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Abstract

ZPL is a parallel array languagedesignedfor high per-
formancescientificand engineeringcomputations.Unlike
other parallel languages, ZPL is foundedon a machine
model (the CTA) that accurately abstracts contemporary
MIMD parallel computers. This makesit possibleto cor-
relateZPL programswith machine behavior. As a result,
programmers can reasonabouthow codewill performon
a typical parallel machineand therebymake informedde-
cisionsbetweenalternativeprogrammingsolutions. This
paperdescribesZPL's performancemodeland its syntac-
tic cuesfor conveying operation cost. Thewhat-you-see-
is-what-you-get(WYSIWYG)nature of ZPL operations is
demonstratedon the IBM SP-2,Intel Paragon,SGIPower
Challenge, andCrayT3E.Additionally, themodelis usedto
evaluatetwo algorithmsfor matrix multiplication. Experi-
mentsshowthat the performancemodelcorrectly predicts
thefastersolutiononall four platformsfor a rangeof prob-
lemsizes.

1. Intr oduction

High-level programminglanguagesoffer an expressive
and portable meansof implementingalgorithms. They
spareprogrammersthe burdenof codingin assemblylan-
guageand simplify the task of porting programsto new
machines. However, without a well-definedperformance
modelthatindicateshow languageconstructsaremappedto
thetargetmachine,theadvantagesof ahigh-level program-
ming languagearediminished. Without any guidelinesas
�
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to how languageconstructsareimplemented,performance-
consciousprogrammershave little basison which to make
implementationchoices.In addition,programsthatexecute
efficiently on one platform may suffer significantperfor-
mancedegradationon otherplatformsbecausethereareno
guaranteesas to how a compiler will implementthe lan-
guage's features.

Performancemodelsarewell-understoodfor popularse-
quentiallanguagessuchasC andFortran,becausethereis
a clearmappingbetweentheir constructsandthevon Neu-
mannmachinemodel,whichreasonablyapproximatescon-
temporaryuniprocessors.This ability to “see” anaccurate
pictureof themachinethroughthelanguageis themostcru-
cial characteristicof a goodperformancemodel. Notethat
althoughthe modeldoesnot specifyanexactcostfor lan-
guageoperatorsandcannotbeusedto determinetheprecise
running time of a program,it neverthelessaids program-
mersby giving thema roughsenseof theconsequencesof
their implementationchoices.

As asimpleexample,analysisof thefollowing two loops
showsthemto bealgorithmicallyandasymptoticallyequiv-
alent. However, C programmersuse the first implemen-
tation becauseit accessesthe elementsin the sameorder
thatC's languagedefinitionrequiresthemto be laid out in
memory. Thisresultsin animplementationthatrespectsthe
memoryhierarchyof contemporarymachines.

const int m = 1000, n = 2000;
double A[m][n], B[m][n], C[m][n];
int i, j;

for (i=0; i � m; i++)
for (j=0; j � n; j++)

C[i][j] = A[i][j] + B[i][j];

for (j=0; j � n; j++)
for (i=0; i � m; i++)

C[i][j] = A[i][j] + B[i][j];

Implementation1 Implementation2
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This exampleillustratesthatevenafterasymptoticanalysis
and algorithmic design,second-orderimplementationde-
tails arestill a factor in obtaininggoodperformance.Al-
thoughasophisticatedcompilermighttransformthesecond
implementationinto thefirst, C's performancemodeldoes
not guaranteethis, and thereforeprogrammersconcerned
with portableperformancewill not rely on it. As a result,
thefirst implementationis theright choicein C.Conversely,
Fortranusescolumn-majororder, so Fortranprogrammers
will usethe secondloop ordering. Otheraspectsof both
languagesare subjectto similar evaluation,including pa-
rameterpassingmechanisms,procedurecall overheads,li-
brary routines,and systemcalls. Considerationof a lan-
guage'sperformancemodelin thiswayenableshighquality
machine-independentprogramming.

In the realm of parallel programming,thereis a simi-
lar needfor languageperformancemodelsthataccountfor
thecostsassociatedwith runningon multiple processorsin
additionto thoseinheritedfrom thesequentialdomain. In
particular, theseparallelmodelsshouldemphasizethecost
of interprocessordatamovementsincecommunicationof-
tensignificantlyimpactsapplicationperformance.

ZPL was the first parallel languageto provide an ex-
plicit performancemodel distinct from an implementing
machine.Theeffectivenessof its performancemodelis the
resultof anearlydesigndecisionto preserve machinevisi-
bility ratherthanto rely on sophisticatedcompileranalysis
andoptimization.This is in starkcontrastwith parallellan-
guagessuchasHigh PerformanceFortran(HPF) that uti-
lize directivesto specifyparallelism.BecauseHPF's direc-
tivesareoptionalandbecausethecompileris freeto ignore
them,it is difficult for a programmerto reasonaboutanal-
gorithm's performancewithout detailedknowledgeof the
compiler. Ngo hasshown that this lack of a performance
modelleadsto unpredictable,inconsistent,andpoorperfor-
mance[11].

In this paperwe describetheperformancemodelof the
ZPL parallelarray language.We describethe straightfor-
wardmappingof ZPL constructsto theCandidateTypeAr-
chitecture(CTA), aparallelanalogof thevonNeumannma-
chinemodelthataccuratelyabstractscontemporaryMIMD
parallelcomputers[15]. This allows programmersto rea-
son about the behavior of their ZPL programson paral-
lel machines.In addition,we demonstratethatZPL's syn-
tax inherentlyidentifiesoperationsthatinducecommunica-
tion. Thesevisual cuessimplify the first-orderevaluation
of aparallelprogram'scostandmotivateourdescriptionof
theperformancemodelas“what-you-see-is-what-you-get”
(WYSIWYG).

We demonstratethe useof ZPL's WYSIWYG perfor-
mancemodelin two experiments.Thefirst verifiestheac-
curacy of its syntacticcuesacrossseveral problemsizes,
architectures,and numbersof processors.The secondil-

lustratestheuseof ZPL's performancemodelto accurately
selectthebetterof two matrix multiplicationcodeswritten
in ZPL.

The remainderof the paperis organizedasfollows. In
thenext section,we summarizerelatedwork. In Section3
we provide a brief introductionto ZPL, and in Section4
we describeits performancemodel.Section5 containsex-
perimentsdesignedto validateourperformancemodel.We
concludein Section6.

2. Relatedwork

A commonmethodof parallelprogrammingis to usea
scalarlanguagesuchasC or Fortran,in combinationwith
messagepassinglibrariessuchas PVM or MPI. This ap-
proachhasan implicit performancemodel formed by the
performancemodelinheritedfrom thesequentiallanguage
in combinationwith theexplicit interprocessorcommunica-
tion specifiedby theprogrammer. However, codingat this
per-processorlevel is tediousand error-prone,motivating
theneedfor higher-level parallelprogramminglanguages.

NESL is anexampleof a higher-level parallellanguage
thatincludesa well-definedperformancemodel[2]. It uses
awork/depthschemeto calculateasymptoticboundsfor the
executiontime of NESL programson parallel computers.
Althoughthis modelmatchesNESL's functionalparadigm
well andallows usersto make coarse-grainedalgorithmic
decisions,it revealsvery little about the lower-level im-
pactof one's implementationchoicesandhow they will be
mappedto thetargetmachine.For example,thecostof in-
terprocessorcommunicationis considerednegligible in the
NESLmodelandis thereforeignoredentirely.

Themostprevalentparallellanguage,High Performance
Fortran[6], suffersfromthecompletelackof aperformance
model. As a result, programmersmust re-tunetheir pro-
gramsfor eachcompilerandplatform that they use,neu-
tralizing any notion of portableperformance.Ngo et al.
demonstratethatthis lackof aperformancemodelresultsin
erraticexecutiontimeswhencompilingHPFprogramsus-
ing differentcompilerson the IBM SP-2[12]. Oneof the
biggestcausesof ambiguityin theperformanceof HPFpro-
gramsis thefact thatcommunicationis completelyhidden
from theuser, makingit difficult to evaluatedifferentimple-
mentationoptions[5]. As anexample,Ngo comparesma-
trix multiplication algorithmswritten in HPF, demonstrat-
ing that thereis neitherany source-level indicationof how
they will perform,nor any consistency in the relative per-
formanceof thealgorithms[11]. By definingaperformance
modelto which all HPFcompilersmustadhere,this prob-
lem could have beenalleviated. Most compilerscompen-
satefor HPF's lack of a performancemodelby providing
toolsthatgive source-level feedbackaboutthecompilation
processand/orprogramexecution. The dPablo toolkit [1]
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is one suchexample. The problemwith this approachis
thatsuchtoolsaretightly coupledto aparticularcompiler's
compilationmodel,andthereforedo not aid in thecreation
of portablyperformingprograms.

In contrastwith HPF'shiddenandunspecifiedcommuni-
cationmodel,F ��� wasdevelopedto make communication
explicit andhighly visible to theprogrammerusinga sim-
ple andnaturalsyntaxextensionto Fortran90 [13]. This
resultsin a clearerperformancemodel than HPF, but not
withoutsomecost.Theuseris forcedto programata local
per-processorlevel, therebyforfeiting someof thebenefits
of higher-level languages,suchassequentialsemanticsand
deterministicexecution. Furthermore,by explicitly spec-
ifying interprocessordatatransfers,programmersare not
shieldedfrom raceconditionsanddeadlockasthey would
bein a higher-level language.Thus,althoughF ��� is more
convenientto usethanscalarlanguageswith messagepass-
ing, it doesnotraisethelevel of abstractionto asufficiently
convenientlevel.

Theseexamplesdemonstratea tensionbetweenprovid-
ing thebenefitsof ahigh-level languageandgiving thepro-
grammera low-level view of the executioncostsof their
algorithm. In ZPL, we strive to achieve the bestof both
worldsby providing a powerful andexpressive languagein
which low-level operationssuchascommunicationaredi-
rectly visible to programmersthroughthelanguage'soper-
ators.

3. Intr oduction to ZPL

ZPL is a portabledata-parallellanguagethat hasbeen
developedat the University of Washington. Its syntaxis
array-basedandincludesconstructsandoperatorsdesigned
to expressively describecommonprogrammingparadigms
andcomputations.ZPL hassequentialsemanticsthatallow
programsto be written anddebuggedon sequentialwork-
stationsandthenportedto parallelarchitecturesin a single
recompilation.

ZPL generallyoutperformsHPF and hasproven to be
competitive with hand-codedC andmessagepassing[10,
9]. Applicationsfrom a variety of disciplineshave been
written using ZPL [4, 7, 14], and the languagewas re-
leasedfor widespreadusein July, 1997. Supportedplat-
formsincludetheCrayT3D/T3E,Intel Paragon,IBM SP-2,
SGIPowerChallenge/Origin,clustersof workstationsusing
PVM andMPI, andsequentialworkstations.

In this section,we give a brief introductionto ZPL con-
ceptsthatarerequiredto understandthispaper. Morecom-
pletepresentationsof thelanguageareavailablein theZPL
Programmer'sGuideandReferenceManual[8, 16].

3.1. Regionsand arrays

Theregion is ZPL's mostfundamentalconcept.Regions
areindex setsthroughwhich a program'sparallelismis ex-
pressed.In their mostbasicform, regionsaresimply dense
rectangularsetsof indicessimilar to thoseusedto define
arraysin traditional languages.Region definitionscanbe
inlineddirectly into a ZPL program,or givennamesasfol-
lows:

region R = [1..n ,1..n ];
Top = [0 ,1..n ]; (1)
BigR = [0..n+1,0..n+1];

Thesedeclarationsdefinethreeregions:R is ann � n index
set;Top describestherow just above R; BigR is anexten-
sion of R by an extra row and column in eachdirection.
Diagramsof theseregionsareshown in Figure1.

R

(c)

Top

BigR

(a) (b)

Figure 1. Diagrams of the region declarations
in code fragment 1: (a) region R, (b) region
Top , and (c) region BigR . The dashed boxes
indicate the inde x space [0..n+1,0..n+1].

Regionshave two main rolesin ZPL. Thefirst is to de-
clareparallelarrays.This is doneby referringto theregion
in a variable's typespecifierasfollows:

var A: [R] double; (2)
B: [BigR] integer;

Thesedeclarationsdefinetwo arrays:A, ann � n arrayof
doubles,andB, anintegerarraydefinedoverBigR. Figure2
showsdiagramsof thesearrays.

Theseconduseof regionsis to opena region scopethat
specifiesthe indicesover which an arrayoperationshould
execute.For example,the following statementincrements
eachelementof A by its correspondingvalueof B over the
index rangespecifiedby R:

[R] A := A + B; (3)

Figure3 illustratesthisstatement.
Regions are ZPL's fundamentalsourceof parallelism.

Eachregion's index set is partitionedacrossthe processor
set,resultingin thedistributionof eacharrayandoperation
definedin termsof that region. Section4.1 describesthe
distributionof regionsin moredetail.
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B

(b)

A

(a)

Figure 2. Diagrams of the array declarations in
code fragment 2: (a) array A, declared to be of
size R; (b) array B, declared to be of size BigR .
The shading indicates that, unlike regions, ar-
rays have data associated with each inde x.

:=A A

:= +

+ B[R]

Figure 3. Illustration of the array addition in
code fragment 3. The darker shading indi-
cates the array elements referenced in each
expression.

3.2. The @ operator

Sinceregionseliminateexplicit arrayindexing,ZPLpro-
videsthe @ operator to allow translatedreferencesto ar-
rays. The @ operatortakesan arrayandan offset vector
calleda directionasoperandsandshifts referencesto the
arrayby the offset. For example,to replaceeachelement
of B with thesumof its left andright neighbors,onewould
write:

[R] B := B@[0,–1] + B@[0,1]; (4)

Directionsare generallynamedin order to improve a
program's readability. For example, line (4) could have
beenwritten:

direction left = [0,–1];
right = [0,1 ]; (5)

[R] B := B@left + B@right;

Figure4 shows a pictureof this operation.Directionsare
typically reusedthroughouta program,so naming them
meaningfullyalsoreducescarelessindexing mistakes.

B[R] :=

:=

B@left B@right

+

+

Figure 4. Illustration of the neighbor summa-
tion expressed in code fragment 5. Note that
the @ operator translates references to B.

3.3. Reductionsand floods

ReductionsandfloodsareZPL's operatorsfor combin-
ing and replicatingarray values. The reductionoperator
(op��� ) usesa binary operatorto combinearrayelements
alongoneor moredimensions,resultingin anarraysliceor
scalarvalue.For example:

[Top] B := + ��� [R] B; (6)
[R] biggestA := max ��� A;

In thefirst statement,we usea partial reductionto replace
eachelementin thetop row of B with thesumof thevalues
in its correspondingcolumn(illustratedin Figure5). The
regionscopeat thebeginningof thestatement(Top) speci-
fiestheindicesto beassigned,while theonesuppliedwith
the reductionoperator(R) specifieswhich elementsareto
becombined.The two regionsarecomparedto determine
whichdimension(s)shouldbecollapsed.Thesecondstate-
mentusesa full reductionto merge all the elementsof A
into a single scalar, biggestA, using the “max” operator.
Full reductionsrequireonly a singleregion scopesinceas-
signmentto a scalardoesnot requirea region.

[Top]

+ + ++

B := +<<[R] B

Figure 5. Illustration of the par tial reduction
in code fragment 6. Values of B are added
column-wise over R and the sums are as-
signed to the corresponding elements in Top .

The flood operator( 	�	 ) is the dual of a partial reduc-
tion. It replicatesthevaluesof anarraysliceacrossanarray.
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Consider:

[R] begin
B := 	�	 [Top] B; (7)
A := 	�	 [1,1] A;

end;

This codedemonstratesthe applicationof a single region
scope(R) to a block of statements.In thefirst assignment
statement,thetop row of B is replicatedacrossall therows
of B in regionR (shown in Figure6). As with partialreduc-
tions,two regionsareneededto specifythefloodoperation:
oneto indicatethesourceindicesof theflood(Top) andthe
secondto specifythe destination(R). In the secondstate-
ment,thevalueof thefirst elementof A is floodedacrossall
elementsof A in regionR.

>>[Top] BB :=[R]

Figure 6. Illustration of the fir st flood state-
ment in code fragment 7. Each element of B
in Top is replicated across its corresponding
column in R.

3.4. Gather and scatter

The gather ( � ##) and scatter ( 	 ##) operatorsare a
meansof arbitrarilyrearrangingdatain ZPL.As arguments,
they takealist of arraysthatareusedto index into thesource
or destinationarray (for gatherand scatter, respectively).
For example,thefollowing codeusesthescatteroperatorto
performamatrix transposeof B, assigningtheresultto A:

var I,J: [R] integer;
[R] begin

I := Index1; (8)
J := Index2;
A := 	 ##[J,I] B;

end;

Thiscodemakesuseof thebuilt-in ZPL arraysIndex1 and
Index2. Indexi is aconstantarrayin whicheveryelement's
valueis equalto its index in the 
���
 dimension.Thus,this
scatterwill replaceeachelementof A with the elementof
B whoseindex is specifiedby thecorrespondingvaluesof I
andJ. This is illustratedin Figure7. Althoughwe have set

[R] A := >##[J,I] B

Figure 7. Illustration of the scatter operation
in code fragment 8. Each element in B is as-
signed to the element in A specified by its
corresponding values of J and I.

I andJ to performa transposein this example,any permu-
tationor rearrangementof anarray'svaluesis possible.

Theseoperatorsform a representative samplingof the
featuresavailableto theZPL programmer. In thenext sec-
tion we will reasonabouttheir implementationcostsand
WYSIWYG performance.

4. ZPL's performancemodel

Theaccuracy of ZPL'sperformancemodeldependsboth
on themappingof ZPL constructsto theCTA parallelma-
chinemodelandon the CTA's ability to modelreal paral-
lel computers. If both of thesemappingsare straightfor-
ward,programmerswill beableto accuratelyreasonabout
the performanceof ZPL programs. In the context of this
paper, thetwo significantfeaturesof theCTA arethatit em-
phasizesdatalocality andthatit neitherspecifiesnorplaces
importanceontheprocessorinterconnecttopology. ZPL re-
flectstheCTA's emphasison locality by its syntacticiden-
tificationof operatorsthatinducecommunication.Thelack
of emphasison interconnecttopologyallows ZPL to com-
puteusinga virtual hypergrid of processors.

Theperformanceof ZPL codedependson threecriteria:
scalarperformance,concurrency, and interprocessorcom-
munication.ZPLprogramsarecompiledtoCasaninterme-
diateformat,sotheir scalarperformanceis dictatedheavily
by C'sperformancemodel.Concurrency andinterprocessor
communicationareboth determinedby the distribution of
ZPL regions,arrays,andscalarsacrosstheprocessorgrid.

4.1. ZPL'sdata distribution scheme

The key to ZPL's WYSIWYG performancemodel lies
in its region distribution invariant, which constrainshow
regions' index setsarepartitionedacrossthevirtual proces-
sor grid. ZPL dictatesthat all regionsmustbe partitioned
in a grid-alignedfashion.This impliesthateachdimension
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of theregion is mappedindependentlyto its corresponding
dimensionin the virtual processorgrid. For example, in
two dimensionseachregion would requiretwo mappings:
one betweenits rows and the processorrows, the second
betweenits columnsandthe processorcolumns. This no-
tion generalizesto � -dimensionalregionson � -dimensional
virtual processorgrids(wheresomedimensionsmaybede-
generate).Notethatpartitioningeachdimensionof aregion
usinga blocked, cyclic, or block-cyclic schemeresultsin
grid-alignment.Our ZPL compilerusesblockedpartition-
ing by default, andfor simplicity we will usethis scheme
for theremainderof thepaper.

ZPL placesadditionalconstraintson interactingregions.
Two regionsareconsideredto beinteractingif they areboth
referencedwithin a singlestatement.Thesereferencescan
eitherbeexplicit (by referringto theregionwithin a region
scope)or implicit (by referringto anarraythatwasdeclared
overtheregion).For example,in thecodefragmentsof Sec-
tion 3, R andBigR areconsideredto be interactingdueto
theuseof B (declaredover BigR) within thescopeof R in
codefragment3. Furthermore,Top andR interactdueto
their usesin the partial reductionandflood statementsof
codefragments6 and7. Thus,all threeregionsareinteract-
ing.

ZPL requiresthemappingfunctionsusedto partitionin-
teractingregionsto be identicalfor all indicescommonto
both regions. For example,sinceR andTop are interact-
ing,column 
 of Top mustbemappedto thesameprocessor
columnascolumn 
 of R for all 
 , ����
���� . Sincethis
requirementappliesto everydimension,any index common
to a pair of interactingregionsmustnecessarilybe located
on thesameprocessorfor bothregions. Thus,every index� 
������ of R will bemappedto thesameprocessorasthecor-
respondingindex

� 
������ in BigR.
Onceregionsarepartitionedacrosstheprocessors,each

arrayis allocatedusingthesamedistribution astheregion
overwhich it wasdeclared.Array operationsarecomputed
ontheprocessorsthatown theelementsin theenclosingre-
gion scopes.Thus,region partitioningdeterminesthecon-
currency of a ZPL program.

One final characteristicof ZPL's data distribution
schemeis that scalarvariablesare replicatedacrosspro-
cessors.Coherency is maintainedeitherthroughredundant
computationor interprocessorcommunication.

It might be arguedthat ZPL's datadistribution scheme
is overly restrictive,forcingprogrammersto formulatetheir
problemsin termsthatareamenableto theregion distribu-
tion invariant.Alternatively, ZPLcouldsupportarbitraryar-
rayalignmentandindexing, therebyproviding greaterflex-
ibility to theprogrammer. Theproblemwith this approach
is that the communicationcost of a statementwould be
determinedby the degreeto which its arraysarealigned,
somethingthat would not be apparentin the sourcecode.

Thus,estimatingperformancein sucha schemewould re-
quireprogrammersto look at their codemoreglobally than
thestatementlevel. In contrast,ZPL'scommunicationcosts
aredependentonly ontheoperationswithin astatementand
canthereforebe trivially identified. Thesecostsareevalu-
atedqualitatively in thenext section.

4.2. Qualitati ve evaluation of operators

OnceZPL's datadistribution schemeis defined,therel-
ative costsof its operatorsbecomereadily apparent. For
example,in the element-wiseaddition and assignmentof
codefragment3, we know thatcorrespondingelementsof
A andB areassignedto thesameprocessorandthereforeno
communicationis requiredto completethis operation.By
this samereasoningany ZPL statementthat only usesas-
signment,traditionaloperators,andfunctioncallswill also
be communication-free.Thus,communicationis only in-
ducedwhenZPL'snontraditionaloperatorsareused,allow-
ing programmersto readily identify it. Furthermore,the
costof thesecommunicationscanbeestimatedbasedonan
understandingof thedatadistributionscheme.

The @ operator. Sincethe @ operatoris usedto shift
anarray's references,interactingarrayvaluesareno longer
guaranteedto resideon the sameprocessor. Therefore,
point-to-pointcommunicationis requiredto transferremote
valuesto a processor's local memory. For example,in the
caseof ablockeddecomposition,thestatementin codefrag-
ment5 would requireeachprocessorto exchangea column
of B with both of the neighboringprocessorsin its row.
Sincethe @ operatorgenerallyrequiressuchcommunica-
tion, theprogrammercanexpectthatarrayreferenceswith
@'swill tendto bemoreexpensivethannormalarrayrefer-
ences.

Floodsand reductions. Floodingreplicatesvaluesalong
oneor moredimensionsof an array. Sincethe region dis-
tributioninvariantguaranteesthatarraysliceswill resideon
processorslices,floodingcanbeachievedby broadcasting
valuesto processorswithin theappropriateslice.For exam-
ple,thefirst floodin codefragment7 requiresthateachpro-
cessorowningasectionof Top broadcastits relevantvalues
of B to theprocessorsin its column. Similarly, thesecond
statementrequirestheprocessorwith thefirst elementof A
to broadcastthevalueto all otherprocessors.Oncethedata
is received, it canbe replicatedacrossthe processor's lo-
cal blockof values.Dueto thefactthatbroadcastsbecome
moreexpensiveasthenumberof processorsgrows,wecan
expectthecostof floodingto increasesimilarly.

Partial reductionsarethe dual of flooding, so they will
needto combinevaluesalonga processorslice,placingthe
resultat theappropriateprocessor(e.g., usinga combining
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communication communication communication
operator paradigm complexity volume flops

@-reference point-to-point � � ��� � � ���  
flood broadcast � ��!#"%$�& � � � ���  

partial reduce reduction � ��!#"%$�& � � � ��� � � �(')�
full reduce reduction � ��!#"%$�& � � � �)� � � �(')�

gather/scatter permutation � �*& ')� � � �('��  

Table 1. Summar y of the expected cost per processor of selected ZPL operator s, assuming a
& � &

processor grid with a distrib ution of �+�,� array elements per processor . Comm unication paradigm
indicates the induced style of data transf er; comm unication comple xity signifies the depth of the
comm unication schedule; comm unication volume indicates the number of elements transf erred at
each step in the schedule; flops indicates the number of floating point operations required to perf orm
the operation.

tree). Full reductionsaresimilar, but requirea final broad-
castto replicatetheresultingscalarvalueacrossall proces-
sors. Sincereductionshave communicationpatternsthat
aresimilar to flooding, we expect themto scalesimilarly,
but to bemoreexpensive dueto theoperationsrequiredto
combinearrayvalues.

Gathers and scatters. Gathersand scattersare usedto
expressarbitrarydatamovementandthereforetendto move
largervolumesof datain lessregular communicationpat-
terns. They will tendto requiremorecommunicationdue
to thefactthatthesource,target,andindexing arraysareall
distributedacrosstheprocessorgrid. Performanceis further
impactedby thecachecontentionresultingfromthenumber
of arraysin useaswell astherandomdataaccessrequired
for thesourceor destinationarray. As aresultof all of these
factors,the programmercanexpectgathersandscattersto
bethemostexpensiveoperationdescribedin thispaper.

Other operators. Table 1 summarizesthis analysisof
ZPL operators,estimatingtheir expectedcostsasymptoti-
cally in termsof problemandprocessorgrid size.ZPL con-
tainsadditionaloperatorsnot describedin this papersuch
as wraps, reflects, and partial and full scans. Although
it could be enlighteningto discusseachof them in turn,
the more importantpoint is this: Knowingwhat an oper-
ator doesand beingfamiliar with ZPL's data distribution
scheme, it is possiblefor a programmerto qualitativelyas-
sessthe communicationstylerequired by any operator as
well asto roughlyestimateits performanceimpact. In this
way, thecommunicationin a ZPL programis directly vis-
ible to programmerswithout burdeningthemwith the task
of explicitly specifyingdatatransfer. Whatthey seeis what
they get.

5. Experiments

In thissection,weexperimentallydemonstratetheeffec-
tivenessof theZPL performancemodel. In thefirst exper-
iment,we measuretheexecutiontime of a numberof ZPL
statementsandcomparetheresultsto ourexpectationsfrom
thequalitative analysisof theprevioussection.In thesec-
ondexperiment,we show that thesource-level evaluations
of two matrixmultiplicationalgorithmscanaccuratelypre-
dict their relativeperformance.

Bothexperimentswererunonfour differentparallelma-
chines: the IBM SP-2,the Intel Paragon,the SGI Power
Challenge,andtheCrayT3E.All interprocessorcommuni-
cationwasefficiently implementedusingthe communica-
tion librariesof eachmachine:MPI onthePowerChallenge
andtheSP-2,NX ontheParagon,andSHMEM ontheT3E.

5.1. Performanceof ZPL operations

Figure8 shows themeasuredexecutiontimesof several
ZPL operationsperformedonarraysof doubles:arraycopy
([R] A := B), arrayaddition([R] A := A+B), arraytransla-
tion ([R] A := B@south), flooding([R] A := 	�	 [Top] B),
partial reduction([Top] B := + ��� [R] A), full reduction
([R] sum := + ��� B), andmatrix transposeusingscatter
([R] A := 	 ##[J,I] B). Eachgraphshows the statements'
executiontimes on threeprocessorgrids of varying size.
Eachrow of graphsrepresentsa particularmachine,while
eachcolumnrepresentsa specificproblemsize. Theprob-
lem sizeindicatesthenumberof elementsof R assignedto
each processor. R is scaledin this way to maintainsimilar
cacheeffectsanddatatransfervolumesacrossall processor
grids for a platform. Note thatstatementswhich scaleper-
fectly will haveconsistentrunningtimeswithin agraph.By
comparingbarswithin a graph,acrossa row of graphs,or
alonga columnof graphs,onecanevaluatehow ZPL's op-
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Figure 8. Measured performance of ZPL operations. Each graph sho ws the execution times on three
processor configurations. Each column of graphs represents a per-processor problem size, and
each row represents a machine .

eratorsscalewith thenumberof processors,scalewith the
problemsize,andperformacrossarchitectures.

Although numerousobservations can be made from
thesegraphs,we list just a few to highlight performance
issuesrelatedto our analysisin the previous section. To
begin with, theWYSIWYG modelindicatesthat thearray

copy andarrayadditionstatementsshouldrequireno com-
municationandthereforescaleperfectlyasthe numberof
processorsincreases.This is demonstratedto betrueby the
consistentexecutiontimesof thefirst two barswithin each
graph.

Comparingthe array translation(bar 3) with the array
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communication communication elements
statement complexity volume flops referenced
[R] A := B    .��('
[R] A := A+B   �(' .��('
[R] A := B@south � �  .��('
[R] A := 	�	 [Top] B

!#"%$�& �  �('0/1�
[Top] B := + ��� [R] A

!#"%$�& � �('324� �('0/1�
[R] sum := + ��� B . !*"5$�& � �(' �('
[R] A := 	 ##[J,I] B

& ' �('  6%�('

Table 2. Summar y of expected statement costs per processor . The fir st three columns are as in Ta-
ble 1. Elements referenced gives the number of distinct array references required by each statement.

copy (bar 1), we seethat it tendsto be moreexpensive as
expected,dueto the requiredcommunication.The differ-
enceis leastsignificantfor thesingleprocessorcaseswhere
thereis nocommunication.Notethatfor theSP-2,Paragon,
andPowerChallenge,whereonly a modestnumberof pro-
cessorswereavailable,increasingtheprocessorgridsizere-
sultsin anincreasedexecutiontime in spiteof theexpected
� � �)� communicationcomplexity. Thisis dueto thefactthat
eachprocessorin a .7�8. grid is eithera sourceor a desti-
nationof communication,while larger grids requiresome
processorsto do both. On theT3E wheremoreprocessors
are available, it can be seenthat the time to perform the
translationlevels off, confirmingthe predicted� � �)� com-
municationcomplexity. On all platforms,thetime required
to performthe �(' assignmentstendsto dominatethe � � ���
communicationastheproblemsizegrows,reducingtheper-
formancegapbetweenthetwo typesof assignment.

As predicted,the flood operator's performance(bar 4)
becomesslower as the number of processorsincreases.
Looking at how the flood operatorscaleswith the number
of processors,notethat on the Cray T3E wherelargepro-
cessorsetswereavailable,theflooddoesnot level off asthe
@ operatordid. This is consistentwith its � ��!#"%$9& � com-
municationcomplexity aspredictedin Table1.

Examiningthepartialandfull reductions(bars5 and6),
we seethat they similarly matchtheir predictedcommu-
nicationcomplexity, becomingmoreexpensive as the the
numberof processorsincreases.In addition,note that on
smallerproblemsizeswherecommunicationis lessdomi-
natedby the � � �(')� computation,thefull reductiondoesnot
scalewith the numberof processorsaswell as the partial
reduction.This is evidenceof the fact that the full reduce
requiresabroadcastin additionto thereductionoverall the
processors,whereasthepartial reductionsimply requiresa
reductionoverasinglecolumnof processors.

Finally, aspredicted,thescatter-basedmatrix transposi-
tion (bar7) consistentlyprovesto besignificantlymoreex-
pensivethantheotheroperators,generallycostinganorder

of magnitudemorethanthenext mostexpensivestatement.
Therearea few resultsthatmayseemsurprisingat first

glance. For instance,why arethe floodsso muchcheaper
thanotherstatementsonsomany configurations?And why
dofull reductionsoftenoutperformpartialreductionswhen
they requiremore communication?The properresponse
to thesequestionsis to notice that our analysisup to this
point hasbeenconcernedwith parallelperformanceissues
to theexclusionof thescalarcomponentof theperformance
model—inparticular, thememoryhierarchy.

To rectify this problem,let us considerthe statements
morethoroughly. Table2 presentsa summaryof thestate-
ments'costs,usingananalysissimilar to Table1. We dis-
pensewith thebig-O notationin orderto displayconstants
that may be relevant for this analysis. In addition,we in-
specttheregionsandarraysusedin eachstatementto deter-
minethenumberof distinctelementsthatit references.For
example,thearraycopy statementaccessesall elementsin
A andB overR andthereforereferences.:� ' elements.

With this more completeanalysis, it becomesappar-
ent that the memory hierarchyaccountsfor theseseem-
ing anomalies.For example,the flood is shown to refer-
encefewer arrayelementsthanall otherstatementsexcept
the reductions(which require � � �('�� additions). Thus, its
modestmemoryrequirementsandlackof floatingpointop-
erationsmost likely accountfor its betterrelative perfor-
mance.Memoryrequirementscanalsoexplain thedispar-
ity betweenthepartialandfull reductionssincethefull re-
ductioncanaccumulateits valuesinto a scalarratherthan
anarray, resultingin greaterlocality. The fact that theob-
servedbehaviors areamplifiedon largerproblemsizesand
the Paragon(which hasa smallercache)servesas further
confirmationthatthememoryhierarchyis responsible.

It is importantto realizethatthecontentsof Table2 can
be generatedsimply by examiningthe statementsindivid-
ually, reasoningaboutthe type of communicationthey re-
quire, and calculatingthe numberof array references,all
within thecontext of theZPL performancemodel. No fur-
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direction right = [0,1];
below = [1,0];

region R = [1..n,1..n];

var A,B,C:[R] double;

(a) Common declarations for
n ; n matrix multiplication

[R] begin
C := 0.0;
for i := 1 to n do

C += ( 	�	 [1..n,i] A) � ( 	�	 [i,1..n] B);
end;

end;

(b) SUMMA matrix multiplication

[R] begin
/* initialize matrices by skewing */
for i := 2 to n do

[right of R] wrap A;
[i..n,1..n] A := A@right;
[below of R] wrap B;
[1..n,i..n] B := B@below;

end;
/* compute first product and iterate */
C := A � B;
for i := 2 to n do

[right of R] wrap A;
A := A@right;
[below of R] wrap B;
B := B@below;
C += A � B;

end;
end;

(c) Cannon's matrix multiplication

Figure 9. Two algorithms for n � n matrix multiplication in ZPL and their common declarations.

ther informationis neededto producetheseestimates,and
yet they can accuratelycharacterizeperformance. In the
next sectionweusethis identicaltechniqueto evaluatema-
trix multiplicationalgorithms.

5.2. Matrix multiplication

Although analyzingthe performanceof individual ZPL
statementsis instructive, the real test of the WYSIWYG
performancemodel is in evaluatingwhole algorithms. In
Figure 9, we give two ZPL implementationsfor dense
matrix-matrixmultiplication: SUMMA [17] andCannon's
Algorithm [3]. SUMMA is consideredto bethemostscal-
ableof portableparallelmatrix multiplication algorithms.
It iteratively floodsa columnof matrix A anda row of ma-
trix B, accumulatingtheirproductin C. Cannon'salgorithm
skewstheA andB matricesasaninitializationstepandthen
iteratively performscyclic shifts of A and B, multiplying
andaccumulatingtheminto theC matrix. Theskewing and
cyclic shiftsareachievedusingZPL'swrapoperatorwithin
an of region—anotherform of point-to-pointcommunica-
tion in ZPL.

Analyzing thesealgorithmsasymptoticallyrevealsthat
they both perform � � �(<)� computationand � � ��� commu-
nications. However, using the WYSIWYG performance
modelas we did in the previous section,we canperform
amorepreciseevaluation.

Table3 summarizestheresultsof thisanalysis.Thefirst
columnshows that theinitializationstepof Cannon's algo-

rithm requiresit to performtwiceasmany communications
thantheSUMMA algorithmoverall.Althoughthecommu-
nicationin Cannon's algorithmis morescalabledueto its
� � ��� communicationcomplexity, it is not obviousthatthis
will besufficientto makeupfor thefactorof two difference
in thenumberof communications.Looking at thememory
footprint of eachalgorithm, we seethat the implementa-
tion of Cannon's algorithmtouchesfar morememorythan
SUMMA. This is duenot only to its initialization step,but
alsobecauseit accessesevery elementof all threematrices
while performingthe shifts in its main loop. In contrast,
eachiterationof SUMMA only hasto reference� elements
of theA andB matricesto performthefloods.

Basedonthisanalysis,wecanhypothesizethatSUMMA
will tendto outperformCannon's algorithm,especiallyon
the largerproblemsizeswherememoryis expectedto be-
comethebottleneck.

To testourhypothesis,weranbothprogramsonthesame
four machinesfor a variety of problemsizes(onceagain
scalingtheproblemto maintaina constantamountof data
per processor). Figure 10 shows our resultsand verifies
thatSUMMA outperformsCannon'salgorithmin all cases.
Performingtheequivalentexperimentin HPF, Ngodemon-
stratedthatnot only is it virtually impossibleto predictthe
relative performanceof thesealgorithmsby looking at the
HPFsource,butalsothatneitheralgorithmconsistentlyout-
performstheotheracrossall compilers[11]. ZPL's WYSI-
WYG performancemodelmakesbothsource-level evalua-
tion andportableperformanceareality.
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number of communication communication elements
algorithm communications complexity volume flops referenced

Cannon 65� � � .��(<=24�(' �?> � .(@%A' /CB:�(')�SUMMA .:� !#"%$�& � .��(< �D> � �('0/E.����

Table 3. Summar y of the expected costs of the matrix multiplication algorithms per processor . Num-
ber of comm unications indicates the number of times a comm unication (cyclic shift or flood) is used
by the algorithm. The other comm unication statistics are repor ted per comm unication. All other
columns are as in Table 2.

5.3. Summary

In our experiments,we seethatZPL's WYSIWYG per-
formancemodelallows usto reasonabouttheexecutionof
a programwithout having a specificmachinein mind. It
shouldbe notedthat, as in the sequentialdomain,ZPL's
performancemodeldoesnot yield exact informationabout
aprogram'srunningtime. Thiswouldbeimpossible.How-
ever, it doesallow programmersto beawareof theimplica-
tionsof their implementationdecisionsby makingthemap-
ping of their codeto a parallelmachineexplicit. As with
sequentiallanguages,a programmer's intuition maybe in-
accuratedueto thecomplexity of modernmachinesor the
impactof compileroptimizations(e.g., pipeliningcommu-
nication or removing redundantcommunications).How-
ever, we expect that by revealing the mappingof ZPL to
parallelmachines,boththroughits performancemodeland
its syntacticcues,the programmerwill be betterequipped
to confrontthesechallenges.

6. Conclusionsand futur e work

A language's performancemodelgivesprogrammersa
roughunderstandingof a code's performance,facilitating
the selectionbetweenalternative implementations. Such
modelsareparticularlycrucialin theparalleldomainwhere
thecostof languagefeaturesmayvarygreatlyin magnitude
(e.g., local versusremotememoryaccess).Yet,ZPL is the
first high-level parallelprogramminglanguageto presenta
performancemodelthat allows usersto seethe targetma-
chine through their code. This is doneby cleanly map-
ping the languageto the hardware via the CTA machine
model,andit givesprogrammerstheability to reasonabout
a code's relative performance.Moreover, operatorsthat in-
ducecommunicationareclearlyvisible in ZPL syntax.We
refer to this asZPL's WYSIWYG performancemodel. We
have givenanexplanationof how thelanguageachievesit,
demonstratedhow programmerscanuseit, andexperimen-
tally verified that a diversecollectionof parallelmachines
respectit.

In futurework wewill beextendingtheZPL languageto
handleirregularandsparseproblems.Thechallengewill be
to dosowhile preservingZPL'sWYSIWYG properties.
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