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Abstract

We prove time-space tradeoffs for traversing undi-
rected graphs. One of these is a quadratic
lower bound on a deterministic model that closely
matches the recent probabilistic upper bound of
Broder, Karlin, Raghavan, and Upfal. The models
used are variants of Cook and Rackoff’s “Jumping
Automata for Graphs”.

1 The Complexity of Graph
Traversal

Graph traversal is a fundamental problem in com-
puting, since it is the natural abstraction of many
search processes. In computational complexity
theory, graph traversal (or more precisely, st-
connectivity) is a fundamental problem for an ad-
ditional reason: understanding the complexity of
directed versus undirected graph traversal seems
to be the key to understanding the relationships
among deterministic, probabilistic, and nondeter-
ministic space-bounded algorithms. For instance,
although directed graphs can be traversed nonde-
terministically in polynomial time and logarithmic
space simultaneously, there is evidence that they
cannot be traversed deterministically in polynomial
time and small space simultaneously (Tompa [19]).
In contrast, undirected graphs can be traversed in
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polynomial time and logarithmic space probabilis-
tically by using a random walk (Aleliunas et al. [1],
Borodin et al. [9]); this implies similar resource
bounds on (nonuniform) deterministic algorithms
(Aleliunas et al. [1]).

A more detailed inspection of the time and space
requirements of undirected graph traversal algo-
rithms follows. Depth-first or breadth-first search
can traverse any n vertex, m edge undirected graph
in O(m + n) time, but requires §2(n) space. Al-
ternatively, a random walk can traverse an undi-
rected graph using only O(logn) space, but re-
quires ©(mn) expected time [1]. In fact, Broder
et al. [12] have shown recently that there is a spec-
trum of compromises between time and space for
this problem: any graph can be traversed in space
S and expected time T, where ST = O(m?log® n).
This raises the intriguing prospect of proving that
logarithmic space and linear time are not simul-
taneously achievable or, more generally, proving a
time-space tradeoff that closely matches these up-
per bounds.

Although it would be desirable to show a trade-
off for a general model of computation such as a
Turing machine or random access machine, obtain-
ing such a tradeoff is beyond the reach of current
techniques. Thus it is natural to consider a “struc-
tured” model (Borodin [8]), that is, one whose ba-
sic move is based on the adjacencies of the graph,
as opposed to one whose basic move is based on
the bits in the graph’s encoding. An appropri-
ate structured model for proving such a tradeoff
is some variant of the JAG (“jumping automaton
for graphs”) of Cook and Rackoff [13]. Such an au-
tomaton has a finite control, and a limited supply
of pebbles that it can move from vertex to adja-
cent vertex (“walk”) or directly to a vertex con-
taining another pebble (“jump”). The purpose of
its pebbles is to mark certain vertices temporarily,
so that they are recognizable when some other peb-



ble reaches them. Blum and Sakoda [6] and Blum
and Kozen [5] considered similar models.

The pebbles represent vertex names that a struc-
tured algorithm might record in its workspace.
Walking represents replacing that vertex name by
some adjacent vertex found in the input. Jump-
ing represents copying a previously recorded vertex
name.

The JAG is a structured model, but not a weak
one. In particular, it is general enough to encom-
pass most known algorithms for graph traversal.
For instance, a JAG can execute a depth-first or
breadth-first search, provided it has one pebble for
each vertex, by leaving a pebble on each visited
vertex in order to avoid revisiting it, and keeping
the stack or queue of pebble names in its finite con-
trol. Furthermore, as Cook and Rackoff point out,
a JAG with the additional power to move a peb-
ble from vertex ¢ to vertex i + 1 can simulate an
arbitrary Turing machine.

The time T used by a JAG is the number of peb-
ble moves. Cook and Rackoff define the space to
be § = Plog,n + log, Q, where P is the number
of pebbles and @ the number of states of the au-
tomaton. (Keeping track of the location of each
pebble requires logy n bits of memory, and keep-
ing track of the state requires log, Q.) Using this
model, they prove that traversal of directed graphs
requires space Q(log? n/loglogn), closely match-
ing the upper bound of Savitch [18]. Their lower
bound has been extended to randomized JAGs by
Berman and Simon [4].

In this paper we use variants of the JAG to study
the tradeoff between time and space for the prob-
lem of undirected graph traversal.

Several authors have previously considered undi-
rected graph traversal by a JAG with an unlimited
number of states but only one pebble, a model bet-
ter known as a universal traversal sequence (Aleli-
unas et al. [1], Alon et al. [2], Bar-Noy et al. [3],
Bridgland [11], Istrail [16], Karloff et al [17]).
Borodin, Ruzzo, and Tompa [10] proved that such
an automaton requires f(m?) time (on regular
graphs with 3n/2 < m < n?/6 — n). Thus, for
the particularly weak version of logarithmic space
corresponding to the case P = 1, a quadratic lower
bound on time is known.
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The known algorithms and the lower bounds for
universal traversal sequences suggest that the true
time-space product for undirected graph traversal
is approximately quadratic. The main results of
this paper are three lower bounds for variants of
the JAG that provide progress toward proving this
conjecture and, in fact, establish it for one variant.
These results are outlined below.

The upper bound of ST = O(m? log® n) by
Broder et al. [12] is established on a model that
is actually a restricted variant of the JAG. In their
algorithm, the JAG initially drops P—1 pebbles on
random vertices, after which they are never moved.
It then uses its last pebble to explore the graph,
with the others as fixed landmarks. In Section 3,
using essentially the same variant of the JAG, we
prove a lower bound of PT = Q(n?) for 3-regular
graphs, independent of the value of Q. This nearly
matches the upper bound, since m = O(n) for 3-
regular graphs. The main difference between the
models is that the last pebble moves probabilisti-
cally in the upper bound model, but deterministi-
cally in the lower bound model.

The result above is the desired quadratic lower
bound, on a model that is natural but more re-
stricted than we would like. In particular, it would
be nice to extend the result to a model in which
all pebbles are movable. In fact, our proof does
extend to give a nonlinear lower bound when some
motion of the pebbles is allowed, but the bound
degenerates when the pebbles are allowed to move
with complete freedom. Such models are surpris-
ingly powerful. Nevertheless, in Section 4 we prove
a lower bound on a model with freely moving peb-
bles, but without the ability to jump one pebble to
another. (This nonjumping model is closer to the
one studied by Blum and Sakoda [6] and Blum and
Kozen [5).) More specifically, using a very different
and more complex argument, we prove that there is
a family of 3P-regular graphs whose traversal with
P pebbles requires time Q((Pn log n)/log P), inde-
pendent of the value of Q. In particular, for con-
stant P the time must be Q(nlogn). Although this
is not the desired quadratic lower bound, it does es-
tablish that logarithmic space and linear time are
not simultaneously achievable on the nonjumping
model when m = w(n).



The results described above have the strength
that they hold independent of the magnitude of
@, the number of states. Presumably the bounds
can be strengthened by also accounting for Q. It
is tempting to tackle first the case in which @ is
constant; indeed, Cook and Rackoff [13] studied
JAGs on undirected graphs in this case, showing
for example that PQ = O(1) is impossible. For a
nonjumping variant of JAGs, in Section 5 we prove
the stronger result that PQ = Q(n) for 2-regular
graphs, no matter how much time the automaton is
allowed. Thus, for logarithmic space, lower bounds
on time are only interesting when the number of
states grows at least linearly with the size of the
graph. As one simple consequence, this makes the
lower bounds harder to prove, as one cannot simply
make the graph so large compared to @ that the au-
tomaton is guaranteed to loop forever among some
states. As a byproduct, we show that a univer-
sal traversal sequence for 2-regular graphs cannot
consist solely of the repetition of a short sequence.

2 Graph-Traversing Automata

Consider the set of all n-vertex, edge-labeled, undi-
rected graphs G = (V, F) with maximum degree
d. For this definition, edges are labeled as follows.
For every edge {u,v} € E there are two labels
lywyluu € {0,1,...,d — 1} with the property that,
for every pair of distinct edges {u,v} and {u,w},
luw # luw. The problem we will be considering is
“undirected st-connectivity”: given G and two dis-
tinguished vertices s and ¢, determine if there is a
path from s to t.

A JAG [13] is a finite automaton with Q states
and P distinguishable pebbles, and whose program
may depend on n and d. Two vertices s and t of
its input graph are distinguished. The P pebbles
are initially placed on s. In each move, based on
the current state, which pebbles coincide on ver-
tices, which pebbles are on s and ¢, and the edge
labels emanating from the pebbled vertices, the au-
tomaton changes state, and selects some pebble
p and either some ¢ € {0,1,...,d — 1} or some
Jj € {1,2,...,P}. In the former case, p is moved
along the edge with label ¢; in the latter case, p
“jJumps” to the vertex occupied by pebble j. (A
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small difference between our version of the JAG
and Cook and Rackoff’s is that they allowed mul-
tiple pebbles to move in the same step. This is
because they were interested in measuring space
alone, whereas we are interested in measuring time
as well.) A JAG that determines st-connectivity is
required to enter an accepting state if and only if
there is a path from s to t.

There are a number of interesting variants of
JAGs. For instance, in Sections 4 and 5 we will dis-
allow jumping. We will distinguish this nonjump-
ing variant by referring to it as a WAG (“walking
automaton for graphs”). We will also distinguish
among three types of pebbles, “active”, “passive”,
and “unmovable”. The automaton as described in
the previous paragraph has active pebbles, in the
sense that any pebble can move; this is the model
used in Section 4. A weaker notion is that of the
passive pebble, which cannot move unless accom-
panied by an active pebble. In this case, we allow
one active pebble accompanied by any number of
passive pebbles to walk or jump each move. This
is the model used in Section 5.

Closely related to the passive pebble is the un-
movable pebble, which is placed on the graph be-
fore the automaton begins its traversal, and cannot
be moved at all. This is the model discussed in Sec-
tion 3. What remains is to describe the mechanism
by which these unmovable pebbles are placed on
the graph. The intent is to model precomputation
of the input such as is done by Broder et al. [12} in
their initial random pebble placement. Of course,
such precomputation must be restricted so as to
preclude solving st-connectivity itself. Therefore,
the unmovable pebbles are placed based on com-
plete knowledge of the local, but not global, struc-
ture of the graph.

Specifically, let N,(G) denote a list
G1,Ga,...G, of graphs, each with a distinguished
vertex, such that G; is isomorphic to the radius p
neighborhood of vertex 7 in G, and the isomorphism
maps G;’s distinguished vertex to vertex :. For in-
stance, N1(G) is equivalent to an ordered list of the
degrees of G’s vertices. Then an automaton with
P’ unmovable pebbles placed by p-precomputation is
a pair (f, M), where M is one of the JAG variants
as described above, and f is an arbitrary function



mapping N,(G)toU C {1,2,...,n} with |U| = P".
Given G, the P’ unmovable pebbles are placed on
f(N,(G)), and then M is run on the resulting peb-
bled graph.

3 A Lower Bound for
Unmovable Pebbles

The undirected st-connectivity algorithm of Broder
et al. [12] in outline operates as follows. First, s and
t are marked by pebbles. Then P — 3 other pebbles
are placed on the graph at random. In particular,
each pebble is placed on a vertex chosen at ran-
dom with probability proportional to the degree of
the vertex, independent of all other pebbles. These
P — 1 pebbles are not subsequently moved. The
one remaining pebble then executes a small num-
ber of short random walks from each of the P — 1
fixed pebbles. At the end of each walk, the movable
pebble jumps to one of the fixed pebbles. Connec-
tivity information is inferred from the pebbles en-
countered during these short walks. Broder et al.
show that, in time O(m?log®n/P), if s and t are
in the same connected component, the algorithm
will discover this with high probability. Note that
this algorithm can be executed on a model that is
a JAG with 1-precomputation, except that its un-
movable pebbles are placed randomly, and its one
active pebble is allowed to move randomly.

In this section, we prove an n2/(2°()P) lower
bound on the time for st-connectivity on a JAG
with p-precomputation. Our model is weaker than
that used by Broder et al. in that our active peb-
ble moves deterministically rather than probabilis-
tically. On the other hand, ours is stronger in that
pebble placement is determined arbitrarily (rather
than probabilistically) based on complete knowl-
edge of the local structure of the graph.

Theorem 1 Let M be any JAG with 1 ac-
tive pebble and P — 1 unmovable pebbles placed
by p-precomputation.  Suppose M determines
st-connectivity for all 3-regular n-vertez graphs.
Then M requires time at least n?/(2°() P).

Proof: In this abstract, we only prove the lower
bound for p = 1, corresponding to the upper bound
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of Broder et al. The generalization to arbitrary p
is sketched at the end.

The proof generalizes the main lower bound tech-
nique introduced by Borodin et al. [10]. Assume
without loss of generality that n is a multiple of 4.
We define a family of n vertex graphs, each formed
by joining two copies of an n/2 vertex graph H by
“switching” some combination of edge pairs. We
will show that M must frequently walk from one
pebble to another via some distant switchable edge.

Many graphs H would work for our purposes; for
definiteness, we use the n/2 vertex “squirrel cage”:
two n /4 vertex cycles, with each vertex on one cycle
joined by a “rung” to the corresponding vertex on
the other cycle. Fix any numbering of the vertices
and labeling of the edges of H. Take as the set of
“switchable” edges any 7 = n/4—1 of the rungs. As
in Borodin et al. [10], for each z € {0,1}" the graph
G, is formed from two copies H® and H! of H by
“switching” the edges corresponding to the 1’s in
z. That is, if {u®,v°} is the i** switchable edge in
H® and {u!,v'} is the corresponding edge in HY,
then G has the pair of edges {u®,v*®*i},b € {0,1}.
Choose s to be any vertex in H° and ¢ any vertex
in H'. Let G = {G, | = € {0,1}"}. Notice that the
only graph in G with no path from s to t is Gor.

The key property of the family G of graphs is
that a walk on G, that encounters no unmovable
pebble is identical to such a walk on H, except
that the walk switches from one copy of H to the
other when a switched edge is crossed. After any
sequence of edge crossings starting from a vertex
v, M’s active pebble will be in the same copy of H
as v just in case the net parity with respect to z
of all edge crossings is even, where the parity with
respect to z of an individual edge e is defined to be
z; if e is the i** switchable edge, for any 1 < i < 7,
and 0 for all unswitchable edges.

The choice f(N;(G;)) of unmovable pebble lo-
cations is made without knowledge of which edges
have been switched, since all members of G are
3-regular. (Note that the choice of pebble loca-
tions could even be allowed to depend on knowl-
edge of the family G.) Assume that the distin-
guished vertices s and t are marked by two extra
unmovable pebbles. Note that M gains informa-
tion about connectivity only by walking between



two pebbles; nothing is learned (directly) by jump-
ing to a pebble. M’s behavior on all members of
G can be summarized by considering its behavior
on Gor. Imagine that both copies of each pebbled
vertex are “marked” in Gor. Now run M on Gpr.
Suppose in the process that there are w sequences
of edges traversed while walking from one marked
vertex to the next one encountered. If there exists
any ¢ # 07 such that the net parity with respect
to = of edges crossed in each of the w sequences
is even, then M encounters exactly the same peb-
bles in traversing G, as it would in traversing Gor,
and in particular fails to walk between pebbles in
different copies of H. Thus, for M to distinguish
between Gor and every other G, it must be that
the corresponding homogeneous system of w lin-
ear equations in r unknowns over GF(2) has no
nonzero solution.

Now suppose some k switchable edges occurred
in fewer than k of these equations. Set the (vari-
ables corresponding to the) other r — k switch-
able edges to 0, and these k to some nonzero so-
lution, which must exist in a homogeneous system
with fewer equations than unknowns (Herstein [15,
Corollary to Theorem 4.3.3]). Since such a nonzero
solution cannot occur, every set of k switchable
edges must occur in at least k equations. Hence, by
Hall’s Theorem [14], there must be a system of dis-
tinct representatives for the switchable edges. That
is, for each switchable edge we can select a unique
sequence containing it. Thus the total length of
all the sequences must be great enough that for
each switchable edge there is a unique traversal
from some marked vertex. The average distance
from a switchable edge to the nearest marked ver-
tex is (n/P). Hence, M’s running time must be
Q(rn/P) = Q(n?/P).

This construction can be generalized to a family
G of graphs in which switched edges do not alter
the local structure within any fixed radius p. This
is done by choosing a 3-regular graph R whose girth
is at least 2p + 1 and whose size is 2°(?) (Bollobés
[7, Chapter 3}), and then constructing the half-size
graph H by connecting n/20(”) copies of R in a
cycle. O

Any graph in the family G built from squirrel
cage graphs as above can be traversed in linear time
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by an automaton with 2 pebbles, one of them pas-
sive, even without jumping, provided the passive
pebble can be moved freely. Thus, stronger proof
techniques are necessary for freely moving pebbles.
This is the subject of the next section.

4 A Lower Bound for Active
Pebbles

In this section we prove a time-space tradeoff for
automata with P active pebbles, but no jumping.
The proof generalizes an unpublished construction
of Szemerédi [communicated to us by Sipser], which
proved an Q(nlogn) lower bound on the length of
universal traversal sequences.

Theorem 2 Let M be any WAG with P <
nM1 gctive pebbles. Suppose M determines st-
connectivity for all 3P-regular n-vertex graphs.
Then M requires time Q((Pnlogn)/log P).

Proof: The idea underlying the proof is to build
a graph with many copies of some fixed gadgets,
each with many “entry points.” Since M doesn’t
have enough pebbles to mark all the gadgets it has
explored, it must spend a lot of time re-exploring
each gadget from different entry points, or it risks
the possibility that one of them might never be fully
explored.

Imagine “growing” the graph as follows. At a
general point in the construction, the graph con-
sists of some gadgets (to be described below) that
are fully specified except for the interconnections
among their “entry point” vertices. Simulate M on
this partial graph until it attempts to move some
pebble p out of an entry point using a label for
which no edge is yet defined. Our main freedom in
the construction is the choice of the other endpoint
of this interconnecting edge e. We want to pick it so
that M will spend time 7 = Q((log )/ log P) “ex-
ploring” the gadget reached through e. If we can
achieve this for most of the interconnecting edges,
of which there will be ©(Pn), we will obtain an
Q(Pnr) time lower bound, as desired.

The interconnecting edge is chosen as follows.
For simplicity, first suppose the next 7 steps by
M are all moves of the same pebble p, assuming
p doesn’t encounter another pebble. Then p will



follow some fixed path ¢ of length 7. In this case it
would suffice to choose e to connect to any pebble-
free gadget having o as a subgraph from its en-
try point. It is important that the chosen gadget
be pebble-free, since if p encountered another peb-
ble, it might well deviate from the planned path o.
In particular, it might try to cross another as yet
undefined connecting edge long before 7 steps are
spent.

Of course, the next 7 moves by M might not be
so simple. For example, p might make a few moves,
then pause while some other pebble p’ follows the
same edges, encounters p, a third pebble follows
part of the same path but then diverges from it,
etc. Furthermore, pebbles elsewhere in the graph
might also try to cross undefined connecting edges
during this interval. Thus, in the general case, our
lookahead scheme is much more complex than the
example sketched in the previous paragraph. To
accommodate diverging pebbles, the path ¢ in gen-
eral must be replaced by a tree. Furthermore, we
use an amortized cost analysis to ensure that each
of the many partially defined trees simultaneously
being built contributes cost 7 before its connecting
edge is committed.

The gadgets used need the following properties.
For each labeled P-leaf tree o of size (actually, ex-
ternal path length) at most 7, there is a gadget
of size O(Pt) such that, for each of the gadget’s
©(Pr) entry points v, o is a subgraph of the gadget
with ¢’s root at v. Each entry point accommodates
2P connecting edges.

We will now present the construction in more
detail. We actually define a sequence of graphs
Gi, 0 < it < P|n/49], representing successive
phases of the construction. Each graph is con-
nected, and consists of:

o A set of gadgets, each with L = O(P7) entry
vertices and a fully defined internal structure
and labeling. Each vertex that is not an entry
vertex has degree 3P. Each entry vertex has
P edges to neighbors in the gadget, and 2P
connecting edges (see below).

o A set of labeled committed connecting edges
joining entry vertices of gadgets. G; will have
exactly ¢ committed connecting edges.
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Figure 1: The “Rake” Graph

o A set of partially labeled uncommitted con-
necting edges, each joining an entry vertex u
of some gadget to the root v of a complete 3.P-
ary partially labeled tree ¥, of height 7. The
set of labels of the 3P parent-to-child edges at
a given vertex of &, is the set {0,...,3P ~ 1};
all tree edges are unlabeled in the other direc-
tion, as is the uncommitted edge in the v-to-u
direction.

Recall that our goal is to define a fully labeled,
3P-regular graph G. The trees in the intermedi-
ate graphs G; are only partially labeled, of higher
maximum degree, and not degree-regular. They
serve, however, as a useful artifice in the construc-
tion, since M’s behavior in a tree is especially sim-
ple. In particular, note that M always moves along
edge labels in {0,...,3P — 1}, so all pebble mo-
tions in £, will be in the parent-to-child direction.
We will gradually eliminate the trees by “commit-
ting” previously uncommitted connecting edges to
appropriately chosen gadgets instead.

Next we define the gadgets we will use. Figure 1
illustrates the bésic idea. The graph therein, called
a “rake”, has a “fanin” part, a complete binary tree
of height [, and a “handle” part, a chain of 71 ver-
tices. We will choose 7 and [ so that 7 — [ > 5 and
7—1=1 (mod 4), and add extra edges as shown
along the handle to make the graph 3-regular, ex-
cept at the leaves of the fanin part, which have
degree 1. Our desired gadget is formed from the
rake by replacing every vertex v by a group of P
vertices vy, ...,vp, and replacing every edge {u,v}
by the P x P complete bipartite graph between



Uy,...,up and vq,...,vp. In the resulting graph,
the L = P-2' leaves of the fanin part, each of which
has degree P, are the entry vertices of the gadget.
All other vertices have degree 3P. For definiteness
we choose | = 4|(log,7)/4]. Thus, the gadget
has

(@' —147-1)-P<3PrT

vertices, and P7/16 < L < Pt entry vertices.

In the gadget, assign vertices to layers 0,...,T,
counting the entry vertices as layer 0, in the obvi-
ous way (left to right in Figure 1). Let o be a tree
of height at most 7 with at most P leaves, and all
parent-to-child edges labeled from {0,...,3P —1}.
Then it is not hard to see that there is a labeling
of the gadget so that o can be embedded in it with
o’s root at any of its entry vertices. In particular,
for each level ¢ of o (counting the root as level 0),
fix a numbering of the vertices on that level from 1
to P (or less). If in o the root connects to vertex v
on level 1 through an edge labeled a (1 < v < P),
then in the gadget every vertex in layer 0 will have
an edge labeled a to the v™ vertex in the (unique)
group of P on level 1 to which it is connected. Fur-
thermore, if in o vertex u on level ¢ > 1 connects
to vertex v on level i + 1 through an edge labeled a
(1 < u,v < P), then in the gadget the u* vertex in
each group of P in layer ¢ will have an edge labeled
a to the v* vertex in the (unique) group of P on
level ¢ + 1 to which it is connected. All remaining
edges of the gadget can be labeled arbitrarily.

We associate with each connecting edge of the
graph G; two integers: a charge, initially zero, and
a birthdate.

Our accounting strategy will be to charge each
pebble motion to at most one connecting edge.
When an uncommitted edge e in G; accumulates
a charge of 7, we will convert e into a committed
edge. More precisely, we will form G;41 from G;
by committing e (as described more fully below).
A lower bound on the total running time of M is
then the number of committed edges (which will
turn out to be P|n/49]) times 7.

The initial graph Go has one gadget, arbitrarily
labeled, 2PL uncommitted connecting edges, and
associated trees. The start vertex s is an arbitrary
vertex in Go’s gadget.

435

The construction of G;4; from G; proceeds as fol-
lows. Begin with M in its initial configuration with
all of its P pebbles on s in the current graph G;.
Simulate successive moves of M on G; until some
uncommitted connecting edge accumulates charge
T, where edge charges are determined by the fol-
lowing rules. During a move, suppose M moves
pebble p along:

e an edge internal to a gadget or tree. Let e be
the connecting edge most recently crossed by
p. If e has charge less than 7, then charge the
move to e; otherwise there is no charge.

e a connecting edge e (committed or not).
Charge the move to the oldest (i.e., least birth-
date) connecting edge having charge less than
7. If this is the first step in which a pebble
has crossed edge e in either direction, define
the birthdate of e to be the current time.

When some uncommitted connecting edge e
{u,v} with label [, , = a accumulates charge 7 we
stop the simulation, and construct from G; a new
graph G;, defined as follows.

In the tree ¥, entered through e remove all ver-
tices and edges not on a path from some pebble
to the root. Note that the resulting tree o, has
at most P leaves. Furthermore, it has external
path length at most 7, since each pebble move in
it was charged to e. Thus, o, can be embedded in
a gadget with an appropriate labeling. If possible,
choose an entry vertex z of a gadget such that

e z’s gadget has a labeling compatible
with o, (rooted at z),

e z has an uncommitted edge {z,y}, say
with label I , = b, that has never been

crossed by a pebble, (1)

e z and u are not adjacent, and
e z’s gadget has remained pebble free

since the birthdate of the uncommit-
ted edge e. )

If there is no such z, or if {u,v} and {z,y} are the
only uncommitted edges in G, then G,4; will have
one additional gadget compatible with o, and its
associated 2P L uncommitted edges and trees. The



vertex z then is chosen to be any one of the new
gadget’s entry vertices. G4 is otherwise identical
to G, except that the trees £, and ¥, rooted at v
and y are removed, and the (uncommitted) edges
e = {u,v} and {z,y} are replaced by the single
(committed) edge {u,z} with labels l,, = a and
lza=0b.

The behavior of M on Gi41 is similar to its be-
havior on G;. Suppose in G; the uncommitted edge
e was first crossed during the simulation of the j*
move of M (i.e., has birthdate j), and accumulates
charge 7 during the k**. When M is simulated on
Git+1, it will behave exactly as on G; for the first
J — 1 moves. Between steps j and k those pebbles
that crossed edge e in G; will be in z’s gadget in
G41 instead of in o, as they were in G;, but since
the gadget contains o, as a subgraph rooted at =,
their motions in G;4; will exactly reflect their mo-
tions in G;. It is crucial that the chosen gadget
was pebble free between steps j and k, so there is
no possibility that these pebbles will meet pebbles
in G;4; that they did not meet in o, in G;. After
step k, each of the ¢ + 1 committed edges in G4,
will have a charge of 7, and hence M will run for
at least (i 4+ 1)7 steps on Gi41.

Continue this process until G P|n/49| 1S con-
structed. The final graph G is built from GPp|n/49)
by

o committing all uncommitted edges that have
been crossed by pebbles, as described above,

¢ deleting all trees,

¢ joining the remaining uncommitted edges with
A extra vertices so as to make G have n ver-
tices and be 3P-regular, and

o designating one of these extra vertices as t.

By an argument similar to one above, M’s be-
havior on G is essentially the same as on G Pln/49]-
In particular, the edge charges will be the same,
so it will run for at least P|n/49]  steps without
reaching t. We will complete the analysis by show-
ing that 7 = Q((logn)/ log P) and that A = Q(P?),
which is sufficient for attaining the correct size and
degree of G.

The number of distinct trees o that can arise is at
most (3P?)7, since each can be described by listing
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the sequence of at most 7 moves in the tree, where
each move can be specified by giving the edge label
followed, and the number of the pebble making the
move.

In the graphs G; and G, there might be many
copies of gadgets having each labeling 0. The key
claim in establishing the size of G is that there are
never more than P(7 + 3) open copies of a gadget
with a given label, where an open gadget is one hav-
ing at least one uncommitted edge. In particular,
when G4 is defined, if there are this many open
copies of gadgets with labeling compatible with o,
then at least one of them will have an entry vertex z
satisfying the conditions (1), so a new (open) gad-
get will not be introduced into G;41. To see this,
we show an upper bound on the number of open
gadgets that are disqualified from containing z. It
is easy to see that at most 2P — 1 entry vertices are
adjacent to u in G;. The more subtle problem is to
bound the number of gadgets that can be touched
by pebbles between the birth of the uncommitted
edge e, and the time at which it has accumulated
charge 7. At most P gadgets contain pebbles at
the time of e’s birth. At most P — 1 edges older
than e can have charge less than 7, because for
each such edge f there is at least one pebble that
doesn’t leave its gadget or tree until f has accu-
mulated charge 7. Each gadget touched by some
pebble after the birth of e necessitates the cross-
ing of some connecting edge. Thus after at most
(P —1)r such crossings, e will be the oldest uncom-
mitted edge, and after at most 7 more crossings, e
will have charge 7. Thus, at most P + Pr gad-
gets can be touched by pebbles during the relevant
interval, which establishes the claim.

Now to compute a bound on A, note first that
G pin/a9 has exactly P|n/49] committed edges, or
2P|n/49]| instances of a committed edge incident
to an entry vertex (called “half-edges” for short).
Fach closed gadget contributes 2PL half-edges, so
there can be no more than 2P|n/49|/(2PL) <
n/(49L) closed gadgets in Gplnja9)- As argued
above, there can be no more than P(r+3)-(3P?)"
open gadgets in Gpj,/q49]- Each gadget has size at
most 3Pr, so



n
_ < . 2\7 P
n-A < (49L+P(T+3)(3P)>3 r
< %n+(3P2)T+1T(T+3).

This is less than n — (P2) for n sufficiently large,

P < nl/11 and
l logn J
8log(3P?)] "

Furthermore, recalling that ! = 4 |log, 7/4], it is
clear that 7 — 1 =1 (mod 4), and 7 — 1 > 5 since
z—4|log,z/4| 2z —logyz >25forz>8. O

It is interesting to note why the proof would fail if
M were allowed to jump pebbles. In the simplified
example sketched at the beginning of the proof, we
were able to pick an existing gadget in which p
must invest 7 steps. In the presence of jumping,
this fails, since p can always jump out of the new
gadget. As a particular foil to the proof above,
imagine an automaton that stations one pebble p
on an entry vertex of some gadget, and successively
moves a second pebble ¢ to each neighbor, jumping
q back to p to find the next neighbor. In time
3P < 7, this has touched all the connecting edges
incident to that entry vertex, which was impossible
in the construction above.

5 A Lower Bound for the Cycle

In this section we show that nonjumping automata
with a constant number @ of states, one active peb-
ble, and a constant number P of passive pebbles
are too weak for studying lower bounds on time.
In fact, unless PQ = Q(n) such automata cannot
even traverse all n-vertex cycles, no matter how
much time they are allowed. (Proofs are omitted
from this abstract.)

Lemma 3 Let o € {0,1}*. Consider the chain
C, of length 2|a| with left endpoint L, right end-
point R, and midpoint M, and edge labels so that
a is the labeling from L to M and also from R to
M. Then starting at any vertez on C, that is an
even distance from L and traversing according to
terminates at M.
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As a byproduct, there is an interesting corollary
concerning universal traversal sequences for the cy-
cle. It is not clear a priori that a sequence such as
(00010)’12 could not be universal for all cycles. The
following corollary shows that this is impossible.

Corollary 4 For any o € {0,1}* and any inte-
gersn and k, if |a| < n/2 then oF is not a universal
traversal sequence for all labeled n-cycles.

Using similar techniques, Corollary 4 holds for
any a such that aa is not a universal traversal se-
quence for all labeled (n/2)-cycles. For instance, it
holds for any « of length O(n!?°) (Tompa [20]).

Theorem 5 Any WAG that traverses every la-
beled n-cycle using Q states, one active pebble, and
P passive pebbles satisfies (P + 4)Q > n.

In contrast, it is easy to see that there is a non-
jumping automaton that traverses every labeled n-
cycle using a constant number of states and only 2
active pebbles, and in addition requires only O(n)
time.

Cook and Rackoff [13, Theorem 4.14] presented
a family of 3-regular graphs that could not be tra-
versed using a constant number of states and peb-
bles, even if jumping is allowed. The price paid to
capture this strengthened model is a bound that is
quantitatively weaker than that of Theorem 5. For
instance, they could not rule out the combination
Q = 0(1) and P = O(loglogn).

6 Open Problems

The obvious important problem is to strengthen
and generalize these lower bounds. The ultimate
goal might be to prove that ST = Q(mn) for JAGs,
or even for general models of computation. At this
point, however, it is an open problem to prove
T = w(nlogn), even for nonjumping automata
with only two pebbles, one of which is passive, on
constant degree graphs, or to prove T' = w(n) for
nonjumping automata with O(1) active pebbles on
degree 3 graphs.

It would be interesting to strengthen the result
of Section 4 to automata that have more pebbles
than the graph’s degree. Cook and Rackoff [13,
Theorem 4.13] show how to convert lower bounds



on high degree graphs into lower bounds on degree
3 graphs, but unfortunately their conversion seems
to rely on the ability to jump.
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