Communication—Space Tradeofls
for Unrestricted Protocols *

Paul Beame '

Abstract

This paper introduces communicating branching
programs, and develops a general technique for
demonstrating communication-space tradeoffs for
pairs of communicating branching programs. This
technique is then used to prove communication-
space tradeoffs for any pair of communicating
branching programs that hashes according to a uni-
versal family of hash functions. Other tradeoffs fol-
low from this result. As an example, any pair of
communicating Boolean branching programs that
computes matrix-vector products over GF(2) re-
quires communication-space product Q(n?). These
are the first examples of communication-space
tradeoffs on a completely general model of com-
municating processes.

1 Communication and Space

The amount of communication required among
processors cooperatively performing a computa-
tion is often the dominant factor in determining
the efficiency of parallel or distributed systems,
in both practical and theoretical terms. In ad-
dition, communication complexity has found sur-
prising applications in the complexity of Boolean
circuits (Karchmer and Wigderson [14], Raz and
Wigderson [19]), Boolean decision trees (Haj-
nal, Maass, and Turdn [13]), combinatorial opti-
mization (Yannakakis [23]), VLSI (Aho, Ullman

*This material is based upon work supported in part
by the National Science Foundation, under grants CCR-
8858799 and CCR-8907960, and by IBM, under Research
Contract 16980043.

tDepartment of Computer Science and Engineering, FR-
35, University of Washington, Seattle, Washington 98195

tThomas J. Watson Research Center, IBM Research Di-
vision, P. O. Box 218, Yorktown Heights, New York 10598

SMathematics Department, Lycoming College,
Williamsport, Pennsylvania 17701

CH2925-6/90/0000/0420$01.00 © 1990 |EEE

Martin Tompa ' #

420

Peiyuan Yan §

and Yannakakis [3], Lipton and Sedgewick [16],
Mehlhorn and Schmidt [18], Yao [25]), and pseu-
dorandom number generators (Babai, Nisan, and
Szegedy [5]).

Nearly all previous work on the communica-
tion complexity of various problems has focused
on their communication requirements alone, in the
absence of any limitations on the individual pro-
cessors. Lam, Tiwari, and Tompa [15] initiated
the study of communication complexity when the
processors have limited work space. As is custom-
ary, the systems studied consist of two communi-
cating processors that are given private inputs z
and y, respectively, and are to output some func-
tion f(x,y). With no restriction on the workspace
it is impossible to prove superlinear lower bounds
on the amount of communication, since one pro-
cessor can send its entire input to the other, which
then computes and outputs f(z,y). In contrast,
Lam, Tiwari, and Tompa proved several nonlinear
lower bounds on communication in the straight-
line model, when space is limited. For example,
one of their results of particular relevance to what
follows is that multiplication of an n X n matrix
by an n-vector in the Boolean straight-line model
with one-way communication requires communica-
tion C = ©(n?/S) when the processors’ workspace
is restricted to S.

In this paper we remove the restrictions of
straight-line computation and one-way communi-
cation, proving for the first time communication-
space tradeoffs on a completely general model of
communicating processes. This result is analogous
to Borodin and Cook’s time-space tradeoff for sort-
ing on a general sequential model [7].

More specifically, we introduce the notion of
communicating branching programs. We use these
to demonstrate that if one of the branching pro-
grams is given a member h of a universal family of
hash functions (Carter and Wegman [9, 10]) and

the other is given z, and their goal is to compute
h(z) cooperatively, then their communication C
and space S must satisfy the tradeoff CS = Q(nm),
where h maps n-bit inputs to m-bit outputs. As
an example, any pair of communicating Boolean
branching programs that multiplies an n X n matrix
by an n-vector over GF(2) satisfies CS = Q(n?).
Similar applications hold over more general finite
fields, and for other hash functions such as arith-
metic over large finite fields, convolution, and ma-
trix multiplication.

If a single processor can compute f(z,y) in time
C and space S, then a system of two processors can
compute f(z,y) in communication O(C) and space
O(S), simply by communicating every intermediate
value computed by either. Thus, the lower bounds
outlined above imply the corresponding time-space
tradeoffs of Grigoryev [12] for straight-line pro-
grams and Abrahamson [1] for branching programs.
The converse, however, is false. Whereas the time
T and space S must satisfy TS = Q(n?) when com-
puting the discrete Fourier transform [21, 27, 1] or
sorting [21, 8, 6], Lam, Tiwari, and Tompa [15]
demonstrated that both of these functions can
be computed in linear communication steps and
O(logn) space simultaneously. Thus, these results
strictly generalize previous time-space tradeoffs.

2 Communicating Branching

Programs

The gener. fraame vork for dealing with problems
of two party communication requires an accurate
notion of both the computational power of the
two parties involved and their method of com-
municating with each other. A restricted model
in which each party executes a straight-line pro-
gram was defined by Lam, Tiwari, and Tompa [15].
In their model each straight-line program is aug-
mented with send and receive instructions. They
leave open the question of defining an appropriate
nonoblivious model.

Since branching programs have proved to be use-
ful sequential models for the simultaneous measure
of time and space it is natural to use them to model
the communicating parties. Making the analogous
changes to branching programs that Lam, Tiwari,

421

and Tompa made to straight-line programs leads
to the following model.

A communicating pair of (Boolean) branching
programs consists of two branching programs,
known as the X-program and the Y-program, that
have input vectors z € X = {0,1}"* and y € Y =
{0,1}™v, respectively. The X-program is a labelled
directed acyclic graph with a designated start node,
and each of whose nodes has outdegree 0 or 2. Each
node of outdegree 2 is labelled either by an index in
{1,...,nx)} or by receive, and its two emanating
edges are labelled 0 and 1, respectively. In addi-
tion to its 0 or 1 label, an edge may be labelled by
a set of output statements of the form z; = 0 or
z; = 1. Also, an edge may have a sequence of labels
of the form send(0) or send(1). The Y-program
is defined analogously.

The pair of branching programs computes a func-
tion f: X XY — Z C {0,1}5"Z in the following
natural way. Each program accesses its portion
of the input and, starting at its start node, oper-
ates like a conventional branching program by fol-
lowing the edge labelled z; (respectively, y;) when
encountering a node labelled :. Outputs are pro-
duced according to the output label on this edge, if
any. When a program encounters a receive node it
waits until the other program traverses an edge la-
belled send(0) or send(1), and then the receiving
program branches based on the value of this bit.
Similarly a program executing a send is blocked
until the other program reaches a receive node.
The function f is computed correctly on inputs z
and y if the union of the outputs produced by the
two programs is consistent and comprises the bits
of f(z,y).

The space of each branching program is the base
2 logarithm of the number of its nodes. (This is the
standard definition for branching programs, moti-
vated by the fact that each node represents a dif-
ferent configuration of the program.) The space of
the pair of programs is the maximum of the space
of the two branching programs, and the commu-
nication is the length of the longest sequence of
send-receive pairs executed on any input (z,y).
The definitions can be generalized to communicat-
ing R-way branching programs for any R.

This model is a very natural one and a very gen-
eral one as well. It can simulate, for example, two

communicating space-bounded random access ma-
chines with a common write-only area for their out-
put values.

One aspect of communicating branching pro-
grams that is somewhat subtle is the way in which
output values are produced. Since all branchings of
one of the programs that do not affect its communi-
cation with the other program are hidden from that
other program, output values may be produced by
one branching program without the explicit knowl-
edge of the other branching program. In fact all the
bits communicated by the pair of branching pro-
grams may not be sufficient to determine the value
of the function. However, the model in which all
output values are communicated is a useful special
case. We say that a pair of communicating branch-
ing programs is open if and only if encodings of
all the output statements produced by either pro-
cessor are communicated bit by bit to the other
Processor.

The following lemma translates lower bounds on
open pairs of communicating branching programs
to unrestricted ones. The loss in the translation is
not severe especially in the case of pairs of branch-
ing programs that are output-oblivious, that is, the
order in which they produce their output values is
fixed in advance.

Lemma 1: If a function f : X x Y — {0,1}5"
is computed by a pair P of communicating branch-
ing programs using communication C and space S,
then f can be computed by an open pair of commu-
nicating branching programs using communication
O(C + n;logn,) and space O(S + logn;). Fur-
thermore, if P is output-oblivious then this can be
done using communication O(C + n,) and space
O(S + logn.).

Proof: Each output value can be communi-
cated by encoding its index and its value in bi-
nary and this takes O(logn) bits. To distinguish
output values from communication values an addi-
tional bit for each output or communication bit in
the original programs will be sufficient. The addi-
tional space is required for the receive nodes.

If the original pair is output-oblivious then the
O(logn.) bits per output value are not required,
since both programs know in advance which output

422

value is being produced and only its value must be
communicated. O

3 The General Lower Bound

The technique we develop here is an extension of
the technique of Borodin et al. [7, 8] for time-space
tradeoffs on sequential branching programs. To
prove time-space tradeoffs for a function one must
find two things (ignoring most of the quantitative
aspects):

1. a probability distribution on the set of inputs
such that, with high probability, a large num-
ber of output values are produced on an input,
and

2. a proof that, given the distribution in (1), for
any way of fixing a limited number of input
variables, the probability that an input whose
variables are so fixed produces a fixed set of k
output values is exponentially small in k.

We develop a similar pair of conditions that allow
proofs of communication-space tradeoffs. Our gen-
eral technique is directly applicable to open pairs
of communicating branching programs. Results for
arbitrary communicating branching programs fol-
low by the reduction given in Lemma 1.

In order to motivate the properties that are ap-
propriate for showing lower bounds for pairs of
communicating branching programs, we first de-
velop some facts about their operation.

Fix any pair (u,v) of nodes in the pair of commu-
nicating branching programs, u in the X-program
and v in the Y-program, and consider the action
of the branching programs on input pairs (z,y)
starting at (u,v). For each input pair (z,y) we
can follow the paths that the computation would
take starting at (u,v), and stop when either a to-
tal of ¢ bits of communication have been sent in
both directions or the programs halt. (It is pos-
sible that there is no consistent computation on
input (z,y) starting at (u,v), but any input (z,y)
that reaches (u,v) will have such a computation.
We consider an input pair (z,y) for which there is
a consistent computation.) This produces a string
'y(cu'v)(a:,y) of communication bits on (z,y) such

that |'y(u (z,9)| < ¢, with inequality only if the
programs La.lt before ¢ bits of communication have
been sent. For each string a € {0,1}<¢ we can
define a set

Ry, = 1{(z,9) € X XY | 1y (2,y) = a}.

A set R C XxY is a rectangle if and only if there
are sets A C X and B C Y such that R = A X B.

Lemma 2: Let (u,v) be a pair of nodes in a
pair of communicating branching programs, » in
the X-program and v in the Y-program. The sets
Ry, for a € {0, 1}5¢ are disjoint rectangles in
X x Y whose union contains all input pairs (z,y)
that reach (u,v).

Proof: The fact that thesets R ,, are disjoint
is immediate from their definition. It is also clear
that if (z,y) reaches (u,v) then 7(u,u)(x,y) = a
is defined and so (z,y) € R{,,. The fact that
each R(wv) is a rectangle follows g)y standard argu-
ments in communication complexity (Yao [24]). It
is proved inductively on the prefixes of . O

We are now ready to state properties of a func-
tion that make it possible to prove communication-
space tradeoffs:

If f(z,y) = z we will call the bits of z and y
input values and the bits of z output values. For a
function f : X x Y — Z and a distribution D on
X X Y, the two properties are as follows:

Property A: There are p < 1 and a positive
integer m such that

Prp[f(z,y) has at least m output values | > p.

Property B: Thereare 8 < 1,¢< 1,a 20,
and a positive integer K such that, for all positive
integers k < K, the following holds: Let R C X XY
be any rectangle such that Prp[(z,y) € R] > ¢.
Then, for any set V = {z;, = b1,...,2i, = be} of k
output values,

Prp[f(z,y) is consistent with V' | (z,y) € R]
< pFe,

Theorem 3: Suppose that for f: X XY — Z
there is a distribution D on X x Y such
that Properties A and B hold with p >
max(2-5%1472,26™%). Then any open pair of
communicating branching programs P computing
f using space S and communication C must satisfy

C - S = Q(mlog(1/8) min(K, log(p/q)))-

Note that although the hypothesis p > 275+~
refers to the space bound it is even weaker than p >
24~%/n, where n is the number of input bits, since
reading this many bits requires S > log, n. Note
also that, since there are 2% choices for k output
values and Property B must hold for all choices of
output values, 8 must be at least 1/2. Thus the
log(1/8) term is at most a constant. However,
may be close to 1, so that the log(1/4) term in the
lower bound may be less than 1.

Proof: Let P be an open pair of communicat-
ing branching programs computing f and let C and
S be the communication and space, respectively,
used by P. Let ¢ = min(C, |log,(p/q) — 25 — 2J).

Fix any pair (u,v) of nodes, u in the X-program
and v in the Y-program of P. Fix o € {0,1}%°
such that all input pairs (z,y) that reach (u,v)
and are in R v) have some set V of k < K output
values in common, that is, a determines k output
values. Let (z,y) be chosen at random according
to D. Suppose that Prp[(z,y) € R, .] > q. By
Property B, Lemma 2, and the fact that 'P correctly
computes f,

Prp[(z,y) reaches (u,v) | (z,9) € Riyy)
A o determines k output values]
< ﬁk—u.

Ca]l R{,,) tiny if and only if Prp(z,y) €
] < g. Let T be the set of inputs pairs that
are m any tiny R(u) We will discard the input

pairs in T'. Since there are at most 2°+1 choices of
o and at most 225 choices of the pair (u,v),

Prpl(z,y) € T] < 2°¥1225¢ < p/2.
Using the definition of T, for all k¥ < K,

PI“D[(Z,y) reaches (U,v) | (I, y) € R?u,v)
A a determines k output values A (z,y) ¢ T
< g

423

Thus

Prp|(z,y) reaches (u,v) A (z,y) € R{,,,)
A a determines k output values A (z,y) ¢ T
< ﬂk—a_

{3

For fixed (u,v), Lemma 2 says that the sets RY, v)
are disjoint and their union contains all points
(z,y) that reach (u,v),soforall k < K,

Prp[(z,y) reaches (u,v)
A Y(u,»)(%,y) determines k output values
A(z,y) ¢ T)

Saer{%e’)ﬁs cPrp[(a:,y) reaches (u,v) A (z,y) € R, ,
A a determines k output values A (z,y) ¢ T]

< gk,)

Now by Property A, P produces at least m output
values with probability at least p. Thus

Prp[f(z,y) has > m output values A (z,y) ¢ T)
> p/2. (2)

Inequalities (1) and (2) will be combined in two
different ways. For the first, it follows that

C > min(K, |log,(p/q) ~ 25 - 2]). (3)

For assume to the contrary that C < K and
C < |logy(p/g)— 25 —2]. Then ¢ = C. In In-
equality (1), choose u and v to be the start nodes
of their respective branching programs, and choose
k = m. Since P is open, k = m < C < K, so that
Inequality (1) holds. Combining this with Inequal-
ity (2) yields p/2 < BF-% = ™2 contradicting
the hypothesis p > 2™,

Now let ¥ = min(K,m/ [C/c]) in Inequality (1).
For every input (z,y) on which f(z,y) has at least
m output values, (z,y) reaches some pair (u,v)
of nodes such that 7(°u’v)(z,y) determines at least
m/ [C/e] > k output values, for otherwise fewer
than m output values are produced by P on input
(z,y). Therefore, since k¥ < K and there are at
most 225 node pairs (u,),

p/2 < Prp[(3u,v)(z,y) reaches (u,v) A
'y(cu,u)(x,y) determines k output values
Nz,y) ¢ T
< 225ﬂk-a.

424

Solving yields 25 + log,(26-2/p) > klogy(1/5).
Since p > 2~5+13-3,

35 > klogy(1/5).

Case 1 (K <m/[C/c]): Then k = K. Since P
is open, C > m, so 3C'S > mK log,(1/5).

CASE 2 (S+2 > log,(p/q)/4): Sincelog,(1/8) <1
and C 2> m because P is open, C(S + 2) >
m logy(1/5) loga(p/q)/4-

CasgE 3 (K > m/[C/c] AND S + 2 < log,(p/q)/4):
Then k = m/ [C/c] 2> me/(C + ¢), so

6CS > 3(C+¢)S

(C + c)klogy(1/8)

melog,(1/6)

mlog,(1/8) min(C, |log,(p/q) — 25 - 2|)
mlogy(1/4) min(K, |logy(p/q) — 25 - 2])

mlog,(1/6) min(K,log,(p/q)/2)-

The penultimate inequality follows from Inequality
3. O

It is not too hard to see how the argument and
Properties A and B can be modified to deal with
R-way branching programs (Borodin and Cook [7])
or when the output values described in Properties
A and B are of a restricted type (as in, for example,
Abrahamson [2]).

IV IV IV IV IV IV

4 Hash Functions

We now apply the lower bound technique of the
previous section to universal families of hash func-
tions (Carter and Wegman [9, 10]). This will allow
us to obtain lower bounds for a variety of inter-
esting computational problems. We make use of a
beautiful analog due to Mansour, Nisan, and Ti-
wari [17] of a lemma of Lindsey [4, 11] concerning
Hadamard matrices.

Note that our results (and those in [17]) use the
more restrictive definition of a universal family of
hash functions given by Carter and Wegman in
[10] (which they called ‘strongly universal’ in [10])
rather than the somewhat broader definition given
in [9]. To emphasize the nature of this stronger
requirement we will call such families pairwise uni-
versal.

A pairwise universal family H of hash functions
from a set X to a set Z satisfies the following two
properties for A chosen uniformly at random from
H:

1. For any z € X, h(z) is uniformly distributed
in Z.

2. The events h(z) = z are pairwise independent
forz € X and z € Z.

We say that a pair of communicating branch-
ing programs computes the universal family of hash
functions H if and only if it computes the function
f: X x H - Z given by f(z,h) = h(z).

Of the two properties of a function required to
apply our lower bound technique, Property B is
the more difficult to prove. The following lemma
on pairwise universal hash functions is critical in
proving Property B for families of hash functions.

Lemma 4: [Mansour, Nisan, and Tiwari [17]]
Let H be a pairwise universal family of hash func-
tions from X to Z. Let A C X, B C H, and
C C Z. Then

IC| [_|H]-|C]
xeA,heB{h(z) €cl- ml < |Al-|B|-|Z]

| Pr

This lemma is used by Mansour, Nisan, and Ti-
wari [17] to prove time-space tradeoffs for comput-
ing hash functions. A somewhat weaker form of
this lemma was proved independently by Yan [22]
for the special case when the family of hash func-
tions is given by matrix-vector product over GF(2).

Theorem 5: Any open pair of communicating
branching programs computing a pairwise univer-
sal family of hash functions from X to Z re-
quires communication C and space S > logyn
such that C - § = Q(nm), where n = |log, | X|],
m = |log;|Z]] — 1, and Z C {0,1}=™* for
I < min(log, n,m) — 3.

Proof: Let D be the uniform distribution on
pairs (z,h). Since h(z) is uniformly distributed
in Z, Property A is satisfied with p = 1/2. Let
R = A x B satisfy |R| > 2XK-"|X x H|, where
K =n/2. Foranyset V ={z;, =by,...,2; = bi}
of k¥ < K output values, let C C Z be the set

of vectors consistent with V. At most 2mti—Ft1
vectors are in C so that |C|/|Z| < 2. Then
Lemma 4 states that

Prp[h(z) is consistent with V | (2,h) € R]

. lo, el
- 12 [R| 12

< 1/251 4 1/y/2K-n| X|2k-!
S 1/2k—1—1.

Thus Property B is satisfied with ¢ = 27"/2,
B =1/2,a = I+ 1, and K = n/2. Since
I < min(logy n,m) -3, p=1/2>28"%/n and p >
2™ * so Theorem 3 implies that C - § = Q(nm).
a

Corollary 6:
Any pair of communicating branching programs
computing a pairwise universal family of hash func-
tions from X to Z with communication C and
space S = o(n/logm) satisfies C - § = Q(nm),
where n = |log, |X]|], m = |log,|Z|] — 1, and
Z C {0,1}s™+ for I < min(log; n,m) — 3.

Proof: From Lemma 1 and Theorem 5,

(C + mlogm)(S + logm) = Q(nm).
It will be shown that S = Q(logm), that is,
(C + mlogm)S = Q(nm).

Since, by hypothesis, Smlogm = o(nm), the con-
clusion CS = Q(nm) will follow.

Since the outputs h(z) must be uniformly dis-
tributed in Z, the number of pairs of paths, one
from the X-program and one from the H-program,
must be at least |Z]|. The number of such pairs of
paths is at most (225)2, so that 22°*' > |Z| = 2™,
that is, S+ 12> logom. O

Similar statements to Corollary 6 can be made
for each of the following corollaries. We simply
state our results for open pairs of branching pro-
grams for convenience.

Corollary 7: Any open pair of communicating
branching programs computing the product of an
n X n matrix and an n-vector over GF(2) requires
communication C and space S such that C'-§ =
Q(n?).

425

Corollary 8: If r > 2" then any open pair of
communicating branching programs computing f :
GF(r) x GF(r)* — GF(r) given by f(z,(a,b)) =
a-z +b (in GF(r)) requires communication C and
space S such that C - § = Q(n?).

The next two corollaries follow from Theorem 5
exactly as shown by Mansour, Nisan, and Ti-
wari [17] for time-space tradeoffs.

Corollary 8: Any open pair of communicating
branching programs computing the m bit convolu-
tion of an n bit string with an (n+m— 1) bit string
requires communication C and space S such that
C-S =Q(nm).

Corollary 10: Any open pair of communicat-
ing branching programs computing the product of
two n X n matrices over GF(2) requires communi-
cation C and space S such that C - § = Q(n?).

Corollaries 8, 9, and 10 are interesting in their
own right and because they demonstrate tradeoffs
in cases where the lower bound is greater than the
total number of inputs that the two programs re-
ceive.

Using the natural generalization of communicat-
ing branching programs to pairs of r-way branch-
ing programs that are allowed to send and receive
values in GF(r) one can prove, either by direct
simulation or an analog of Theorem 3, the follow-
ing analog of Theorem 5 for hash functions whose
domain and range are vectors over GF(r).

Theorem 11: Any open pair of communicating
r-way branching programs computing a pairwise
universal family of hash functions from X to Z
requires communication C' and space S such that
C-S = Q(nmlogr), where n = |log, |X|| and
m= Llogr |Z|J -1

This theorem has corollaries analogous to those
of Theorem 5 such as the following.

Corollary 12: Any open pair of communicat-
ing r-way branching programs computing the prod-
uct of an 7 X n matrix and an n-vector over GF(r)
requires communication C' and space S such that
C-5=Q(n%logr).

426

5 Open Questions

It is an interesting question whether or not similar
bounds hold for A-V matrix-vector product. The
results of Lam, Tiwari, and Tompa [15] show that
such results do hold in a more restricted model in
which the programs are restricted to being obliv-
ious, i.e. straight-line, and the communication is
one-way.

A natural approach to proving such a bound
would be to try to prove properties A and B for
this problem using the distribution D employed by
Babai, Frankl, and Simon [4] for proving a distri-
butional communication complexity lower bound of
Q(y/n) for A-V dot product (i.e. set disjointness)
and by Abrahamson [2] for proving a time-space
tradeoff of TS = 2(n!-®) on matrix-vector product.
However, this approach cannot yield any interest-
ing communication-space tradeoff since under this
distribution, which chooses each input bit indepen-
dently to be 1 with probability 1/4/n and 0 with
probability (1 — 1/4/n), the program with the vec-
tor can simply communicate its value in expected
O(y/nlogn) bits to the matrix program which can
store this value and perform the rest of the compu-
tation on its own.

An alternative approach would be to try to gen-
eralize the distribution on inputs that Razborov
[20] used to prove that the distributional commu-
nication complexity of the set disjointness problem
is Q(n). Unfortunately, the fact that this distri-
bution does not set the values of the inputs to the
two players independently creates serious problems
when trying to generalize from a problem whose in-
put consists of two vectors to a problem with a ma-
trix and a vector as input. It seems unlikely that
one can maintain sufficient independence between
the inputs to the two players while maintaining suf-
ficient information content in the two inputs. It
may be that the oblivious one-way result is lead-
ing us astray, but it seems more likely that we are
unable to generalize it because our technique is fun-
damentally distributional in nature.

The question of the communication-space trade-
off for A-V matrix product and GF(2) matrix-
vector product raises another interesting question.
Suppose that function f on X XY has ¢-error distri-
butional communication complexity (Yao [26]) at

least D,. Under what circumstances does the func-
tion F on X™ x Y given by F((z1,...,2Zn),¥) =
(f(z1,9),- .- f(2n,y)) have communication-space
tradeoff Q(nD,)? As defined by Yao [26], a lower
bound D, > k can be obtained by showing that,
for an appropriate distribution on X XY, any rect-
angle R, in which the probability of f(z,y) taking
on a particular value is less than ¢, must have total
probability at most 1/2%. This condition is very
similar to our Property B except that we require
that this be true for ¢ much smaller than a con-
stant, that is, for ¢ = B* for 8 < 1. I the only
rectangles A X B in X" x Y to handle had A of the
form A; X --- X A, then there would be a direct
translation of distributional communication com-
plexity lower bounds for f to those for F. It is not
clear what conditions on f will allow the handling
of general A as well. The technique of Mansour,
Nisan, and Tiwari [17] and Yan [22] implies that
it is sufficient to have not only a small probability
of a value in such a rectangle R but also a small
variance in the probability of the value occurring
in the rows (or columns) of R.

Acknowledgements

We thank Johan H&stad, Noam Nisan, Larry
Ruzzo, and Prasoon Tiwari for helpful comments.

References

[1] K. Abrahamson. Time-space tradeoffs for
branching programs contrasted with those for
straight-line programs. In 27th Annual Sym-
posium on Foundations of Computer Science,
pages 402-409, Toronto, Ontario, Oct. 1986.
IEEE.

K. Abrahamson. A time-space tradeoff for
boolean matrix multiplication. In $1st Annual
Symposium on Foundations of Computer Sci-
ence, St. Louis, MO, Oct. 1990. IEEE.

2]

A. V. Aho, J. D. Ullman, and M. Yannakakis.
On notions of information transfer in VLSI
circuits. In Proceedings of the Fifteenth An-
nual ACM Symposium on Theory of Comput-
ing, pages 133-139, Boston, MA, Apr. 1983.

(3]

a7

[4] L. Babai, P. Frankl, and J. Simon. Complexity
classes in communication complexity theory.
In 27th Annual Symposium on Foundations
of Computer Science, pages 337-347, Toronto,
Ontario, Oct. 1986. IEEE.

L. Babai, N. Nisan, and M. Szegedy. Multi-
party protocols and logspace-hard pseudoran-
dom sequences. In Proceedings of the Twenty
First Annual ACM Symposium on Theory of
Computing, pages 1-11, Seattle, WA, May
1989.

P. Beame. A general sequential time-space
tradeoff for finding unique elements. In Pro-
ceedings of the Twenty First Annual ACM
Symposium on Theory of Computing, pages
197-203, Seattle, WA, May 1989.

(€]

A. Borodin and S. Cook. A time-space tradeoff
for sorting on a general sequential model of
computation. SIAM Journal on Computing,
11(2):287-297, May 1982.

(7]

A. Borodin, M. J. Fischer, D. G. Kirkpatrick,
N. A. Lynch, and M. Tompa. A time-space
tradeoff for sorting on non-oblivious machines.
Journal of Computer and System Sciences,
22(3):351-364, June 1981.

(8]

J. L. Carter and M. N. Wegman. Universal
classes of hash functions. Journal of Computer
and System Sciences, 18:143-154, 1979.

[10] J. L. Carter and M. N. Wegman. New hash
functions and their use in authentication and
set equality. Journal of Computer and System

Sciences, 22(3):265-277, 1981.

[11] P.Erdés and J. Spencer. Probabilistic Methods

in Combinatorics. Academic Press, 1974,

D. Y. Grigoriev. An application of separa-
bility and independence notions for proving
lower bounds of circuit complexity. In Notes
of Scientific Seminars, volume 60, pages 38—
48. Steklov Mathematical Institute, Leningrad
Department, 1976. In Russian.

(12]

[13] A. Hajnal, W. Maass, and G. Turdn. On the
communication complexity of graph proper-

ties. In Proceedings of the Twentieth Annual

(14]

(15]

(16]

[17]

[18]

(19]

[20]

[21]

ACM Symposium on Theory of Computing,
pages 186-191, Chicago, IL, May 1988.

M. Karchmer and A. Wigderson. Mono-
tone circuits for connectivity require super-
logarithmic depth. In Proceedings of the
Twentieth Annual ACM Symposium on The-
ory of Computing, pages 539-550, Chicago, 1L,
May 1988.

T. Lam, P. Tiwari, and M. Tompa. Trade-
offs between communication and space. In
Proceedings of the Twenty First Annual ACM
Symposium on Theory of Computing, pages
217-226, Seattle, WA, May 1989.

R. J. Lipton and R. Sedgewick. Lower bounds
for VLSL. In Proceedings of the Thirteenth An-
nual ACM Symposium on Theory of Comput-
ing, pages 300-307, Milwaukee, WI, May 1981.

Y. Mansour, N. Nisan, and P. Tiwari. The
computational complexity of universal hash-
ing. In Proceedings of the Twenty Second An-
nual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, May 1990.

K. Mehlhorn and E. M. Schmidt. Las Ve-
gas is better than determinism in VLSI and
distributed computing. In Proceedings of the
Fourteenth Annual ACM Symposium on The-
ory of Computing, pages 330-337, San Fran-
cisco, CA, May 1982.

R. Raz and A. Wigderson. Monotone circuits
for matching require linear depth. In Proceed-
ings of the Twenty Second Annual ACM Sym-
posium on Theory of Computing, pages 287
292, Baltimore, MD, May 1990.

A. A. Razborov. On the distributional com-
plexity of disjointness. In Automata, Lan-
guages, and Programming: 17th International
Collogquium, volume 443 of Lecture Notes
in Computer Science, pages 249-253, War-
wick University, England, July 1990. Springer-
Verlag.

M. Tompa. Time-space tradeoffs for comput-
ing functions, using connectivity properties of
their circuits. Journal of Computer and Sys-
tem Sciences, 20:118-132, Apr. 1980.

428

[22]

(23]

[24]

(25]

[26]

[27]

P. Yan. A tradeoff between communication
and space. Manuscript, 1989.

M. Yannakakis. Expressing combinatorial op-
timization problems by linear programs. In
Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, pages
223-228, Chicago, IL, May 1988.

A. C. Yao. Some complexity questions re-
lated to distributive computing. In Proceed-
ings of the Eleventh Annual ACM Symposium
on Theory of Computing, pages 209-213, At-
lanta, GA, Apr.-May 1979.

A. C. Yao. The entropic limitations of VLSI
computations. In Proceedings of the Thir-
teenth Annual ACM Symposium on Theory of
Computing, pages 308-311, Milwaukee, WI,
May 1981.

A. C. Yao. Lower bounds by probabilistic ar-
guments. In 24th Annual Symposium on Foun-
dations of Computer Science, pages 420-428,
Tucson, AZ, Nov. 1983. IEEE.

Y. Yesha. Time-space tradeoffs for matrix
multiplication and the discrete Fourier trans-
form on any general sequential random-access
computer. Journal of Computer and System
Sciences, 29:183-197, 1984.

