

Figure 3. Simulation results for winword.

8 16 32 64 128

Cache Size (KB)

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2
5.6
6.0
6.4
6.8

M
is

s
R

a
te

 (
%

)

netscape (direct, dcache) long trace sampling results

True (short trace)
cold
half
stitch

Figure 4. Simulation results for the long netscape trace. true-sample was not available since we did not record all references, and
prime-20 and non-uniform are omitted due to their their similarities to half and none, respectively.

8 16 32 64 128

Cache Size (KB)

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8

M
is

s
R

at
e

(%
)

netscape-stitch (direct, dcache) victim cache sampling results

True Miss Rate
 1 entry
 2 entries
 3 entries
 4 entries
 5 entries

Figure 5. Victim Cache Simulation results for netscape.

may be correct, but we won't know if that prediction is the
one the branch predictor would have made in the absence of
unknown references.

In this section, we investigate the accuracy of trace sam-
pling for two conditional branch predictors with different
values of � and with various predictor table sizes. The first
predictor is a simple bimodal predictor that uses a two-bit
saturating counter per branch. Here, ���

�
since it takes

two wrong predictions before changing the prediction from
“taken” to “non-taken” and vice-versa. The second is a
gshare predictor that uses a global shared history of branch
patterns XOR'd with the program counter to obtain the in-
dex into a table of two-bit saturating counters [13, 11]. It is
more difficult to assess the value of � because of the dual ef-
fects of the history of branches and the value of the PC but
it is certainly significantly greater than one. We consider
predictor tables ranging in size from 512 to 32,768 entries.

The results from the acrord32 trace for some of the sam-
pling techniques for the bimodal predictor are found in Fig-
ure 6. Again, since we know stitch to be an accurate sam-
pling technique for these workloads and since our emphasis

is on minimizing simulation time, we report only those tech-
niques that involve the minimum amount of computation.
As can be seen, the results using stitch are extremely good
even for large tables. Because individual branches are most
often either always taken or always not taken, keeping the
results of past predictions, even distant ones, is beneficial.
Starting from scratch, as in cold, might yield an unaccept-
able number of false initial predictions although the trend of
almost no gain in prediction accuracy after the tables reach
8K entries is correct.

Figure 7 displays the results for the gshare predictor over
the same trace. First we can observe that stitch is still quite
accurate up to 8K entries. Moreover, stitch can lead to the
correct conclusion that the gshare predictor is more accurate
than the bimodal predictor only when the predictor tables
are sufficiently large (greater than 8K entries for this partic-
ular example). On the other hand, none of the other tech-
niques are good in that respect. This is due to the fact that
the gshare predictor makes predictions according to path
history. That is, each branch has multiple entries in the ta-
ble indicating the taken/not taken decisions made to arrive at

it. This effectively increases the number of unknown refer-
ences for branches seen early in a sample. If the number of
entries is sufficiently large and the path history sufficiently
long, there is not enough time to build history, a history that
was retained in stitch and which, from our previous obser-
vation, should not change much.

6. Sampling for Analytical Cache Models

In this section, we investigate the use of sampling tech-
niques to estimate parameters that will subsequently be used
to solve equations in analytical models of cache behav-
ior. Our vehicle for experimentation is Agarwal's analytical
cache model [1].

Like many models based on Mean Value Analysis [8],
Agarwal's analytical cache model consists of equations
whose inputs are characterized by the mean values of pa-
rameters measured from a reference trace. Instead of sim-
ulating many cache configurations for a given reference
stream, the reference stream is used to collect these input
parameter values. These parameters, which are as indepen-
dent of cache design parameters as possible, are plugged
into the analytical model to yield mean value predictions of
performance for a variety of cache configurations. Thus, the
need for expensive functional simulations is avoided.

Analytical cache models are useful in the sense that they
provide a quick way to obtain high-level estimates of cache
behavior. They might also pin-point areas in the design
space where more accurate, and hence more expensive,
evaluation techniques need to be applied. Because quick
results are one of the main advantages to analytical mod-
eling, it is necessary that collecting the input parameters
to the model be done in a rapid fashion. Even if collect-
ing input parameters does not take as long as a full-fledged
simulation, the process can become unwieldy for traces of
several billion instructions. Our goal here is to show that
these parameters can be gathered via sampling and when the
sampled parameters are fed back in the model, they provide
answers as accurate as if the parameters had been gathered
on the full trace. Our goal, however, is not to increase the
accuracy of the model.

The analytical model on which we experiment predicts
the miss ratio of associative caches of fixed block size but
with various cache capacities and set-associativities. The
miss ratio is computed as a composite of effects due to cold
misses, non-stationary misses (i.e., misses which occur be-
cause of changes in locality), and conflict misses. To gather
the parameters necessary to solve for the overall miss rate,
the reference trace in [1] is partitioned into some number
of time granules of fixed size (e.g., 10,000 or 500,000 ref-
erences.) The parameters derived from the entire trace are:

��� , the average number of unique memory blocks ref-
erenced per time granule, i.e., a reasonable estimate of

the working set size

��� , the total number of unique memory blocks refer-
enced over the entire trace, i.e., the footprint of the
program in main memory

��� , the collision rate, i.e., the average number of times
within a time granule that a block that will be refer-
enced in the future is purged from the cache. Agarwal
reports that this rate is more or less constant for caches
with a given block size provided that the cache size is
greater than half the working set size � .

The cold miss effects are proportional to � , the non-
stationary effects are proportional to� �	�
����
 � �������������
����� � ��� ��! , and the conflict effects pro-
portional to � and the cache architectural parameters. When
we use samples instead of the whole trace, we observe that:

� The average �
� of unique memory blocks referenced

per sample is very close to �

���
�

���
�#"

� �$�����&%'!����)(*� + � �
��� � +,� , i.e., the term
corresponding to non-stationary effects will be simi-
lar (� � is the total number of unique memory blocks
referenced over all samples)

���
� measured on the sample trace is almost the same as� measured on the whole trace.

We obtain the miss rate estimates yielded by the ana-
lytical cache model in the manner originally suggested in
[1] for input parameters derived from both the entire trace
and samples. We used time granule sizes of 10,000 and
500,000 references, but found that, as indicated in [1], the
results were insensitive to this parameter. Figure 8 gives
the results of applying the model to the netscape trace for
various cache sizes and two separate estimations of � . The
first bar gives the true miss rate, the next two bars give the
miss rates for the model using the entire trace and the sam-
pled trace respectively when � is computed with a 16KB
direct-mapped cache, while the last two bars are for � com-
puted with a 32 KB direct-mapped cache. The most im-
portant observation for the thesis of this paper is that the
results from the model using parameters derived from the
entire trace and those derived from the sample trace are in-
distinguishable. Thus, sampling is efficient in that regard.
A secondary observation is that the model is most accurate
when � is computed for the target size of the cache (this is
of course no surprise). Finally, it appears that the larger the
cache for which � is computed, the better the accuracy. We
have observed that for these workloads, and these working
set sizes in particular, � is stable for cache sizes 32 KB and
greater. This agrees with the expectation described in [1],
that � should be stable for cache sizes greater than half the
working set size.

512 1024 2048 4096 8192 16384 32768

Predictor Size (# of entries)

0

2

4

6

8

10

12

14

B
ra

n
ch

 M
is

p
re

d
ic

t
(%

)

acrord32 bimodal predictor

True
true-sample
cold
prime-20
half
stitch

Figure 6. Bimodal Branch prediction sampling results for the acrord32 trace.

512 1024 2048 4096 8192 16384 32768

Predictor Size (# of entries)

0

2

4

6

8

10

12

14

B
ra

n
ch

 M
is

p
re

d
ic

t
(%

)

acrord32 gshare predictor

True
true-sample
cold
prime-20
half
stitch

Figure 7. gshare Branch prediction sampling results for the acrord32 trace.

netscape (direct, icache) analytical cache model results

0

0.5

1

1.5

2

2.5

3

3.5

8 16 32 64 128

Cache Size(KB)

M
iss

 R
at

e(
%

) True

whole 16K seed

sample 16K seed

whole 32K seed

sample 32K seed

Figure 8. Analytical Cache Model results for netscape. In this figure, the label 16K Seed implies that the collision rate, � , was
measured on this trace for a 16K Cache.

7. Conclusion

Commonly used Windows NT desktop applications can
run for billions of instructions. Performing architectural
studies on traces of billions of references is not feasible
from both time and space perspectives. An alternative
methodology is to use trace sampling.

In this paper we have studied the use and accuracy of
trace sampling for architectural studies of five Windows NT
desktop applications. We have shown that among the
choices of sampling techniques for the determination of
cache miss ratios, stitch (which assumes that the state of the
cache at the beginning of a sample is the same as the state
at the end of the previous sample) and the more complex
INITMR are the best at overcoming the difficulties inherent
with the problem of the unknown references at the begin-
ning of each sample. Using these sampling techniques re-
sulted in the accurate, i.e., within 90% confidence intervals,
determination of cache miss ratios for caches of sizes up to
64 KB.

We also used trace sampling to successfully determine
the trends in the use of hardware assists such as victim
caches and branch predictors. For these types of time con-
suming studies, trace sampling can reduce the computa-
tional effort by an order of magnitude without loss of insight
in the usefulness of the architectural enhancements.

Finally, we have shown that trace sampling is extremely
accurate in determining the parameters necessary to drive
analytical cache models. In this case also, trace sampling
provides large savings in computation time without loss of
precision.

References

[1] A. Agarwal, J. Hennessy, and M. Horowitz. Cache per-
formance of operating system and multiprogramming work-
loads. ACM Transactions on Computer Systems, 6(4):393–
431, Nov. 1988.

[2] W. G. Cochran. Sampling Techniques. John & Wiley Sons,
1977.

[3] P. Crowley and J.-L. Bear. On the use of trace sampling
for architectural studies od desktop applications. Technical
Report UW-CSE-98-12-05, University of Washington, Dec.
1998.

[4] J. W. C. Fu and J. H. Patel. Trace driven simulation us-
ing sampled traces. In Proceedings of the Twenty-Seventh
Hawaii International Conference on System Sciences Vol. I:
Architecture, pages 211–220, Jan. 1994.

[5] N. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch
buffers. In Proc. of 17th Int. Symp. on Computer Architec-
ture, pages 364–373, 1990.

[6] R. Kessler, M. D. Hill, and D. A. Wood. A comparison of
trace-sampling techniques for multi-megabyte caches. IEEE
Transactions on Computers, 43(6):664–675, June 1994.

[7] S. Laha, J. H. Patel, and R. K. Iyer. Accurate low-cost meth-
ods for performance evaluation of cache memory systems.
IEEE Transactions on Computers, 37(11):1325–1335, Nov.
1988.

[8] E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik. Quan-
titative System Performance. Prentice-Hall, Inc., 1984.

[9] D. C. Lee, P. J. Crowley, J.-L. Baer, T. E. Anderson, and
B. N. Bershad. Execution characteristics of desktop appli-
cations on windows nt. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, June
1998.

[10] M. Martonosi, A. Gupta, and T. Anderson. Effectiveness of
trace sampling for performance debugging tools. In Pro-
ceedings of ACM Sigmetrics Conf. on Measurement and
Modeling of Computer Systems, pages 248–259, 1993.

[11] S. McFarling. Combining branch predictors. Technical Re-
port TN 36, DEC-WRL, 1993.

[12] D. A. Wood, M. D. Hill, and R. E. Kessler. A model for
estimating trace-sample miss ratios. In Proceedings of the
ACM SIGMETRICS Conference for the Measurement and
Modeling of Computer Systems, pages 79–89, June 1991.

[13] T.-H. Yeh and Y. Patt. Alternative implementations of two-
level adaptive branch prediction. In Proceedings of the 19th
Annual International Symposium on Computer Architecture,
pages 124–134, 1992.

