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ABSTRACT

Atomicity violations and violations of sequential consistency are
two broad classes of concurrency errors that reduce the reliability
of software. These failures often occur when different processors
interleave their memory accesses at a fine grain. Greedy Coher-
ence (GreCo) is a simple hardware technique that delays responses
to some coherence requests to make this kind of sharing coarser,
separating different processors’ accesses to the same memory loca-
tion in time. These delays avoid operation interleavings that lead
to some atomicity violations and sequential consistency (SC) vio-
lations, making software more robust to these types of faults. We
describe two implementations of GreCo: one that monitors coher-
ence protocol messages and uses additional hardware structures to
identify and avoid likely atomicity and SC violations; and a lower-
complexity implementation that leverages the existing processor
write buffer and focuses mainly on avoiding SC violations. Simu-
lation results show that GreCo avoids failures in several bug kernel
programs and incurs a negligible performance impact—Iess than
2%—on programs from the PARSEC benchmark suite.

1. INTRODUCTION

Multicores are already pervasive. In order to reap their potential
performance benefits, concurrent and parallel programming must
gain mainstream acceptance. Concurrent programming is also re-
quired for reasons other than performance in a broad class of impor-
tant applications that are inherently concurrent, such as operating
systems, web browsers, and mobile applications.

Unfortunately, concurrent programming is extremely challenging.
Programmers must consider the interactions of operations in differ-
ent threads of execution. These interactions are mind-bogglingly
numerous and often subtle. The complexity of concurrent pro-
gramming often leads to errors such as atomicity violations and
data races, which can in turn lead to violations of sequential con-
sistency (SC). Concurrency errors are especially troubling because
they may only manifest in the presence of certain, rare thread inter-
actions. Hence, even with thorough testing and experienced devel-
opment teams, latent errors can reach deployment, leading to costly
failures in deployed systems.

A substantial body of prior work has addressed the complexity of
concurrent software with new testing strategies [2, 5, 10, 20] and
techniques for identifying the causes of concurrency errors [4,8,18,
23,26], in many cases using hardware support [9, 13, 14]. Testing
and bug identification techniques have had considerable success in
exposing faults to programmers and shepherding programmers to
their root causes. However, both strategies rely on the assump-
tion that programmers are available and capable of fixing their er-
rors. A study of concurrency bugs and their fixes [12] suggests
that many difficult bugs are left unaddressed for long periods of
time—sometimes years. Additionally, when errors are eventually
addressed, programmers often “fix” them incorrectly.

There have also been proposals to prevent concurrency bugs from
causing failures by preventing untested thread interactions [6,25].
These approaches show promise in that they obviate the need for
the involvement of programmers. However, by relying on memo-
ization of prior executions to determine acceptable behavior, these
approaches remain limited due to the enormous space of possible
multithreaded executions. Furthermore, these techniques and oth-
ers that have targeted specific bug classes [15] cannot avoid the
effects of sequential consistency violations. Some prior work has
been successful at using hardware support to avoid sequential con-
sistency violations [9, 16], but is limited by high implementation
complexity [16] or inability to deal with sequential consistency vi-
olations involving store reorderings [9]. Work remains to be done
to provide a low-complexity, high-efficiency mechanism that cov-
ers a broad variety of concurrency errors.

In this work, we propose a new technique for dynamically avoiding
failures in concurrent programs, focusing on atomicity violations
and sequential consistency violations. Prior work has shown that
unspecified atomic regions tend to contain few instructions [13,17],
and architectural write buffers hold values for a short window dur-
ing which sequential consistency can be violated [22]. Motivated
by these observations, we look for bugs by focusing on fine-grained
memory access interleavings over short windows of dynamic exe-
cution. In this work, we are driven by simplicity: we consider all
fine-grained interleavings of memory accesses to the same memory
location by different processors hazardous.

The core of our proposed mechanism is making processors greedy
with the data in their caches. Using existing cache coherence sup-
port and simple hardware data structures, processors monitor mem-
ory access interleavings. Our goal is to identify incoming memory
access requests that indicate fine-grained sharing. Processors con-
sider fine-grained sharing hazardous, so they delay their reply to
requests that could cause it. This delay gives write buffers time to



flush, preventing potential SC violations, and permits partially ex-
ecuted atomic regions to execute without being erroneously inter-
leaved. We call the resulting technique Greedy Coherence (GreCo).

To summarize our main contributions:

We develop a technique that identifies and delays certain
inter-thread communication events to prevent the manifes-
tation of atomicity and SC violations.

e We propose Greedy Coherence (GreCo): a simple architec-
tural mechanism that implements our detection and delay
techniques to prevent failures.

We describe two implementations of GreCo: One that re-
quires minimal hardware modification and focuses on pre-
venting SC violations; and another that uses additional sim-
ple hardware structures to better handle both atomicity and
SC violations.

e Using simulation, we evaluate both our implementations and
show that GreCo effectively avoids errors with negligible im-
pact on application performance.

2. BACKGROUND: THE PROBLEM WITH
FINE-GRAINED SHARING

The goal of GreCo is to avoid atomicity violations and sequen-
tial consistency violations. The motivation behind GreCo is that
concurrency errors often occur when multiple processors interleave
their accesses to shared memory at a fine grain. In this section, we
show how fine-grained sharing leads to the manifestation of con-
currency errors.

SC Violations. Figure 1| shows a snippet of a program that il-
lustrates how fine-grained memory access interleaving can lead to
violations of sequential consistency on architectures with relaxed
memory consistency models. The error in this program is due to
the fact that processors P1 and P2 both access x and y without syn-
chronizing their accesses. Executing this program on a system that
employs write-buffering (such as all modern x86 machines) can
lead to a violation of SC if each processor buffers its write and then
executes its read without flushing the write buffer. In the case where
neither buffered write is propagated to memory, both threads’ reads
see 0. There is no SC execution under which this result is possible,
so such an execution manifests an SC violation.

Notice that only fine-grained interleavings of memory accesses can
lead to such violations of SC. In this example, the error manifests
because the reads execute immediately after the writes and within
a short time span of one another. If enough time had elapsed for
either write to leave its processor’s write buffer before the other
processor’s read, the execution would correspond to an SC inter-
leaving.

Atomicity Violations. Figure[2]illustrates how fine-grained mem-
ory access interleaving can lead to the manifestation of atomicity vi-
olations. In the example, processor P1 is executing a pair of writes
that should be atomic with one another. Concurrently, P2 executes
a read to the same memory location. If P2’s read interleaves P1’s
writes, as shown, P2 reads the intermediate value produced by the
first of P1’s writes. P1’s writes should have been atomic, so P2

Initially: x==y==

P1 P2
Buffered in P1's
; —_—=1
write buffer -1 Buffered in P2's
Reads stale value from Yy write buffer

memory because P2's —r1=y

write Is still buffered Reads stale value from

¥ 2 =X <€—— memory because P1's
write is still buffered
Result: r1==r2==
(There is no SC execution with this result.)

Figure 1: An SC violation resulting from a data race on an ar-
chitecture with write buffering. Accesses to x and y are not
properly synchronized, permitting both processors to buffer
write accesses locally.
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intermediate value that
should not be read by =—#x=1

other processors sends read-miss

=x
y=x coherence request

x=2

result: y==

(P2 should not have been
able to read the intermediate value 1.)

Figure 2: A violation of atomicity due to improper protection
of an atomic region. The two writes to x in P1 are not properly
synchronized, so P2 is able to read an intermediate value.

should not have been able to read this value. Prior work has shown
that such intended atomic regions tend to contain just a few mem-
ory operations [12,13,17]. As a result, violation of the atomicity of
these regions only occurs when accesses interleave at a fine grain.

3. GREEDY COHERENCE

As illustrated in Figures [I]and 2] SC violations and atomicity vi-
olations manifest when different processors interleave operations
at a fine grain. If the interleaving of accesses in the examples
was coarser, the bugs would not have manifested. The key idea in
GreCo is to detect fine-grained interleavings and treat them as po-
tential concurrency errors. To prevent failures, GreCo changes the
access interleaving by selectively increasing the latency of some
memory accesses with delays. Such delays coarsen the granularity
of interleavings, preventing many violations of SC and atomicity.

GreCo has two parts. First, GreCo uses a program monitoring
mechanism to detect fine-grained memory access interleavings. Sec-
ond, GreCo uses carefully placed delays to guide the execution
away from these interleavings. We now describe GreCo’s basic
mechanisms abstractly; Sectiond] details GreCo’s implementation.

3.1 Detecting Potential Concurrency Errors
GreCo monitors the execution of programs in order to identify fine-
grained memory access interleavings. As a basis for our design, we
assume a cache-coherent shared-memory multiprocessor.

In GreCo, each processor maintains an access history, which records
a short, fixed-length sequence of its recently-accessed addresses.
Read and write accesses histories are maintained separately.

When a processor receives an access request from another proces-
sor for a piece of data, the processor checks its access history for
an access to the requested data. The access history only contains a
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Figure 3: Greedy Coherence avoiding a violation of SC by delaying P2’s reply to P1’s request to read y. The horizontal line in (b)

indicates a delay inserted by GreCo. Real time flows down.

few entries, so a matching entry indicates that fine-grained memory
access interleaving is occurring with the requesting processor.

3.2 Avoiding Errors

The essence of the errors shown in Figures [1| and |2|is that a pro-
cessor receives an access request from another processor for some
memory location too soon after it has accessed that location locally.
In GreCo, processors avoid failures by delaying their response to
incoming requests for cache lines that they have accessed very re-
cently (i.e., lines in their access histories). By delaying the comple-
tion of the incoming access, GreCo increases the time between the
two accesses in the execution, reducing the likelihood of a failure.
Figures[3land[]show how GreCo avoids the manifestation of errors
by detecting such access interleavings.

Note that fine-grained interleaving of accesses to a memory loca-
tion is not necessarily a sign of an error. However, in a program
with a data race or an incorrectly specified atomic region, the man-
ifestation of the error is often the result of such a fine-grained ac-
cess interleaving. Spurious delays during benign fine-grained shar-
ing are a potential performance problem for GreCo. However, we
show in Section [6.3]that GreCo’s performance impact is minimal.

SC Violations. GreCo increases the latency of some coherence
requests to prevent processors from accessing memory locations for
which other processors have buffered writes. Figure [3] shows the
program from Figure [T] executing on a system with GreCo. There
are two processors, P1 and P2. The processors each have a write
buffer, which holds write accesses for a short period of time before
their results are made visible to other processors. When a processor
performs a memory operation, it sends an access (coherence) re-
quest to other processors. When the recipient of the request replies,
the originator of the request proceeds with its memory operation.
Some access requests are omitted from the figure for illustrative
purposes. The processors’ GreCo access histories are also shown.

The execution begins with both P1 and P2 executing their store in-
structions. The stores are placed in the processors’ respective write
buffers, establishing the necessary condition for the violation of
SC. Without intervention, P1’s execution of r1 y would read a
stale value of y. However, with GreCo, the presence of y in P2’s
access history causes P2 to delay its reply to P1’s read request.
During the delay, y leaves P2’s write buffer, and the value of y is
made globally visible. When P2 finally replies, and P1 completes
its access, P1 correctly reads the value for y that P2 wrote.

Note that GreCo only prevents fine-grained access interleavings
within the same cache line. Fine-grained interleaving of accesses
across different lines proceed normally. For example, if P1 had
read another variable z in a different cache line before reading v,
that read to z would not have been delayed.

Atomicity Violations. Figure [4] shows how GreCo avoids the
atomicity violation in Figure In the example, P1 writes an inter-
mediate value of 1 to x that is not intended to be visible to other
processors. However, the program does not reflect this intention,
and P2 can read x between P1’s writes to x. With GreCo, P1
does not respond immediately to P2’s request because x isin P1’s
access history. During this period of delay, P1 finishes executing
both writes to x. Later, after the delay finishes, P1 responds to
P2’s request with the correct value x 2. GreCo prevents the
interleaving that exposes the intermediate value by increasing the
latency of P1’s response to P2’s request.

4. ARCHITECTURE
We have developed two different implementations of GreCo: Explicit-
History Greedy Coherence (GreCo-Hist), and Write-Buffer-Based
Greedy Coherence (GreCo-WB). GreCo-Hist probabilistically avoids
both atomicity and SC violations with modest hardware extensions.

GreCo-WB requires even fewer modifications to hardware than GreCo-

Hist. However, GreCo-WB does not avoid atomicity violations
as well as GreCo-Hist. We now describe the implementation of
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Figure 4: Greedy Coherence avoiding an atomicity violation by
delaying P1’s response to P2.
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Figure 5: A block diagram of the GreCo-Hist architecture. Pro-
cessor components not included in the diagram are unchanged.
New components are shaded. Note that the access history and
the delay buffer are both connected to the cache controller so
that accesses can be monitored, and coherence replies can be
delayed.

GreCo-Hist; the following subsection describes the simpler hard-
ware modifications required for GreCo-WB.

4.1 Explicit-History Greedy Coherence

There are two main components to the architecture support for
GreCo: (1) support for collecting and maintaining an access his-
tory; and (2) support for detecting which incoming access requests
should be delayed and carrying out those delays. GreCo-Hist adds
two main structures to the satisfy these design goals: the access
history and the delay buffer. Figure[5]shows a block diagram of the
hardware extensions that implement GreCo-Hist.

4.1.1 Access History

The access history is a data structure that tracks recent memory
accesses made by a processor. The processor uses its access history
to determine when it should delay its reply to incoming memory
access requests by other processors, as described in Section[3]

The access history is implemented as a searchable FIFO queue
of line-granular memory addresses. When a processor executes a
memory operation, it inserts the address that was accessed into the
access history. The access history has a fixed size, and so inserting
a new address may cause an address accessed earlier to be pushed
out of the queue.

The access history structure is content-addressable so that it can
be searched on every incoming coherence request. Requests for
addresses in the history are delayed until the address leaves the
history. The mechanism for implementing this delay is described
in more detail in the next section.

The size of a processor’s access history determines the length of
time during which accesses to a given address are delayed follow-
ing its own access to that memory location. Ideally, the number
of entries in the access history would be close to the number of
memory operations involved in the manifestation of errors. Prior
work [13, 17,21] has shown that this number is small, so we as-
sume a modest default length of 128 entries.

In GreCo, processors keep an access history for read and write op-
erations separately. Separating accesses by type is important be-
cause delays are only useful in situations that can lead to errors.
Specifically, a processor should only delay an incoming read re-
quest if it has recently written the location—if it has recently read
the location but not written it, then no delay is necessary. Keeping
separate read and write histories allows the processor to identify
cases involving only reads, and not delay. This behavior is essen-
tial to GreCo’s low performance impact as it preserves delay-free
read sharing.

It is possible for a processor to be delayed by another processor that
is also being delayed. If two processors delay one another’s access
requests, a deadlock will result because neither processor can exe-
cute new memory accesses that push accesses from their histories
(recall that delays last until the delay-causing access exits the his-
tory structure). GreCo prevents these deadlocks by limiting the
amount of real time an access remains in a processor’s access his-
tory while that processor is not executing new memory accesses.
By guaranteeing that every access in an access history will even-
tually leave even if its host processor makes no further memory
accesses, GreCo ensures that all delays will eventually end.

Specifically, the access history has a register associated with it that
stores a progress countdown timer. The countdown timer is initial-
ized to its maximum value. Each time an entry is enqueued into the
access history, the register is reset to its maximum value. Each cy-
cle, the register is decremented. When the register reaches zero, an
empty placeholder entry is enqueued into the access history, push-
ing the oldest entry out of the history.

If a processor is involved in a deadlock, its access history (and that
of all involved processors) will begin to empty as its progress count-
down timer repeatedly reaches zero. Eventually, after one of the
delay-causing entries leaves a processor’s history, that processor
will permit the delayed access to proceed, breaking the deadlock.

4.1.2 Delay Buffer

The delay buffer is a data structure that keeps track of incoming
coherence requests to which a processor is delaying its reply. It
consists of a set of registers, each of which contains a coherence
request message (i.e., an address along with flags indicating the
request type) together with a reference count indicating the number
of times the address appears in the access history.

‘When an incoming request is delayed (i.e., it hits in the access his-
tory), it is placed in a free register in the delay buffer. The pro-
cessor counts how many access-history entries refer to the address;
the new delay buffer entry’s reference count field is initialized to



this value. No response is sent to the requesting processor, so the
remote processor’s memory operation does not complete.

Whenever an address exits the access history, the processor searches
for entries in the delay buffer that refer to the address and decre-
ments those entries’ reference counts. If any reference count reaches
zero, the processor replies to the corresponding delayed request,
completing the GreCo delay.

The number of entries in the delay buffer is determined by the max-
imum number of outstanding requests a processor can handle. In a
system with P processors, each with M/ miss-status holding regis-
ters (i.e., at most M outstanding memory requests), the delay buffer
must have (P — 1) x M entries. The size of each entry is deter-
mined by the size of coherence requests and the size of the access
history. Assuming requests consist of 48 address bits and 2 request
type bits and the access history has 128 entries, each delay buffer
register is 57 bits.

4.2 Write-Buffer-Based Greedy Coherence

In GreCo-Hist we add searchable FIFOs to implement GreCo’s ac-
cess history. However, modern processors implicitly track their
write access history in write buffers. Write buffers hold memory
writes between when they are retired and when their effects are visi-
ble in the memory system. To decrease GreCo’s design complexity,
we can reuse the existing write buffer as the access history. A write
buffer is typically organized as a searchable FIFO, precisely what
is needed to implement an access history.

4.2.1 Implementing GreCo-WB
In GreCo-WB, the write buffer is used as the access history. The
delay buffer is identical to the structure in GreCo-Hist. When a pro-

cessor receives a coherence request, it searches its content-addressable

write buffer for the requested address.

To ensure forward progress, GreCo-Hist requires the addition of a
progress countdown timer to drain the access history, even if the
processor does not enqueue new accesses. In typical write buffer
implementations, accesses are guaranteed to eventually leave the
buffer and become visible to other processors, obviating the need
for a progress countdown timer.

4.2.2 Benefits of GreCo-WB

There are two main benefits to using the write buffer as an access
history. First, design complexity is reduced because a separate ac-
cess history is unnecessary. Second, detection of SC violations is
more precise than in GreCo-Hist. The write buffer contains pre-
cisely the set of accesses that are relevant in avoiding SC viola-
tions. If a processor delays all accesses to data in its write buffer
until that data leaves the write buffer, no violations of SC are possi-
ble, assuming a processor implementing an x86-TSO-like memory
model [22]. Due to the fact that GreCo delays coherence requests
to prevent SC violations, GreCo cannot delay all accesses to data
in write buffers: GreCo is unable to avoid SC violations involving
cache hits, which do not require coherence.

There are two main limitations posed by the use of the write buffer
as an access history. Firstly, the write buffer is limited in size. This
size limitation reduces the window over which atomicity violation
bugs can be detected and prevented. Secondly, the write buffer
only records write accesses, not reads. Thus, GreCo-WB cannot
prevent any errors by delaying a remote write access after a local

read access. Note that these limitations do not impede GreCo’s
ability to prevent SC violations.

S. CORRECTNESS

In this section we show how GreCo preserves the guarantees of co-
herence (Section@ without inducing deadlock (Section @]) We
describe which sequential consistency violations (Section [5.3)) and
atomicity violations (Section[5.4) GreCo is able to avoid. Through-
out, we assume a broadcast-based cache coherence implementation
using a split-transaction bus.

5.1 Preservation of Coherence

GreCo preserves the coherence guarantee provided by the cache co-
herence protocol: for each cache line in the shared address space,
there exists some global total order of accesses to that line that al-
lows each processor’s observed order of accesses to that line. (En-
forced read-read ordering is typically partial, but all other compo-
nent orderings are total.) Coherence protocols often implement this
guarantee by enforcing a global total order on coherence messages
concerning a single line. Processors respond to requests for a line in
the order they are received. Furthermore, when a processor makes
a request, it waits for all responses before itself responding to any
subsequent requests from other processors for the same line.

Delayed coherence replies are possible in our assumed base coher-
ence implementation. A processor assumes no bound on the time
between when it sends a coherence message and when it receives a
reply from the other processors in the system. Coherence protocols
are resilient to such latency variations in order to remain decoupled
from the particular implementation (e.g., one that ensures replies
always arrive in a fixed interval). GreCo works by inserting ad-
ditional, bounded delays before coherence replies are sent. From
the perspective of the coherence protocol, GreCo is transparent—it
only affects the latency of request completion.

5.2 Deadlock Freedom and Forward Progress
During a program’s execution, two Or more processors may issue
a series of coherence requests (for different lines) that cause the
processors to wait for one another to reply before either can make
progress. This situation represents a cycle of coherence requests. In
a system without GreCo, cycles are inconsequential because every
processor responds to every request as soon as it can.

In a system with GreCo, such a situation is complicated if the lines
being accessed by the processors are in one another’s access histo-
ries. In this case, GreCo causes each processor to delay its reply to
the other. Progress is hampered by such a mutual delay. However,
as described in Section[d] GreCo automatically empties access his-
tories in order to avoid deadlock.

During a mutual delay, the progress timeout mechanism in each
access history continues to push old accesses out. Eventually, one
processor’s delay-causing history entry leaves the access history.
The processor replies to the delayed coherence request, permitting
the other processor to make progress. The amount of time that can
be wasted resolving a delay cycle is bounded by the time required
to completely empty the access history. Note that if the interleaving
the delays tried to avoid will not be avoided in this case.

In a system with GreCo, at least one processor is always able to
make forward progress, in spite of coherence request cycles. How-
ever, this does not guarantee the progress of individual threads. If a



processor repeatedly accesses the same line, that line may never be
absent from that processor’s access history. In such a situation, all
other processor’s requests for the line will be delayed indefinitely,
potentially starving other processors. In the worst case scenario,
this effect can serialize threads’ executions. In real programs, how-
ever, repeated accesses to the same line don’t often occur with suf-
ficiently high frequency to cause starvation. More often, threads
have program dependences that must be fulfilled by other proces-
sors, permitting accesses to leave their history. Furthermore, under
GreCo-WB, and assuming no false sharing (we discuss false shar-
ing in Section[5.5), only racy accesses can be delayed, because the
write buffer is flushed at synchronization.

5.3 Sequential Consistency

An execution is sequentially consistent if there exists a global total
order on memory operations (such that every read gets the value
from the most recent write to the same address) that allows the or-
ders observed by each processor. Architectures with write buffers
can violate SC when a processor buffers a write and retires a subse-
quent read before the buffered write is globally visible, effectively
reordering the operations. x86-TSO [22] defines an abstract mem-
ory model in which the reordering of reads with buffered writes is
the only source of SC violations. Under TSO, GreCo can prevent
some SC violations by preventing read misses from reading mem-
ory locations while a processor has a write buffered.

Without GreCo, if a processor p; buffers a write to a line [, and
another processor p2 takes a read miss for [, then p» may get a
stale value from memory, possibly leading to an SC violation. With
GreCo, p2’s read is delayed until p;’s write leaves its write buffer
and is globally visible. Therefore, p> reads the value of p1’s write
to [, which is the most recent, so SC is preserved. Assuming that
all reads miss, GreCo forces every read to get the value from the
globally most recent write, enforcing SC.

However, GreCo does not prevent SC violations involving read hits.
If p2 has [ in the shared state in its cache when it executes its read,
then it need not send a coherence request to access [. Without a
coherence request to delay, GreCo cannot prevent p2 from read-
ing the stale value of [. SC may be violated in this case. GreCo’s
avoidance guarantees depend on the state of the caches. On write-
buffer-based TSO architectures, GreCo-WB prevents all SC viola-
tions that involve only cache misses.

5.4 Atomicity

GreCo prevents potential single-variable atomicity violations that
satisfy the following conditions. First, if the intended atomic sec-
tion is in progress on processor p, the potential interleaving access
must generate a cache miss. This condition ensures that the poten-
tial interleaving access sends a coherence request to which proces-
sor p can delay its response in order to avoid the atomicity viola-
tion. Second, if the intended atomic section on line [ is in progress
on processor p, at least one conflicting access to line | must be
present in processor p’s access history at all times until comple-
tion of the atomic section. (Two accesses conflict if they access the
same memory location and at least one is a write.) This ensures
that processor p continues to delay its response to the coherence re-
quest for the potential interleaving access until the intended atomic
section has completed and the access will not violate its atomicity.
A useful proxy for this condition is that accesses to line [ within the
intended atomic section be separated by fewer operations than the
size of the access history and that processor p not be involved in
any deadlocks that may drain its access history.

5.5 False Sharing

GreCo may exacerbate the performance impact of false sharing.
GreCo tracks accesses at a cache line granularity and may cause
delays even if no bytes in the line are actually shared. To GreCo,
accesses to different bytes of the same line are indistinguishable
from accesses to the same byte. The false sharing problem is not
unique to GreCo. False sharing is a known performance pitfall that
programmers and compilers often attempt to minimize already.

6. EVALUATION

We evaluated our system to determine (1) how well GreCo avoids
failures and (2) how much performance overhead GreCo introduces
over conventional execution.

6.1 Methodology

We developed a simulated implementation of both GreCo-Hist and
GreCo-WB using the Pin binary instrumentation infrastructure [19].
The simulator includes a model of an 8-core processor. Each core
models a 4-way associative 32KB L1 data cache, a delay buffer,
and a 128-entry access history with a 50 cycle progress countdown
timer. The simulated core includes a write buffer model that affects
access costs, determines potential SC violations and, in GreCo-
WB, replaces the access history. We use a simple instruction cost
model derived from a specification for the Intel 80486 [24]. Cache
hits cost 1 simulated cycle, cache misses cost 100 simulated cycles.
Threads are assigned to a simulated core when they are spawned in
round-robin fashion. The simulator executes one cycle from each
thread during each global time step, whether executing a single- or
multi-cycle instruction or a delay due to GreCo.

Benchmarks. We used a set of atomicity violation bug kernel
benchmarks to evaluate and characterize the avoidance capability
and efficiency of GreCo. The bug kernels are variants of programs
used in prior work on hardware support for concurrency error de-
tection [3, 17]. The programs range from about 50 to 300 lines of
code. Each creates 8 threads to execute code that results in an atom-
icity violation under some interleavings. We also used the PARSEC
benchmark suite to further evaluate the performance characteristics
of GreCo.

6.2 Synthetic Benchmark Experiments
Figures[6|and[7] show the fraction of failures avoided, the total mul-
tithreaded performance overhead compared to a system without
GreCo, and the aggregate number of cycles spent in delay by all
threads as a fraction of the total multithreaded runtime for GreCo-
Hist and GreCo-WB running our synthetic benchmark programs.

The data in Figure [6] show that GreCo-Hist eliminates virtually
all dynamic manifestations of the atomicity violations in all ker-
nel benchmarks. The number of delays is often quite high, vary-
ing from around 50% of the non-GreCo execution time to around
150%. In spite of the high delay frequency, the performance over-
head is often disproportionately low—in all but homemade, mysql,
and unc, the overhead is negligible. These data suggest that, in
applications with lower overhead, the delayed threads are not on
the application’s critical path—during the delay, another thread can
proceed with useful computation. The result is that the delays do
not increase the total multithreaded execution time substantially. In
the applications with higher overhead, it is likely the delays are on
the critical path, hindering the execution’s progress.
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Figure 6: Failure avoidance, performance overhead, and delay
characteristics of GreCo-Hist running bug kernels.
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Figure 7: Failure avoidance, performance overhead, and delay
characteristics of GreCo-WB running bug kernels.

The data in Figure[7]show that GreCo-WB is able to avoid between
0% and 50% of the atomicity violation manifestations in our ker-
nel benchmarks. This result suggests that, while a substantial im-
provement in failure avoidance comes with the addition of a read
history (as in GreCo-Hist), the simpler GreCo-WB can also avoid
some atomicity violations. Figure [7] also shows that GreCo-WB
rarely leads to delays and hence has negligible performance over-
head over our baseline system. The exception to this trend is 1og,
which incurred a performance overhead greater than a factor of 3.

Dekker’s Algorithm Microbenchmark. We wrote a microbench-

mark implementing Dekker’s algorithm for mutual exclusion, which
can fail to provide mutual exclusion if its execution is not sequen-
tially consistent. Two threads spin in a loop to enter a critical sec-
tion 1000 times. The goal of this experiment is to show that GreCo
avoids potential SC violations with low overhead. We consider an
access a potential SC violation if it accesses data written by a write
in another processor’s write buffer.

Running without GreCo, we saw 5997 potential SC violations. With
GreCo-Hist, there was 1 potential SC violation and the performance
overhead was 5%. Running with GreCo-WB, there were 0 potential
SC violations and the performance overhead was 13%. GreCo-WB
imposed a slightly higher overhead than GreCo-Hist but avoided all
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GreCo-WB Overhead
GreCo-WB Delay

of —m _T - S
-0.01 I
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Figure 8: Performance overhead and delay characteristics of
GreCo-Hist and GreCo-WB running PARSEC.

potential SC violations. In contrast, GreCo-Hist failed to avoid all
potential SC violations but imposed lower overhead than GreCo-
WB. In spite of the differences, the performance overheads of both
schemes are acceptably low.

6.3 Performance

Our performance and avoidance results for GreCo-Hist and GreCo-
WB using these kernel benchmarks are promising because the ker-
nel programs we used are pathological to our system; they execute
buggy code in a tight loop with high frequency. Such programs
trigger delays and experience failures more often than real appli-
cations. Figure [§] shows the performance overhead of GreCo-Hist
and GreCo-WB running applications from PARSEC, a benchmark
suite representative of real-world workloads [1].

Across the board, the overhead for either scheme never degrades
performance by more than a few percent (st reamcluster) and,
in some cases, GreCo slightly improves the applications’ perfor-
mance (canneal, bodytrack). Such small variations in either
direction indicate that the performance impact of GreCo is negligi-
ble for these applications. These data also show that real applica-
tions tend to share data less frequently than bug kernels (Figures ]
and[7) because GreCo delays memory accesses less frequently dur-
ing executions of PARSEC applications than kernels. The shar-
ing pattern in these applications is therefore synergistic with the
design goals of GreCo: most of the time, the application is not
sharing and GreCo does not impose on the execution; occasionally,
the application engages in high-frequency sharing and GreCo im-
poses with low overhead to prevent that sharing from manifesting
failures. These results show that GreCo is well-suited for use in
deployed systems, where high performance is essential.

7. RELATED WORK

Research related to GreCo includes a variety of work on using hard-
ware [9, 15-17] and software [11] support to avoid failures in con-
current programs, work aimed at identifying the cause of concur-
rency errors [4,8,18,23,26], often using hardware support [9,13,14,
27], and work developing hardware and software-only systems that
avoid concurrency errors by forcing executions to adhere to tested
thread interleavings [6, 25].

Prior techniques for avoiding concurrency errors focus exclusively
on data races [9, 16] or atomicity violations [15, 17]. In addition,
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